From dc25573ed79a0d55c5a24b20474aa8504a758a2c Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Sat, 2 Feb 2019 12:03:44 +0100 Subject: BearSSL --- test/monniaux/BearSSL/inc/bearssl_ssl.h | 4296 +++++++++++++++++++++++++++++++ 1 file changed, 4296 insertions(+) create mode 100644 test/monniaux/BearSSL/inc/bearssl_ssl.h (limited to 'test/monniaux/BearSSL/inc/bearssl_ssl.h') diff --git a/test/monniaux/BearSSL/inc/bearssl_ssl.h b/test/monniaux/BearSSL/inc/bearssl_ssl.h new file mode 100644 index 00000000..8c8c86bd --- /dev/null +++ b/test/monniaux/BearSSL/inc/bearssl_ssl.h @@ -0,0 +1,4296 @@ +/* + * Copyright (c) 2016 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#ifndef BR_BEARSSL_SSL_H__ +#define BR_BEARSSL_SSL_H__ + +#include +#include + +#include "bearssl_block.h" +#include "bearssl_hash.h" +#include "bearssl_hmac.h" +#include "bearssl_prf.h" +#include "bearssl_rand.h" +#include "bearssl_x509.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** \file bearssl_ssl.h + * + * # SSL + * + * For an overview of the SSL/TLS API, see [the BearSSL Web + * site](https://www.bearssl.org/api1.html). + * + * The `BR_TLS_*` constants correspond to the standard cipher suites and + * their values in the [IANA + * registry](http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-4). + * + * The `BR_ALERT_*` constants are for standard TLS alert messages. When + * a fatal alert message is sent of received, then the SSL engine context + * status is set to the sum of that alert value (an integer in the 0..255 + * range) and a fixed offset (`BR_ERR_SEND_FATAL_ALERT` for a sent alert, + * `BR_ERR_RECV_FATAL_ALERT` for a received alert). + */ + +/** \brief Optimal input buffer size. */ +#define BR_SSL_BUFSIZE_INPUT (16384 + 325) + +/** \brief Optimal output buffer size. */ +#define BR_SSL_BUFSIZE_OUTPUT (16384 + 85) + +/** \brief Optimal buffer size for monodirectional engine + (shared input/output buffer). */ +#define BR_SSL_BUFSIZE_MONO BR_SSL_BUFSIZE_INPUT + +/** \brief Optimal buffer size for bidirectional engine + (single buffer split into two separate input/output buffers). */ +#define BR_SSL_BUFSIZE_BIDI (BR_SSL_BUFSIZE_INPUT + BR_SSL_BUFSIZE_OUTPUT) + +/* + * Constants for known SSL/TLS protocol versions (SSL 3.0, TLS 1.0, TLS 1.1 + * and TLS 1.2). Note that though there is a constant for SSL 3.0, that + * protocol version is not actually supported. + */ + +/** \brief Protocol version: SSL 3.0 (unsupported). */ +#define BR_SSL30 0x0300 +/** \brief Protocol version: TLS 1.0. */ +#define BR_TLS10 0x0301 +/** \brief Protocol version: TLS 1.1. */ +#define BR_TLS11 0x0302 +/** \brief Protocol version: TLS 1.2. */ +#define BR_TLS12 0x0303 + +/* + * Error constants. They are used to report the reason why a context has + * been marked as failed. + * + * Implementation note: SSL-level error codes should be in the 1..31 + * range. The 32..63 range is for certificate decoding and validation + * errors. Received fatal alerts imply an error code in the 256..511 range. + */ + +/** \brief SSL status: no error so far (0). */ +#define BR_ERR_OK 0 + +/** \brief SSL status: caller-provided parameter is incorrect. */ +#define BR_ERR_BAD_PARAM 1 + +/** \brief SSL status: operation requested by the caller cannot be applied + with the current context state (e.g. reading data while outgoing data + is waiting to be sent). */ +#define BR_ERR_BAD_STATE 2 + +/** \brief SSL status: incoming protocol or record version is unsupported. */ +#define BR_ERR_UNSUPPORTED_VERSION 3 + +/** \brief SSL status: incoming record version does not match the expected + version. */ +#define BR_ERR_BAD_VERSION 4 + +/** \brief SSL status: incoming record length is invalid. */ +#define BR_ERR_BAD_LENGTH 5 + +/** \brief SSL status: incoming record is too large to be processed, or + buffer is too small for the handshake message to send. */ +#define BR_ERR_TOO_LARGE 6 + +/** \brief SSL status: decryption found an invalid padding, or the record + MAC is not correct. */ +#define BR_ERR_BAD_MAC 7 + +/** \brief SSL status: no initial entropy was provided, and none can be + obtained from the OS. */ +#define BR_ERR_NO_RANDOM 8 + +/** \brief SSL status: incoming record type is unknown. */ +#define BR_ERR_UNKNOWN_TYPE 9 + +/** \brief SSL status: incoming record or message has wrong type with + regards to the current engine state. */ +#define BR_ERR_UNEXPECTED 10 + +/** \brief SSL status: ChangeCipherSpec message from the peer has invalid + contents. */ +#define BR_ERR_BAD_CCS 12 + +/** \brief SSL status: alert message from the peer has