From 9bd7dcfb9918930c7cbeadf03c455ed0a0d43259 Mon Sep 17 00:00:00 2001 From: Léo Gourdin Date: Tue, 2 Mar 2021 14:37:20 +0100 Subject: Asmcondexp branche useful to benchmark expansions --- riscV/Asmgen.v | 247 ++++++++++++++++ riscV/Asmgenproof.v | 164 +++++++++-- riscV/Asmgenproof1.v | 773 +++++++++++++++++++++++++++++++++++++++++++++------ 3 files changed, 1088 insertions(+), 96 deletions(-) (limited to 'riscV') diff --git a/riscV/Asmgen.v b/riscV/Asmgen.v index 957166b6..4f9d008b 100644 --- a/riscV/Asmgen.v +++ b/riscV/Asmgen.v @@ -105,6 +105,8 @@ Definition addimm32 := opimm32 Paddw Paddiw. Definition andimm32 := opimm32 Pandw Pandiw. Definition orimm32 := opimm32 Porw Poriw. Definition xorimm32 := opimm32 Pxorw Pxoriw. +Definition sltimm32 := opimm32 Psltw Psltiw. +Definition sltuimm32 := opimm32 Psltuw Psltiuw. Definition load_hilo64 (r: ireg) (hi lo: int64) k := if Int64.eq lo Int64.zero then Pluil r hi :: k @@ -130,6 +132,8 @@ Definition addimm64 := opimm64 Paddl Paddil. Definition andimm64 := opimm64 Pandl Pandil. Definition orimm64 := opimm64 Porl Poril. Definition xorimm64 := opimm64 Pxorl Pxoril. +Definition sltimm64 := opimm64 Psltl Psltil. +Definition sltuimm64 := opimm64 Psltul Psltiul. Definition addptrofs (rd rs: ireg) (n: ptrofs) (k: code) := if Ptrofs.eq_dec n Ptrofs.zero then @@ -141,6 +145,66 @@ Definition addptrofs (rd rs: ireg) (n: ptrofs) (k: code) := (** Translation of conditional branches. *) +Definition transl_cbranch_int32s (cmp: comparison) (r1 r2: ireg0) (lbl: label) := + match cmp with + | Ceq => Pbeqw r1 r2 lbl + | Cne => Pbnew r1 r2 lbl + | Clt => Pbltw r1 r2 lbl + | Cle => Pbgew r2 r1 lbl + | Cgt => Pbltw r2 r1 lbl + | Cge => Pbgew r1 r2 lbl + end. + +Definition transl_cbranch_int32u (cmp: comparison) (r1 r2: ireg0) (lbl: label) := + match cmp with + | Ceq => Pbeqw r1 r2 lbl + | Cne => Pbnew r1 r2 lbl + | Clt => Pbltuw r1 r2 lbl + | Cle => Pbgeuw r2 r1 lbl + | Cgt => Pbltuw r2 r1 lbl + | Cge => Pbgeuw r1 r2 lbl + end. + +Definition transl_cbranch_int64s (cmp: comparison) (r1 r2: ireg0) (lbl: label) := + match cmp with + | Ceq => Pbeql r1 r2 lbl + | Cne => Pbnel r1 r2 lbl + | Clt => Pbltl r1 r2 lbl + | Cle => Pbgel r2 r1 lbl + | Cgt => Pbltl r2 r1 lbl + | Cge => Pbgel r1 r2 lbl + end. + +Definition transl_cbranch_int64u (cmp: comparison) (r1 r2: ireg0) (lbl: label) := + match cmp with + | Ceq => Pbeql r1 r2 lbl + | Cne => Pbnel r1 r2 lbl + | Clt => Pbltul r1 r2 lbl + | Cle => Pbgeul r2 r1 lbl + | Cgt => Pbltul r2 r1 lbl + | Cge => Pbgeul r1 r2 lbl + end. + +Definition transl_cond_float (cmp: comparison) (rd: ireg) (fs1 fs2: freg) := + match cmp with + | Ceq => (Pfeqd rd fs1 fs2, true) + | Cne => (Pfeqd rd fs1 fs2, false) + | Clt => (Pfltd rd fs1 fs2, true) + | Cle => (Pfled rd fs1 fs2, true) + | Cgt => (Pfltd rd fs2 fs1, true) + | Cge => (Pfled rd fs2 fs1, true) + end. + +Definition transl_cond_single (cmp: comparison) (rd: ireg) (fs1 fs2: freg) := + match cmp with + | Ceq => (Pfeqs rd fs1 fs2, true) + | Cne => (Pfeqs rd fs1 fs2, false) + | Clt => (Pflts rd fs1 fs2, true) + | Cle => (Pfles rd fs1 fs2, true) + | Cgt => (Pflts rd fs2 fs1, true) + | Cge => (Pfles rd fs2 fs1, true) + end. + Definition apply_bin_r0_r0r0lbl (optR0: option bool) (sem: ireg0 -> ireg0 -> label -> instruction) (r1 r2: ireg0) (lbl: label) := match optR0 with | None => sem r1 r2 lbl @@ -158,6 +222,59 @@ Definition apply_bin_r0_r0r0 (optR0: option bool) (sem: ireg0 -> ireg0 -> instru Definition transl_cbranch (cond: condition) (args: list mreg) (lbl: label) (k: code) := match cond, args with + | Ccomp c, a1 :: a2 :: nil => + do r1 <- ireg_of a1; do r2 <- ireg_of a2; + OK (transl_cbranch_int32s c r1 r2 lbl :: k) + | Ccompu c, a1 :: a2 :: nil => + do r1 <- ireg_of a1; do r2 <- ireg_of a2; + OK (transl_cbranch_int32u c r1 r2 lbl :: k) + | Ccompimm c n, a1 :: nil => + do r1 <- ireg_of a1; + OK (if Int.eq n Int.zero then + transl_cbranch_int32s c r1 X0 lbl :: k + else + loadimm32 X31 n (transl_cbranch_int32s c r1 X31 lbl :: k)) + | Ccompuimm c n, a1 :: nil => + do r1 <- ireg_of a1; + OK (if Int.eq n Int.zero then + transl_cbranch_int32u c r1 X0 lbl :: k + else + loadimm32 X31 n (transl_cbranch_int32u c r1 X31 lbl :: k)) + | Ccompl c, a1 :: a2 :: nil => + do r1 <- ireg_of a1; do r2 <- ireg_of a2; + OK (transl_cbranch_int64s c r1 r2 lbl :: k) + | Ccomplu c, a1 :: a2 :: nil => + do r1 <- ireg_of a1; do r2 <- ireg_of a2; + OK (transl_cbranch_int64u c r1 r2 lbl :: k) + | Ccomplimm c n, a1 :: nil => + do r1 <- ireg_of a1; + OK (if Int64.eq n Int64.zero then + transl_cbranch_int64s c r1 X0 lbl :: k + else + loadimm64 X31 n (transl_cbranch_int64s c r1 X31 lbl :: k)) + | Ccompluimm c n, a1 :: nil => + do r1 <- ireg_of a1; + OK (if Int64.eq n Int64.zero then + transl_cbranch_int64u c r1 X0 lbl :: k + else + loadimm64 X31 n (transl_cbranch_int64u c r1 X31 lbl :: k)) + | Ccompf c, f1 :: f2 :: nil => + do r1 <- freg_of f1; do r2 <- freg_of f2; + let (insn, normal) := transl_cond_float c X31 r1 r2 in + OK (insn :: (if normal then Pbnew X31 X0 lbl else Pbeqw X31 X0 lbl) :: k) + | Cnotcompf c, f1 :: f2 :: nil => + do r1 <- freg_of f1; do r2 <- freg_of f2; + let (insn, normal) := transl_cond_float c X31 r1 r2 in + OK (insn :: (if normal then Pbeqw X31 X0 lbl else Pbnew X31 X0 lbl) :: k) + | Ccompfs c, f1 :: f2 :: nil => + do r1 <- freg_of f1; do r2 <- freg_of f2; + let (insn, normal) := transl_cond_single c X31 r1 r2 in + OK (insn :: (if normal then Pbnew X31 X0 lbl else Pbeqw X31 X0 lbl) :: k) + | Cnotcompfs c, f1 :: f2 :: nil => + do r1 <- freg_of f1; do r2 <- freg_of f2; + let (insn, normal) := transl_cond_single c X31 r1 r2 in + OK (insn :: (if normal then Pbeqw X31 X0 lbl else Pbnew X31 X0 lbl) :: k) + | CEbeqw optR0, a1 :: a2 :: nil => do r1 <- ireg_of a1; do r2 <- ireg_of a2; OK (apply_bin_r0_r0r0lbl optR0 Pbeqw r1 r2 lbl :: k) @@ -210,6 +327,133 @@ Definition transl_cbranch Error(msg "Asmgen.transl_cond_branch") end. +(** Translation of a condition operator. The generated code sets the + [rd] target register to 0 or 1 depending on the truth value of the + condition. *) + +Definition transl_cond_int32s (cmp: comparison) (rd: ireg) (r1 r2: ireg0) (k: code) := + match cmp with + | Ceq => Pseqw rd r1 r2 :: k + | Cne => Psnew rd r1 r2 :: k + | Clt => Psltw rd r1 r2 :: k + | Cle => Psltw rd r2 r1 :: Pxoriw rd rd Int.one :: k + | Cgt => Psltw rd r2 r1 :: k + | Cge => Psltw rd r1 r2 :: Pxoriw rd rd Int.one :: k + end. + +Definition transl_cond_int32u (cmp: comparison) (rd: ireg) (r1 r2: ireg0) (k: code) := + match cmp with + | Ceq => Pseqw rd r1 r2 :: k + | Cne => Psnew rd r1 r2 :: k + | Clt => Psltuw rd r1 r2 :: k + | Cle => Psltuw rd r2 r1 :: Pxoriw rd rd Int.one :: k + | Cgt => Psltuw rd r2 r1 :: k + | Cge => Psltuw rd r1 r2 :: Pxoriw rd rd Int.one :: k + end. + +Definition transl_cond_int64s (cmp: comparison) (rd: ireg) (r1 r2: ireg0) (k: code) := + match cmp with + | Ceq => Pseql rd r1 r2 :: k + | Cne => Psnel rd r1 r2 :: k + | Clt => Psltl rd r1 r2 :: k + | Cle => Psltl rd r2 r1 :: Pxoriw rd rd Int.one :: k + | Cgt => Psltl rd r2 r1 :: k + | Cge => Psltl rd r1 r2 :: Pxoriw rd rd Int.one :: k + end. + +Definition transl_cond_int64u (cmp: comparison) (rd: ireg) (r1 r2: ireg0) (k: code) := + match cmp with + | Ceq => Pseql rd r1 r2 :: k + | Cne => Psnel rd r1 r2 :: k + | Clt => Psltul rd r1 r2 :: k + | Cle => Psltul rd r2 r1 :: Pxoriw rd rd Int.one :: k + | Cgt => Psltul rd r2 r1 :: k + | Cge => Psltul rd r1 r2 :: Pxoriw rd rd Int.one :: k + end. + +Definition transl_condimm_int32s (cmp: comparison) (rd: ireg) (r1: ireg) (n: int) (k: code) := + if Int.eq n Int.zero then transl_cond_int32s cmp rd r1 X0 k else + match cmp with + | Ceq | Cne => xorimm32 rd r1 n (transl_cond_int32s cmp rd rd X0 k) + | Clt => sltimm32 rd r1 n k + | Cle => if Int.eq n (Int.repr Int.max_signed) + then loadimm32 rd Int.one k + else sltimm32 rd r1 (Int.add n Int.one) k + | _ => loadimm32 X31 n (transl_cond_int32s cmp rd r1 X31 k) + end. + +Definition transl_condimm_int32u (cmp: comparison) (rd: ireg) (r1: ireg) (n: int) (k: code) := + if Int.eq n Int.zero then transl_cond_int32u cmp rd r1 X0 k else + match cmp with + | Clt => sltuimm32 rd r1 n k + | _ => loadimm32 X31 n (transl_cond_int32u cmp rd r1 X31 k) + end. + +Definition transl_condimm_int64s (cmp: comparison) (rd: ireg) (r1: ireg) (n: int64) (k: code) := + if Int64.eq n Int64.zero then transl_cond_int64s cmp rd r1 X0 k else + match cmp with + | Ceq | Cne => xorimm64 rd r1 n (transl_cond_int64s cmp rd rd X0 k) + | Clt => sltimm64 rd r1 n k + | Cle => if Int64.eq n (Int64.repr Int64.max_signed) + then loadimm32 rd Int.one k + else sltimm64 rd r1 (Int64.add n Int64.one) k + | _ => loadimm64 X31 n (transl_cond_int64s cmp rd r1 X31 k) + end. + +Definition transl_condimm_int64u (cmp: comparison) (rd: ireg) (r1: ireg) (n: int64) (k: code) := + if Int64.eq n Int64.zero then transl_cond_int64u cmp rd r1 X0 k else + match cmp with + | Clt => sltuimm64 rd r1 n k + | _ => loadimm64 X31 n (transl_cond_int64u cmp rd r1 X31 k) + end. + +Definition transl_cond_op + (cond: condition) (rd: ireg) (args: list mreg) (k: code) := + match cond, args with + | Ccomp c, a1 :: a2 :: nil => + do r1 <- ireg_of a1; do r2 <- ireg_of a2; + OK (transl_cond_int32s c rd r1 r2 k) + | Ccompu c, a1 :: a2 :: nil => + do r1 <- ireg_of a1; do r2 <- ireg_of a2; + OK (transl_cond_int32u c rd r1 r2 k) + | Ccompimm c n, a1 :: nil => + do r1 <- ireg_of a1; + OK (transl_condimm_int32s c rd r1 n k) + | Ccompuimm c n, a1 :: nil => + do r1 <- ireg_of a1; + OK (transl_condimm_int32u c rd r1 n k) + | Ccompl c, a1 :: a2 :: nil => + do r1 <- ireg_of a1; do r2 <- ireg_of a2; + OK (transl_cond_int64s c rd r1 r2 k) + | Ccomplu c, a1 :: a2 :: nil => + do r1 <- ireg_of a1; do r2 <- ireg_of a2; + OK (transl_cond_int64u c rd r1 r2 k) + | Ccomplimm c n, a1 :: nil => + do r1 <- ireg_of a1; + OK (transl_condimm_int64s c rd r1 n k) + | Ccompluimm c n, a1 :: nil => + do r1 <- ireg_of a1; + OK (transl_condimm_int64u c rd r1 n k) + | Ccompf c, f1 :: f2 :: nil => + do r1 <- freg_of f1; do r2 <- freg_of f2; + let (insn, normal) := transl_cond_float c rd r1 r2 in + OK (insn :: if normal then k else Pxoriw rd rd Int.one :: k) + | Cnotcompf c, f1 :: f2 :: nil => + do r1 <- freg_of f1; do r2 <- freg_of f2; + let (insn, normal) := transl_cond_float c rd r1 r2 in + OK (insn :: if normal then Pxoriw rd rd Int.one :: k else k) + | Ccompfs c, f1 :: f2 :: nil => + do r1 <- freg_of f1; do r2 <- freg_of f2; + let (insn, normal) := transl_cond_single c rd r1 r2 in + OK (insn :: if normal then k else Pxoriw rd rd Int.one :: k) + | Cnotcompfs c, f1 :: f2 :: nil => + do r1 <- freg_of f1; do r2 <- freg_of f2; + let (insn, normal) := transl_cond_single c rd r1 r2 in + OK (insn :: if normal then Pxoriw rd rd Int.one :: k else k) + | _, _ => + Error(msg "Asmgen.transl_cond_op") + end. + (** Translation of the arithmetic operation [r <- op(args)]. The corresponding instructions are prepended to [k]. *) @@ -523,6 +767,9 @@ Definition transl_op | Osingleoflongu, a1 :: nil => do rd <- freg_of res; do rs <- ireg_of a1; OK (Pfcvtslu rd rs :: k) + | Ocmp cmp, _ => + do rd <- ireg_of res; + transl_cond_op cmp rd args k | OEseqw optR0, a1 :: a2 :: nil => do rd <- ireg_of res; do rs1 <- ireg_of a1; diff --git a/riscV/Asmgenproof.v b/riscV/Asmgenproof.v index 6abad4ed..82c1917d 100644 --- a/riscV/Asmgenproof.v +++ b/riscV/Asmgenproof.v @@ -161,37 +161,165 @@ Proof. Qed. Hint Resolve addptrofs_label: labels. +Remark transl_cond_float_nolabel: + forall c r1 r2 r3 insn normal, + transl_cond_float c r1 r2 r3 = (insn, normal) -> nolabel insn. +Proof. + unfold transl_cond_float; intros. destruct c; inv H; exact I. +Qed. + +Remark transl_cond_single_nolabel: + forall c r1 r2 r3 insn normal, + transl_cond_single c r1 r2 r3 = (insn, normal) -> nolabel insn. +Proof. + unfold transl_cond_single; intros. destruct c; inv H; exact I. + Qed. + Remark transl_cbranch_label: forall cond args lbl k c, transl_cbranch cond args lbl k = OK c -> tail_nolabel k c. Proof. intros. unfold transl_cbranch in H; destruct cond; TailNoLabel. - all: destruct optR0 as [[]|]; TailNoLabel. +- destruct c0; simpl; TailNoLabel. +- destruct c0; simpl; TailNoLabel. +- destruct (Int.eq n Int.zero). + destruct c0; simpl; TailNoLabel. + apply tail_nolabel_trans with (transl_cbranch_int32s c0 x X31 lbl :: k). + auto with labels. destruct c0; simpl; TailNoLabel. +- destruct (Int.eq n Int.zero). + destruct c0; simpl; TailNoLabel. + apply tail_nolabel_trans with (transl_cbranch_int32u c0 x X31 lbl :: k). + auto with labels. destruct c0; simpl; TailNoLabel. +- destruct c0; simpl; TailNoLabel. +- destruct c0; simpl; TailNoLabel. +- destruct (Int64.eq n Int64.zero). + destruct c0; simpl; TailNoLabel. + apply tail_nolabel_trans with (transl_cbranch_int64s c0 x X31 lbl :: k). + auto with labels. destruct c0; simpl; TailNoLabel. +- destruct (Int64.eq n Int64.zero). + destruct c0; simpl; TailNoLabel. + apply tail_nolabel_trans with (transl_cbranch_int64u c0 x X31 lbl :: k). + auto with labels. destruct c0; simpl; TailNoLabel. +- destruct (transl_cond_float c0 X31 x x0) as [insn normal] eqn:F; inv EQ2. + apply tail_nolabel_cons. eapply transl_cond_float_nolabel; eauto. + destruct normal; TailNoLabel. +- destruct (transl_cond_float c0 X31 x x0) as [insn normal] eqn:F; inv EQ2. + apply tail_nolabel_cons. eapply transl_cond_float_nolabel; eauto. + destruct normal; TailNoLabel. +- destruct (transl_cond_single c0 X31 x x0) as [insn normal] eqn:F; inv EQ2. + apply tail_nolabel_cons. eapply transl_cond_single_nolabel; eauto. + destruct normal; TailNoLabel. +- destruct (transl_cond_single c0 X31 x x0) as [insn normal] eqn:F; inv EQ2. + apply tail_nolabel_cons. eapply transl_cond_single_nolabel; eauto. + destruct normal; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. +- destruct optR0 as [[]|]; TailNoLabel. Qed. +Remark transl_cond_op_label: + forall cond args r k c, + transl_cond_op cond r args k = OK c -> tail_nolabel k c. +Proof. + intros. unfold transl_cond_op in H; destruct cond; TailNoLabel. +- destruct c0; simpl; TailNoLabel. +- destruct c0; simpl; TailNoLabel. +- unfold transl_condimm_int32s. + destruct (Int.eq n Int.zero). ++ destruct c0; simpl; TailNoLabel. ++ destruct c0; simpl. +* eapply tail_nolabel_trans; [apply opimm32_label; intros; exact I | TailNoLabel]. +* eapply tail_nolabel_trans; [apply opimm32_label; intros; exact I | TailNoLabel]. +* apply opimm32_label; intros; exact I. +* destruct (Int.eq n (Int.repr Int.max_signed)). apply loadimm32_label. apply opimm32_label; intros; exact I. +* eapply tail_nolabel_trans. apply loadimm32_label. TailNoLabel. +* eapply tail_nolabel_trans. apply loadimm32_label. TailNoLabel. +- unfold transl_condimm_int32u. + destruct (Int.eq n Int.zero). ++ destruct c0; simpl; TailNoLabel. ++ destruct c0; simpl; + try (eapply tail_nolabel_trans; [apply loadimm32_label | TailNoLabel]). + apply opimm32_label; intros; exact I. +- destruct c0; simpl; TailNoLabel. + - destruct c0; simpl; TailNoLabel. +- unfold transl_condimm_int64s. + destruct (Int64.eq n Int64.zero). ++ destruct c0; simpl; TailNoLabel. ++ destruct c0; simpl. +* eapply tail_nolabel_trans; [apply opimm64_label; intros; exact I | TailNoLabel]. +* eapply tail_nolabel_trans; [apply opimm64_label; intros; exact I | TailNoLabel]. +* apply opimm64_label; intros; exact I. +* destruct (Int64.eq n (Int64.repr Int64.max_signed)). apply loadimm32_label. apply opimm64_label; intros; exact I. +* eapply tail_nolabel_trans. apply loadimm64_label. TailNoLabel. +* eapply tail_nolabel_trans. apply loadimm64_label. TailNoLabel. +- unfold transl_condimm_int64u. + destruct (Int64.eq n Int64.zero). ++ destruct c0; simpl; TailNoLabel. ++ destruct c0; simpl; + try (eapply tail_nolabel_trans; [apply loadimm64_label | TailNoLabel]). + apply opimm64_label; intros; exact I. +- destruct (transl_cond_float c0 r x x0) as [insn normal] eqn:F; inv EQ2. + apply tail_nolabel_cons. eapply transl_cond_float_nolabel; eauto. + destruct normal; TailNoLabel. +- destruct (transl_cond_float c0 r x x0) as [insn normal] eqn:F; inv EQ2. + apply tail_nolabel_cons. eapply transl_cond_float_nolabel; eauto. + destruct normal; TailNoLabel. +- destruct (transl_cond_single c0 r x x0) as [insn normal] eqn:F; inv EQ2. + apply tail_nolabel_cons. eapply transl_cond_single_nolabel; eauto. + destruct normal; TailNoLabel. +- destruct (transl_cond_single c0 r x x0) as [insn normal] eqn:F; inv EQ2. + apply tail_nolabel_cons. eapply transl_cond_single_nolabel; eauto. + destruct normal; TailNoLabel. + Qed. + Remark transl_op_label: forall op args r k c, transl_op op args r k = OK c -> tail_nolabel k c. Proof. Opaque Int.eq. unfold transl_op; intros; destruct op; TailNoLabel. - { destruct (preg_of r); try discriminate; destruct (preg_of m); inv H; TailNoLabel. } - { destruct (Float.eq_dec n Float.zero); TailNoLabel. } - { destruct (Float32.eq_dec n Float32.zero); TailNoLabel. } - { destruct (Archi.pic_code tt && negb (Ptrofs.eq ofs Ptrofs.zero)). - + eapply tail_nolabel_trans; [|apply addptrofs_label]. TailNoLabel. - + TailNoLabel. } - { apply opimm32_label; intros; exact I. } - { apply opimm32_label; intros; exact I. } - { apply opimm32_label; intros; exact I. } - { apply opimm32_label; intros; exact I. } - { destruct (Int.eq n Int.zero); try destruct (Int.eq n Int.one); TailNoLabel. } - { apply opimm64_label; intros; exact I. } - { apply opimm64_label; intros; exact I. } - { apply opimm64_label; intros; exact I. } - { apply opimm64_label; intros; exact I. } - { destruct (Int.eq n Int.zero); try destruct (Int.eq n Int.one); TailNoLabel. } - all: destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct (preg_of r); try discriminate; destruct (preg_of m); inv H; TailNoLabel. +- destruct (Float.eq_dec n Float.zero); TailNoLabel. +- destruct (Float32.eq_dec n Float32.zero); TailNoLabel. +- destruct (Archi.pic_code tt && negb (Ptrofs.eq ofs Ptrofs.zero)). ++ eapply tail_nolabel_trans; [|apply addptrofs_label]. TailNoLabel. ++ TailNoLabel. +- apply opimm32_label; intros; exact I. +- apply opimm32_label; intros; exact I. +- apply opimm32_label; intros; exact I. +- apply opimm32_label; intros; exact I. +- destruct (Int.eq n Int.zero); try destruct (Int.eq n Int.one); TailNoLabel. +- apply opimm64_label; intros; exact I. +- apply opimm64_label; intros; exact I. +- apply opimm64_label; intros; exact I. +- apply opimm64_label; intros; exact I. +- destruct (Int.eq n Int.zero); try destruct (Int.eq n Int.one); TailNoLabel. +- eapply transl_cond_op_label; eauto. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. +- destruct optR0 as [[]|]; simpl; TailNoLabel. Qed. Remark indexed_memory_access_label: diff --git a/riscV/Asmgenproof1.v b/riscV/Asmgenproof1.v index f0def29b..6d83cf5a 100644 --- a/riscV/Asmgenproof1.v +++ b/riscV/Asmgenproof1.v @@ -290,6 +290,102 @@ Proof. rewrite H0 in B. inv B. auto. Qed. +(** Translation of conditional branches *) + +Lemma transl_cbranch_int32s_correct: + forall cmp r1 r2 lbl (rs: regset) m b, + Val.cmp_bool cmp rs##r1 rs##r2 = Some b -> + exec_instr ge fn (transl_cbranch_int32s cmp r1 r2 lbl) rs m = + eval_branch fn lbl rs m (Some b). +Proof. + intros. destruct cmp; simpl; rewrite ? H. +- destruct rs##r1; simpl in H; try discriminate. destruct rs##r2; inv H. + simpl; auto. +- destruct rs##r1; simpl in H; try discriminate. destruct rs##r2; inv H. + simpl; auto. +- auto. +- rewrite <- Val.swap_cmp_bool. simpl. rewrite H; auto. +- rewrite <- Val.swap_cmp_bool. simpl. rewrite H; auto. +- auto. +Qed. + +Lemma transl_cbranch_int32u_correct: + forall cmp r1 r2 lbl (rs: regset) m b, + Val.cmpu_bool (Mem.valid_pointer m) cmp rs##r1 rs##r2 = Some b -> + exec_instr ge fn (transl_cbranch_int32u cmp r1 r2 lbl) rs m = + eval_branch fn lbl rs m (Some b). +Proof. + intros. destruct cmp; simpl; rewrite ? H; auto. +- rewrite <- Val.swap_cmpu_bool. simpl. rewrite H; auto. +- rewrite <- Val.swap_cmpu_bool. simpl. rewrite H; auto. +Qed. + +Lemma transl_cbranch_int64s_correct: + forall cmp r1 r2 lbl (rs: regset) m b, + Val.cmpl_bool cmp rs###r1 rs###r2 = Some b -> + exec_instr ge fn (transl_cbranch_int64s cmp r1 r2 lbl) rs m = + eval_branch fn lbl rs m (Some b). +Proof. + intros. destruct cmp; simpl; rewrite ? H. +- destruct rs###r1; simpl in H; try discriminate. destruct rs###r2; inv H. + simpl; auto. +- destruct rs###r1; simpl in H; try discriminate. destruct rs###r2; inv H. + simpl; auto. +- auto. +- rewrite <- Val.swap_cmpl_bool. simpl. rewrite H; auto. +- rewrite <- Val.swap_cmpl_bool. simpl. rewrite H; auto. +- auto. +Qed. + +Lemma transl_cbranch_int64u_correct: + forall cmp r1 r2 lbl (rs: regset) m b, + Val.cmplu_bool (Mem.valid_pointer m) cmp rs###r1 rs###r2 = Some b -> + exec_instr ge fn (transl_cbranch_int64u cmp r1 r2 lbl) rs m = + eval_branch fn lbl rs m (Some b). +Proof. + intros. destruct cmp; simpl; rewrite ? H; auto. +- rewrite <- Val.swap_cmplu_bool. simpl. rewrite H; auto. +- rewrite <- Val.swap_cmplu_bool. simpl. rewrite H; auto. +Qed. + +Lemma transl_cond_float_correct: + forall (rs: regset) m cmp rd r1 r2 insn normal v, + transl_cond_float cmp rd r1 r2 = (insn, normal) -> + v = (if normal then Val.cmpf cmp rs#r1 rs#r2 else Val.notbool (Val.cmpf cmp rs#r1 rs#r2)) -> + exec_instr ge fn insn rs m = Next (nextinstr (rs#rd <- v)) m. +Proof. + intros. destruct cmp; simpl in H; inv H; auto. +- rewrite Val.negate_cmpf_eq. auto. +- simpl. f_equal. f_equal. f_equal. destruct (rs r2), (rs r1); auto. unfold Val.cmpf, Val.cmpf_bool. + rewrite <- Float.cmp_swap. auto. +- simpl. f_equal. f_equal. f_equal. destruct (rs r2), (rs r1); auto. unfold Val.cmpf, Val.cmpf_bool. + rewrite <- Float.cmp_swap. auto. +Qed. + +Lemma transl_cond_single_correct: + forall (rs: regset) m cmp rd r1 r2 insn normal v, + transl_cond_single cmp rd r1 r2 = (insn, normal) -> + v = (if normal then Val.cmpfs cmp rs#r1 rs#r2 else Val.notbool (Val.cmpfs cmp rs#r1 rs#r2)) -> + exec_instr ge fn insn rs m = Next (nextinstr (rs#rd <- v)) m. +Proof. + intros. destruct cmp; simpl in H; inv H; auto. +- simpl. f_equal. f_equal. f_equal. destruct (rs r2), (rs r1); auto. unfold Val.cmpfs, Val.cmpfs_bool. + rewrite Float32.cmp_ne_eq. destruct (Float32.cmp Ceq f0 f); auto. +- simpl. f_equal. f_equal. f_equal. destruct (rs r2), (rs r1); auto. unfold Val.cmpfs, Val.cmpfs_bool. + rewrite <- Float32.cmp_swap. auto. +- simpl. f_equal. f_equal. f_equal. destruct (rs r2), (rs r1); auto. unfold Val.cmpfs, Val.cmpfs_bool. + rewrite <- Float32.cmp_swap. auto. + Qed. + +(* TODO gourdinl UNUSUED ? Remark branch_on_X31: + forall normal lbl (rs: regset) m b, + rs#X31 = Val.of_bool (eqb normal b) -> + exec_instr ge fn (if normal then Pbnew X31 X0 lbl else Pbeqw X31 X0 lbl) rs m = + eval_branch fn lbl rs m (Some b). +Proof. + intros. destruct normal; simpl; rewrite H; simpl; destruct b; reflexivity. + Qed.*) + Ltac ArgsInv := repeat (match goal with | [ H: Error _ = OK _ |- _ ] => discriminate @@ -321,84 +417,203 @@ Proof. { apply eval_condition_lessdef with (map ms args) m; auto. eapply preg_vals; eauto. } clear EVAL MEXT AG. destruct cond; simpl in TRANSL; ArgsInv. - (* Pbeqw / Cmp *) - { destruct optR0 as [[]|]; - unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; - unfold zero32, Op.zero32 in *; - eexists; eexists; eauto; split; constructor; auto; - simpl in *. - + destruct (rs x); simpl in *; try congruence. - assert (HB: (Int.eq Int.zero i) = b) by congruence. - rewrite HB; destruct b; simpl; auto. - + destruct (rs x); simpl in *; try congruence. - assert (HB: (Int.eq i Int.zero) = b) by congruence. - rewrite HB; destruct b; simpl; auto. - + destruct (rs x); simpl in *; try congruence. - destruct (rs x0); try congruence. - assert (HB: (Int.eq i i0) = b) by congruence. - rewrite HB; destruct b; simpl; auto. } - (* Pbnew / Cmp *) - { destruct optR0 as [[]|]; - unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; - unfold zero32, Op.zero32 in *; - eexists; eexists; eauto; split; constructor; auto; - simpl in *. - + destruct (rs x); simpl in *; try congruence. - assert (HB: negb (Int.eq Int.zero i) = b) by congruence. - rewrite HB; destruct b; simpl; auto. - + destruct (rs x); simpl in *; try congruence. - assert (HB: negb (Int.eq i Int.zero) = b) by congruence. - rewrite HB; destruct b; simpl; auto. - + destruct (rs x); simpl in *; try congruence. - destruct (rs x0); try congruence. - assert (HB: negb (Int.eq i i0) = b) by congruence. - rewrite HB; destruct b; simpl; auto. } - (* Pbeqw, Pbnew, Pbltw, Pbtluw, Pbgew, Pbgeuw / Cmpu *) - 1-6: - destruct optR0 as [[]|]; - unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; - unfold zero32, Op.zero32 in *; - eexists; eexists; eauto; split; constructor; - simpl in *; try rewrite EVAL'; auto. - (* Pbeql / Cmpl *) - { destruct optR0 as [[]|]; - unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; - unfold zero64, Op.zero64 in *; - eexists; eexists; eauto; split; constructor; - simpl in *; auto. - + destruct (rs x); simpl in *; try congruence. - assert (HB: (Int64.eq Int64.zero i) = b) by congruence. - rewrite HB; destruct b; simpl; auto. - + destruct (rs x); simpl in *; try congruence. - assert (HB: (Int64.eq i Int64.zero) = b) by congruence. - rewrite HB; destruct b; simpl; auto. - + destruct (rs x); simpl in *; try congruence. - destruct (rs x0); try congruence. - assert (HB: (Int64.eq i i0) = b) by congruence. - rewrite HB; destruct b; simpl; auto. } - (* Pbnel / Cmpl *) - { destruct optR0 as [[]|]; - unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; - unfold zero64, Op.zero64 in *; - eexists; eexists; eauto; split; constructor; - simpl in *; auto. - + destruct (rs x); simpl in *; try congruence. - assert (HB: negb (Int64.eq Int64.zero i) = b) by congruence. - rewrite HB; destruct b; simpl; auto. - + destruct (rs x); simpl in *; try congruence. - assert (HB: negb (Int64.eq i Int64.zero) = b) by congruence. - rewrite HB; destruct b; simpl; auto. - + destruct (rs x); simpl in *; try congruence. - destruct (rs x0); try congruence. - assert (HB: negb (Int64.eq i i0) = b) by congruence. - rewrite HB; destruct b; simpl; auto. } - (* Pbeql, Pbnel, Pbltl, Pbtlul, Pbgel, Pbgeul / Cmplu *) - 1-6: - destruct optR0 as [[]|]; - unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; - unfold zero64, Op.zero64 in *; - eexists; eexists; eauto; split; constructor; - simpl in *; try rewrite EVAL'; auto. + - exists rs, (transl_cbranch_int32s c0 x x0 lbl). + intuition auto. constructor. apply transl_cbranch_int32s_correct; auto. +- exists rs, (transl_cbranch_int32u c0 x x0 lbl). + intuition auto. constructor. apply transl_cbranch_int32u_correct; auto. +- predSpec Int.eq Int.eq_spec n Int.zero. ++ subst n. exists rs, (transl_cbranch_int32s c0 x X0 lbl). + intuition auto. constructor. apply transl_cbranch_int32s_correct; auto. ++ exploit (loadimm32_correct X31 n); eauto. intros (rs' & A & B & C). + exists rs', (transl_cbranch_int32s c0 x X31 lbl). + split. constructor; eexact A. split; auto. + apply transl_cbranch_int32s_correct; auto. + simpl; rewrite B, C; eauto with asmgen. +- predSpec Int.eq Int.eq_spec n Int.zero. ++ subst n. exists rs, (transl_cbranch_int32u c0 x X0 lbl). + intuition auto. constructor. apply transl_cbranch_int32u_correct; auto. ++ exploit (loadimm32_correct X31 n); eauto. intros (rs' & A & B & C). + exists rs', (transl_cbranch_int32u c0 x X31 lbl). + split. constructor; eexact A. split; auto. + apply transl_cbranch_int32u_correct; auto. + simpl; rewrite B, C; eauto with asmgen. +- exists rs, (transl_cbranch_int64s c0 x x0 lbl). + intuition auto. constructor. apply transl_cbranch_int64s_correct; auto. +- exists rs, (transl_cbranch_int64u c0 x x0 lbl). + intuition auto. constructor. apply transl_cbranch_int64u_correct; auto. +- predSpec Int64.eq Int64.eq_spec n Int64.zero. ++ subst n. exists rs, (transl_cbranch_int64s c0 x X0 lbl). + intuition auto. constructor. apply transl_cbranch_int64s_correct; auto. ++ exploit (loadimm64_correct X31 n); eauto. intros (rs' & A & B & C). + exists rs', (transl_cbranch_int64s c0 x X31 lbl). + split. constructor; eexact A. split; auto. + apply transl_cbranch_int64s_correct; auto. + simpl; rewrite B, C; eauto with asmgen. +- predSpec Int64.eq Int64.eq_spec n Int64.zero. ++ subst n. exists rs, (transl_cbranch_int64u c0 x X0 lbl). + intuition auto. constructor. apply transl_cbranch_int64u_correct; auto. ++ exploit (loadimm64_correct X31 n); eauto. intros (rs' & A & B & C). + exists rs', (transl_cbranch_int64u c0 x X31 lbl). + split. constructor; eexact A. split; auto. + apply transl_cbranch_int64u_correct; auto. + simpl; rewrite B, C; eauto with asmgen. +- destruct (transl_cond_float c0 X31 x x0) as [insn normal] eqn:TC; inv EQ2. + set (v := if normal then Val.cmpf c0 rs#x rs#x0 else Val.notbool (Val.cmpf c0 rs#x rs#x0)). + assert (V: v = Val.of_bool (eqb normal b)). + { unfold v, Val.cmpf. rewrite EVAL'. destruct normal, b; reflexivity. } + econstructor; econstructor. + split. constructor. apply exec_straight_one. eapply transl_cond_float_correct with (v := v); eauto. auto. + split. rewrite V; destruct normal, b; reflexivity. + intros; Simpl. +- destruct (transl_cond_float c0 X31 x x0) as [insn normal] eqn:TC; inv EQ2. + assert (EVAL'': Val.cmpf_bool c0 (rs x) (rs x0) = Some (negb b)). + { destruct (Val.cmpf_bool c0 (rs x) (rs x0)) as [[]|]; inv EVAL'; auto. } + set (v := if normal then Val.cmpf c0 rs#x rs#x0 else Val.notbool (Val.cmpf c0 rs#x rs#x0)). + assert (V: v = Val.of_bool (xorb normal b)). + { unfold v, Val.cmpf. rewrite EVAL''. destruct normal, b; reflexivity. } + econstructor; econstructor. + split. constructor. apply exec_straight_one. eapply transl_cond_float_correct with (v := v); eauto. auto. + split. rewrite V; destruct normal, b; reflexivity. + intros; Simpl. +- destruct (transl_cond_single c0 X31 x x0) as [insn normal] eqn:TC; inv EQ2. + set (v := if normal then Val.cmpfs c0 rs#x rs#x0 else Val.notbool (Val.cmpfs c0 rs#x rs#x0)). + assert (V: v = Val.of_bool (eqb normal b)). + { unfold v, Val.cmpfs. rewrite EVAL'. destruct normal, b; reflexivity. } + econstructor; econstructor. + split. constructor. apply exec_straight_one. eapply transl_cond_single_correct with (v := v); eauto. auto. + split. rewrite V; destruct normal, b; reflexivity. + intros; Simpl. +- destruct (transl_cond_single c0 X31 x x0) as [insn normal] eqn:TC; inv EQ2. + assert (EVAL'': Val.cmpfs_bool c0 (rs x) (rs x0) = Some (negb b)). + { destruct (Val.cmpfs_bool c0 (rs x) (rs x0)) as [[]|]; inv EVAL'; auto. } + set (v := if normal then Val.cmpfs c0 rs#x rs#x0 else Val.notbool (Val.cmpfs c0 rs#x rs#x0)). + assert (V: v = Val.of_bool (xorb normal b)). + { unfold v, Val.cmpfs. rewrite EVAL''. destruct normal, b; reflexivity. } + econstructor; econstructor. + split. constructor. apply exec_straight_one. eapply transl_cond_single_correct with (v := v); eauto. auto. + split. rewrite V; destruct normal, b; reflexivity. + intros; Simpl. + +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero32, Op.zero32 in *; + eexists; eexists; eauto; split; constructor; auto; + simpl in *. + + destruct (rs x); simpl in *; try congruence. + assert (HB: (Int.eq Int.zero i) = b) by congruence. + rewrite HB; destruct b; simpl; auto. + + destruct (rs x); simpl in *; try congruence. + assert (HB: (Int.eq i Int.zero) = b) by congruence. + rewrite HB; destruct b; simpl; auto. + + destruct (rs x); simpl in *; try congruence. + destruct (rs x0); try congruence. + assert (HB: (Int.eq i i0) = b) by congruence. + rewrite HB; destruct b; simpl; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero32, Op.zero32 in *; + eexists; eexists; eauto; split; constructor; auto; + simpl in *. + + destruct (rs x); simpl in *; try congruence. + assert (HB: negb (Int.eq Int.zero i) = b) by congruence. + rewrite HB; destruct b; simpl; auto. + + destruct (rs x); simpl in *; try congruence. + assert (HB: negb (Int.eq i Int.zero) = b) by congruence. + rewrite HB; destruct b; simpl; auto. + + destruct (rs x); simpl in *; try congruence. + destruct (rs x0); try congruence. + assert (HB: negb (Int.eq i i0) = b) by congruence. + rewrite HB; destruct b; simpl; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero32, Op.zero32 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero32, Op.zero32 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero32, Op.zero32 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero32, Op.zero32 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero32, Op.zero32 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero32, Op.zero32 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero64, Op.zero64 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; auto. + + destruct (rs x); simpl in *; try congruence. + assert (HB: (Int64.eq Int64.zero i) = b) by congruence. + rewrite HB; destruct b; simpl; auto. + + destruct (rs x); simpl in *; try congruence. + assert (HB: (Int64.eq i Int64.zero) = b) by congruence. + rewrite HB; destruct b; simpl; auto. + + destruct (rs x); simpl in *; try congruence. + destruct (rs x0); try congruence. + assert (HB: (Int64.eq i i0) = b) by congruence. + rewrite HB; destruct b; simpl; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero64, Op.zero64 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; auto. + + destruct (rs x); simpl in *; try congruence. + assert (HB: negb (Int64.eq Int64.zero i) = b) by congruence. + rewrite HB; destruct b; simpl; auto. + + destruct (rs x); simpl in *; try congruence. + assert (HB: negb (Int64.eq i Int64.zero) = b) by congruence. + rewrite HB; destruct b; simpl; auto. + + destruct (rs x); simpl in *; try congruence. + destruct (rs x0); try congruence. + assert (HB: negb (Int64.eq i i0) = b) by congruence. + rewrite HB; destruct b; simpl; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero64, Op.zero64 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero64, Op.zero64 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero64, Op.zero64 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero64, Op.zero64 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero64, Op.zero64 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. +- destruct optR0 as [[]|]; + unfold apply_bin_r0, apply_bin_r0_r0r0lbl in *; + unfold zero64, Op.zero64 in *; + eexists; eexists; eauto; split; constructor; + simpl in *; try rewrite EVAL'; auto. Qed. Lemma transl_cbranch_correct_true: @@ -432,6 +647,405 @@ Proof. intros; Simpl. Qed. +(** Translation of condition operators *) + +Lemma transl_cond_int32s_correct: + forall cmp rd r1 r2 k rs m, + exists rs', + exec_straight ge fn (transl_cond_int32s cmp rd r1 r2 k) rs m k rs' m + /\ Val.lessdef (Val.cmp cmp rs##r1 rs##r2) rs'#rd + /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r. +Proof. + intros. destruct cmp; simpl. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. destruct (rs##r1); auto. destruct (rs##r2); auto. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. destruct (rs##r1); auto. destruct (rs##r2); auto. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. +- econstructor; split. + eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto. + split; intros; Simpl. unfold Val.cmp. rewrite <- Val.swap_cmp_bool. + simpl. rewrite (Val.negate_cmp_bool Clt). + destruct (Val.cmp_bool Clt rs##r2 rs##r1) as [[]|]; auto. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. unfold Val.cmp. rewrite <- Val.swap_cmp_bool. auto. +- econstructor; split. + eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto. + split; intros; Simpl. unfold Val.cmp. rewrite (Val.negate_cmp_bool Clt). + destruct (Val.cmp_bool Clt rs##r1 rs##r2) as [[]|]; auto. +Qed. + +Lemma transl_cond_int32u_correct: + forall cmp rd r1 r2 k rs m, + exists rs', + exec_straight ge fn (transl_cond_int32u cmp rd r1 r2 k) rs m k rs' m + /\ rs'#rd = Val.cmpu (Mem.valid_pointer m) cmp rs##r1 rs##r2 + /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r. +Proof. + intros. destruct cmp; simpl. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. +- econstructor; split. + eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto. + split; intros; Simpl. unfold Val.cmpu. rewrite <- Val.swap_cmpu_bool. + simpl. rewrite (Val.negate_cmpu_bool (Mem.valid_pointer m) Cle). + destruct (Val.cmpu_bool (Mem.valid_pointer m) Cle rs##r1 rs##r2) as [[]|]; auto. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. unfold Val.cmpu. rewrite <- Val.swap_cmpu_bool. auto. +- econstructor; split. + eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto. + split; intros; Simpl. unfold Val.cmpu. rewrite (Val.negate_cmpu_bool (Mem.valid_pointer m) Clt). + destruct (Val.cmpu_bool (Mem.valid_pointer m) Clt rs##r1 rs##r2) as [[]|]; auto. +Qed. + +Lemma transl_cond_int64s_correct: + forall cmp rd r1 r2 k rs m, + exists rs', + exec_straight ge fn (transl_cond_int64s cmp rd r1 r2 k) rs m k rs' m + /\ Val.lessdef (Val.maketotal (Val.cmpl cmp rs###r1 rs###r2)) rs'#rd + /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r. +Proof. + intros. destruct cmp; simpl. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. destruct (rs###r1); auto. destruct (rs###r2); auto. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. destruct (rs###r1); auto. destruct (rs###r2); auto. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. +- econstructor; split. + eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto. + split; intros; Simpl. unfold Val.cmpl. rewrite <- Val.swap_cmpl_bool. + simpl. rewrite (Val.negate_cmpl_bool Clt). + destruct (Val.cmpl_bool Clt rs###r2 rs###r1) as [[]|]; auto. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. unfold Val.cmpl. rewrite <- Val.swap_cmpl_bool. auto. +- econstructor; split. + eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto. + split; intros; Simpl. unfold Val.cmpl. rewrite (Val.negate_cmpl_bool Clt). + destruct (Val.cmpl_bool Clt rs###r1 rs###r2) as [[]|]; auto. +Qed. + +Lemma transl_cond_int64u_correct: + forall cmp rd r1 r2 k rs m, + exists rs', + exec_straight ge fn (transl_cond_int64u cmp rd r1 r2 k) rs m k rs' m + /\ rs'#rd = Val.maketotal (Val.cmplu (Mem.valid_pointer m) cmp rs###r1 rs###r2) + /\ forall r, r <> PC -> r <> rd -> rs'#r = rs#r. +Proof. + intros. destruct cmp; simpl. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. +- econstructor; split. + eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto. + split; intros; Simpl. unfold Val.cmplu. rewrite <- Val.swap_cmplu_bool. + simpl. rewrite (Val.negate_cmplu_bool (Mem.valid_pointer m) Cle). + destruct (Val.cmplu_bool (Mem.valid_pointer m) Cle rs###r1 rs###r2) as [[]|]; auto. +- econstructor; split. apply exec_straight_one; [simpl; eauto|auto]. + split; intros; Simpl. unfold Val.cmplu. rewrite <- Val.swap_cmplu_bool. auto. +- econstructor; split. + eapply exec_straight_two. simpl; eauto. simpl; eauto. auto. auto. + split; intros; Simpl. unfold Val.cmplu. rewrite (Val.negate_cmplu_bool (Mem.valid_pointer m) Clt). + destruct (Val.cmplu_bool (Mem.valid_pointer m) Clt rs###r1 rs###r2) as [[]|]; auto. +Qed. + +Lemma transl_condimm_int32s_correct: + forall cmp rd r1 n k rs m, + r1 <> X31 -> + exists rs', + exec_straight ge fn (transl_condimm_int32s cmp rd r1 n k) rs m k rs' m + /\ Val.lessdef (Val.cmp cmp rs#r1 (Vint n)) rs'#rd + /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r. +Proof. + intros. unfold transl_condimm_int32s. + predSpec Int.eq Int.eq_spec n Int.zero. +- subst n. exploit transl_cond_int32s_correct. intros (rs' & A & B & C). + exists rs'; eauto. +- assert (DFL: + exists rs', + exec_straight ge fn (loadimm32 X31 n (transl_cond_int32s cmp rd r1 X31 k)) rs m k rs' m + /\ Val.lessdef (Val.cmp cmp rs#r1 (Vint n)) rs'#rd + /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r). + { exploit loadimm32_correct; eauto. intros (rs1 & A1 & B1 & C1). + exploit transl_cond_int32s_correct; eauto. intros (rs2 & A2 & B2 & C2). + exists rs2; split. + eapply exec_straight_trans. eexact A1. eexact A2. + split. simpl in B2. rewrite B1, C1 in B2 by auto with asmgen. auto. + intros; transitivity (rs1 r); auto. } + destruct cmp. ++ unfold xorimm32. + exploit (opimm32_correct Pxorw Pxoriw Val.xor); eauto. intros (rs1 & A1 & B1 & C1). + exploit transl_cond_int32s_correct; eauto. intros (rs2 & A2 & B2 & C2). + exists rs2; split. + eapply exec_straight_trans. eexact A1. eexact A2. + split. simpl in B2; rewrite B1 in B2; simpl in B2. destruct (rs#r1); auto. + unfold Val.cmp in B2; simpl in B2; rewrite Int.xor_is_zero in B2. exact B2. + intros; transitivity (rs1 r); auto. ++ unfold xorimm32. + exploit (opimm32_correct Pxorw Pxoriw Val.xor); eauto. intros (rs1 & A1 & B1 & C1). + exploit transl_cond_int32s_correct; eauto. intros (rs2 & A2 & B2 & C2). + exists rs2; split. + eapply exec_straight_trans. eexact A1. eexact A2. + split. simpl in B2; rewrite B1 in B2; simpl in B2. destruct (rs#r1); auto. + unfold Val.cmp in B2; simpl in B2; rewrite Int.xor_is_zero in B2. exact B2. + intros; transitivity (rs1 r); auto. ++ exploit (opimm32_correct Psltw Psltiw (Val.cmp Clt)); eauto. intros (rs1 & A1 & B1 & C1). + exists rs1; split. eexact A1. split; auto. rewrite B1; auto. ++ predSpec Int.eq Int.eq_spec n (Int.repr Int.max_signed). +* subst n. exploit loadimm32_correct; eauto. intros (rs1 & A1 & B1 & C1). + exists rs1; split. eexact A1. split; auto. + unfold Val.cmp; destruct (rs#r1); simpl; auto. rewrite B1. + unfold Int.lt. rewrite zlt_false. auto. + change (Int.signed (Int.repr Int.max_signed)) with Int.max_signed. + generalize (Int.signed_range i); omega. +* exploit (opimm32_correct Psltw Psltiw (Val.cmp Clt)); eauto. intros (rs1 & A1 & B1 & C1). + exists rs1; split. eexact A1. split; auto. + rewrite B1. unfold Val.cmp; simpl; destruct (rs#r1); simpl; auto. + unfold Int.lt. replace (Int.signed (Int.add n Int.one)) with (Int.signed n + 1). + destruct (zlt (Int.signed n) (Int.signed i)). + rewrite zlt_false by omega. auto. + rewrite zlt_true by omega. auto. + rewrite Int.add_signed. symmetry; apply Int.signed_repr. + assert (Int.signed n <> Int.max_signed). + { red; intros E. elim H1. rewrite <- (Int.repr_signed n). rewrite E. auto. } + generalize (Int.signed_range n); omega. ++ apply DFL. ++ apply DFL. +Qed. + +Lemma transl_condimm_int32u_correct: + forall cmp rd r1 n k rs m, + r1 <> X31 -> + exists rs', + exec_straight ge fn (transl_condimm_int32u cmp rd r1 n k) rs m k rs' m + /\ Val.lessdef (Val.cmpu (Mem.valid_pointer m) cmp rs#r1 (Vint n)) rs'#rd + /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r. +Proof. + intros. unfold transl_condimm_int32u. + predSpec Int.eq Int.eq_spec n Int.zero. +- subst n. exploit transl_cond_int32u_correct. intros (rs' & A & B & C). + exists rs'; split. eexact A. split; auto. rewrite B; auto. +- assert (DFL: + exists rs', + exec_straight ge fn (loadimm32 X31 n (transl_cond_int32u cmp rd r1 X31 k)) rs m k rs' m + /\ Val.lessdef (Val.cmpu (Mem.valid_pointer m) cmp rs#r1 (Vint n)) rs'#rd + /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r). + { exploit loadimm32_correct; eauto. intros (rs1 & A1 & B1 & C1). + exploit transl_cond_int32u_correct; eauto. intros (rs2 & A2 & B2 & C2). + exists rs2; split. + eapply exec_straight_trans. eexact A1. eexact A2. + split. simpl in B2. rewrite B1, C1 in B2 by auto with asmgen. rewrite B2; auto. + intros; transitivity (rs1 r); auto. } + destruct cmp. ++ apply DFL. ++ apply DFL. ++ exploit (opimm32_correct Psltuw Psltiuw (Val.cmpu (Mem.valid_pointer m) Clt) m); eauto. + intros (rs1 & A1 & B1 & C1). + exists rs1; split. eexact A1. split; auto. rewrite B1; auto. ++ apply DFL. ++ apply DFL. ++ apply DFL. +Qed. + +Lemma transl_condimm_int64s_correct: + forall cmp rd r1 n k rs m, + r1 <> X31 -> + exists rs', + exec_straight ge fn (transl_condimm_int64s cmp rd r1 n k) rs m k rs' m + /\ Val.lessdef (Val.maketotal (Val.cmpl cmp rs#r1 (Vlong n))) rs'#rd + /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r. +Proof. + intros. unfold transl_condimm_int64s. + predSpec Int64.eq Int64.eq_spec n Int64.zero. +- subst n. exploit transl_cond_int64s_correct. intros (rs' & A & B & C). + exists rs'; eauto. +- assert (DFL: + exists rs', + exec_straight ge fn (loadimm64 X31 n (transl_cond_int64s cmp rd r1 X31 k)) rs m k rs' m + /\ Val.lessdef (Val.maketotal (Val.cmpl cmp rs#r1 (Vlong n))) rs'#rd + /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r). + { exploit loadimm64_correct; eauto. intros (rs1 & A1 & B1 & C1). + exploit transl_cond_int64s_correct; eauto. intros (rs2 & A2 & B2 & C2). + exists rs2; split. + eapply exec_straight_trans. eexact A1. eexact A2. + split. simpl in B2. rewrite B1, C1 in B2 by auto with asmgen. auto. + intros; transitivity (rs1 r); auto. } + destruct cmp. ++ unfold xorimm64. + exploit (opimm64_correct Pxorl Pxoril Val.xorl); eauto. intros (rs1 & A1 & B1 & C1). + exploit transl_cond_int64s_correct; eauto. intros (rs2 & A2 & B2 & C2). + exists rs2; split. + eapply exec_straight_trans. eexact A1. eexact A2. + split. simpl in B2; rewrite B1 in B2; simpl in B2. destruct (rs#r1); auto. + unfold Val.cmpl in B2; simpl in B2; rewrite Int64.xor_is_zero in B2. exact B2. + intros; transitivity (rs1 r); auto. ++ unfold xorimm64. + exploit (opimm64_correct Pxorl Pxoril Val.xorl); eauto. intros (rs1 & A1 & B1 & C1). + exploit transl_cond_int64s_correct; eauto. intros (rs2 & A2 & B2 & C2). + exists rs2; split. + eapply exec_straight_trans. eexact A1. eexact A2. + split. simpl in B2; rewrite B1 in B2; simpl in B2. destruct (rs#r1); auto. + unfold Val.cmpl in B2; simpl in B2; rewrite Int64.xor_is_zero in B2. exact B2. + intros; transitivity (rs1 r); auto. ++ exploit (opimm64_correct Psltl Psltil (fun v1 v2 => Val.maketotal (Val.cmpl Clt v1 v2))); eauto. intros (rs1 & A1 & B1 & C1). + exists rs1; split. eexact A1. split; auto. rewrite B1; auto. ++ predSpec Int64.eq Int64.eq_spec n (Int64.repr Int64.max_signed). +* subst n. exploit loadimm32_correct; eauto. intros (rs1 & A1 & B1 & C1). + exists rs1; split. eexact A1. split; auto. + unfold Val.cmpl; destruct (rs#r1); simpl; auto. rewrite B1. + unfold Int64.lt. rewrite zlt_false. auto. + change (Int64.signed (Int64.repr Int64.max_signed)) with Int64.max_signed. + generalize (Int64.signed_range i); omega. +* exploit (opimm64_correct Psltl Psltil (fun v1 v2 => Val.maketotal (Val.cmpl Clt v1 v2))); eauto. intros (rs1 & A1 & B1 & C1). + exists rs1; split. eexact A1. split; auto. + rewrite B1. unfold Val.cmpl; simpl; destruct (rs#r1); simpl; auto. + unfold Int64.lt. replace (Int64.signed (Int64.add n Int64.one)) with (Int64.signed n + 1). + destruct (zlt (Int64.signed n) (Int64.signed i)). + rewrite zlt_false by omega. auto. + rewrite zlt_true by omega. auto. + rewrite Int64.add_signed. symmetry; apply Int64.signed_repr. + assert (Int64.signed n <> Int64.max_signed). + { red; intros E. elim H1. rewrite <- (Int64.repr_signed n). rewrite E. auto. } + generalize (Int64.signed_range n); omega. ++ apply DFL. ++ apply DFL. +Qed. + +Lemma transl_condimm_int64u_correct: + forall cmp rd r1 n k rs m, + r1 <> X31 -> + exists rs', + exec_straight ge fn (transl_condimm_int64u cmp rd r1 n k) rs m k rs' m + /\ Val.lessdef (Val.maketotal (Val.cmplu (Mem.valid_pointer m) cmp rs#r1 (Vlong n))) rs'#rd + /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r. +Proof. + intros. unfold transl_condimm_int64u. + predSpec Int64.eq Int64.eq_spec n Int64.zero. +- subst n. exploit transl_cond_int64u_correct. intros (rs' & A & B & C). + exists rs'; split. eexact A. split; auto. rewrite B; auto. +- assert (DFL: + exists rs', + exec_straight ge fn (loadimm64 X31 n (transl_cond_int64u cmp rd r1 X31 k)) rs m k rs' m + /\ Val.lessdef (Val.maketotal (Val.cmplu (Mem.valid_pointer m) cmp rs#r1 (Vlong n))) rs'#rd + /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r). + { exploit loadimm64_correct; eauto. intros (rs1 & A1 & B1 & C1). + exploit transl_cond_int64u_correct; eauto. intros (rs2 & A2 & B2 & C2). + exists rs2; split. + eapply exec_straight_trans. eexact A1. eexact A2. + split. simpl in B2. rewrite B1, C1 in B2 by auto with asmgen. rewrite B2; auto. + intros; transitivity (rs1 r); auto. } + destruct cmp. ++ apply DFL. ++ apply DFL. ++ exploit (opimm64_correct Psltul Psltiul (fun v1 v2 => Val.maketotal (Val.cmplu (Mem.valid_pointer m) Clt v1 v2)) m); eauto. + intros (rs1 & A1 & B1 & C1). + exists rs1; split. eexact A1. split; auto. rewrite B1; auto. ++ apply DFL. ++ apply DFL. ++ apply DFL. + Qed. + +Lemma transl_cond_op_correct: + forall cond rd args k c rs m, + transl_cond_op cond rd args k = OK c -> + exists rs', + exec_straight ge fn c rs m k rs' m + /\ Val.lessdef (Val.of_optbool (eval_condition cond (map rs (map preg_of args)) m)) rs'#rd + /\ forall r, r <> PC -> r <> rd -> r <> X31 -> rs'#r = rs#r. +Proof. + assert (MKTOT: forall ob, Val.of_optbool ob = Val.maketotal (option_map Val.of_bool ob)). + { destruct ob as [[]|]; reflexivity. } + intros until m; intros TR. + destruct cond; simpl in TR; ArgsInv. ++ (* cmp *) + exploit transl_cond_int32s_correct; eauto. intros (rs' & A & B & C). exists rs'; eauto. ++ (* cmpu *) + exploit transl_cond_int32u_correct; eauto. intros (rs' & A & B & C). + exists rs'; repeat split; eauto. rewrite B; auto. ++ (* cmpimm *) + apply transl_condimm_int32s_correct; eauto with asmgen. ++ (* cmpuimm *) + apply transl_condimm_int32u_correct; eauto with asmgen. ++ (* cmpl *) + exploit transl_cond_int64s_correct; eauto. intros (rs' & A & B & C). + exists rs'; repeat split; eauto. rewrite MKTOT; eauto. ++ (* cmplu *) + exploit transl_cond_int64u_correct; eauto. intros (rs' & A & B & C). + exists rs'; repeat split; eauto. rewrite B, MKTOT; eauto. ++ (* cmplimm *) + exploit transl_condimm_int64s_correct; eauto. instantiate (1 := x); eauto with asmgen. + intros (rs' & A & B & C). + exists rs'; repeat split; eauto. rewrite MKTOT; eauto. ++ (* cmpluimm *) + exploit transl_condimm_int64u_correct; eauto. instantiate (1 := x); eauto with asmgen. + intros (rs' & A & B & C). + exists rs'; repeat split; eauto. rewrite MKTOT; eauto. ++ (* cmpf *) + destruct (transl_cond_float c0 rd x x0) as [insn normal] eqn:TR. + fold (Val.cmpf c0 (rs x) (rs x0)). + set (v := Val.cmpf c0 (rs x) (rs x0)). + destruct normal; inv EQ2. +* econstructor; split. + apply exec_straight_one. eapply transl_cond_float_correct with (v := v); eauto. auto. + split; intros; Simpl. +* econstructor; split. + eapply exec_straight_two. + eapply transl_cond_float_correct with (v := Val.notbool v); eauto. + simpl; reflexivity. + auto. auto. + split; intros; Simpl. unfold v, Val.cmpf. destruct (Val.cmpf_bool c0 (rs x) (rs x0)) as [[]|]; auto. ++ (* notcmpf *) + destruct (transl_cond_float c0 rd x x0) as [insn normal] eqn:TR. + rewrite Val.notbool_negb_3. fold (Val.cmpf c0 (rs x) (rs x0)). + set (v := Val.cmpf c0 (rs x) (rs x0)). + destruct normal; inv EQ2. +* econstructor; split. + eapply exec_straight_two. + eapply transl_cond_float_correct with (v := v); eauto. + simpl; reflexivity. + auto. auto. + split; intros; Simpl. unfold v, Val.cmpf. destruct (Val.cmpf_bool c0 (rs x) (rs x0)) as [[]|]; auto. +* econstructor; split. + apply exec_straight_one. eapply transl_cond_float_correct with (v := Val.notbool v); eauto. auto. + split; intros; Simpl. ++ (* cmpfs *) + destruct (transl_cond_single c0 rd x x0) as [insn normal] eqn:TR. + fold (Val.cmpfs c0 (rs x) (rs x0)). + set (v := Val.cmpfs c0 (rs x) (rs x0)). + destruct normal; inv EQ2. +* econstructor; split. + apply exec_straight_one. eapply transl_cond_single_correct with (v := v); eauto. auto. + split; intros; Simpl. +* econstructor; split. + eapply exec_straight_two. + eapply transl_cond_single_correct with (v := Val.notbool v); eauto. + simpl; reflexivity. + auto. auto. + split; intros; Simpl. unfold v, Val.cmpfs. destruct (Val.cmpfs_bool c0 (rs x) (rs x0)) as [[]|]; auto. ++ (* notcmpfs *) + destruct (transl_cond_single c0 rd x x0) as [insn normal] eqn:TR. + rewrite Val.notbool_negb_3. fold (Val.cmpfs c0 (rs x) (rs x0)). + set (v := Val.cmpfs c0 (rs x) (rs x0)). + destruct normal; inv EQ2. +* econstructor; split. + eapply exec_straight_two. + eapply transl_cond_single_correct with (v := v); eauto. + simpl; reflexivity. + auto. auto. + split; intros; Simpl. unfold v, Val.cmpfs. destruct (Val.cmpfs_bool c0 (rs x) (rs x0)) as [[]|]; auto. +* econstructor; split. + apply exec_straight_one. eapply transl_cond_single_correct with (v := Val.notbool v); eauto. auto. + split; intros; Simpl. + Qed. + (** Some arithmetic properties. *) Remark cast32unsigned_from_cast32signed: @@ -640,6 +1254,9 @@ Opaque Int.eq. eapply exec_straight_step. simpl; reflexivity. auto. apply exec_straight_one. simpl; reflexivity. auto. split; intros; Simpl. } + (* cond *) + { exploit transl_cond_op_correct; eauto. intros (rs' & A & B & C). + exists rs'; split. eexact A. eauto with asmgen. } (* Expanded instructions from RTL *) 7,8,15,16: econstructor; split; try apply exec_straight_one; simpl; eauto; -- cgit