invalid contents + (odd length). */ +#define BR_ERR_BAD_ALERT 13 + +/** \brief SSL status: incoming handshake message decoding failed. */ +#define BR_ERR_BAD_HANDSHAKE 14 + +/** \brief SSL status: ServerHello contains a session ID which is larger + than 32 bytes. */ +#define BR_ERR_OVERSIZED_ID 15 + +/** \brief SSL status: server wants to use a cipher suite that we did + not claim to support. This is also reported if we tried to advertise + a cipher suite that we do not support. */ +#define BR_ERR_BAD_CIPHER_SUITE 16 + +/** \brief SSL status: server wants to use a compression that we did not + claim to support. */ +#define BR_ERR_BAD_COMPRESSION 17 + +/** \brief SSL status: server's max fragment length does not match + client's. */ +#define BR_ERR_BAD_FRAGLEN 18 + +/** \brief SSL status: secure renegotiation failed. */ +#define BR_ERR_BAD_SECRENEG 19 + +/** \brief SSL status: server sent an extension type that we did not + announce, or used the same extension type several times in a single + ServerHello. */ +#define BR_ERR_EXTRA_EXTENSION 20 + +/** \brief SSL status: invalid Server Name Indication contents (when + used by the server, this extension shall be empty). */ +#define BR_ERR_BAD_SNI 21 + +/** \brief SSL status: invalid ServerHelloDone from the server (length + is not 0). */ +#define BR_ERR_BAD_HELLO_DONE 22 + +/** \brief SSL status: internal limit exceeded (e.g. server's public key + is too large). */ +#define BR_ERR_LIMIT_EXCEEDED 23 + +/** \brief SSL status: Finished message from peer does not match the + expected value. */ +#define BR_ERR_BAD_FINISHED 24 + +/** \brief SSL status: session resumption attempt with distinct version + or cipher suite. */ +#define BR_ERR_RESUME_MISMATCH 25 + +/** \brief SSL status: unsupported or invalid algorithm (ECDHE curve, + signature algorithm, hash function). */ +#define BR_ERR_INVALID_ALGORITHM 26 + +/** \brief SSL status: invalid signature (on ServerKeyExchange from + server, or in CertificateVerify from client). */ +#define BR_ERR_BAD_SIGNATURE 27 + +/** \brief SSL status: peer's public key does not have the proper type + or is not allowed for requested operation. */ +#define BR_ERR_WRONG_KEY_USAGE 28 + +/** \brief SSL status: client did not send a certificate upon request, + or the client certificate could not be validated. */ +#define BR_ERR_NO_CLIENT_AUTH 29 + +/** \brief SSL status: I/O error or premature close on underlying + transport stream. This error code is set only by the simplified + I/O API ("br_sslio_*"). */ +#define BR_ERR_IO 31 + +/** \brief SSL status: base value for a received fatal alert. + + When a fatal alert is received from the peer, the alert value + is added to this constant. */ +#define BR_ERR_RECV_FATAL_ALERT 256 + +/** \brief SSL status: base value for a sent fatal alert. + + When a fatal alert is sent to the peer, the alert value is added + to this constant. */ +#define BR_ERR_SEND_FATAL_ALERT 512 + +/* ===================================================================== */ + +/** + * \brief Decryption engine for SSL. + * + * When processing incoming records, the SSL engine will use a decryption + * engine that uses a specific context structure, and has a set of + * methods (a vtable) that follows this template. + * + * The decryption engine is responsible for applying decryption, verifying + * MAC, and keeping track of the record sequence number. + */ +typedef struct br_sslrec_in_class_ br_sslrec_in_class; +struct br_sslrec_in_class_ { + /** + * \brief Context size (in bytes). + */ + size_t context_size; + + /** + * \brief Test validity of the incoming record length. + * + * This function returns 1 if the announced length for an + * incoming record is valid, 0 otherwise, + * + * \param ctx decryption engine context. + * \param record_len incoming record length. + * \return 1 of a valid length, 0 otherwise. + */ + int (*check_length)(const br_sslrec_in_class *const *ctx, + size_t record_len); + + /** + * \brief Decrypt the incoming record. + * + * This function may assume that the record length is valid + * (it has been previously tested with `check_length()`). + * Decryption is done in place; `*len` is updated with the + * cleartext length, and the address of the first plaintext + * byte is returned. If the record is correct but empty, then + * `*len` is set to 0 and a non-`NULL` pointer is returned. + * + * On decryption/MAC error, `NULL` is returned. + * + * \param ctx decryption engine context. + * \param record_type record type (23 for application data, etc). + * \param version record version. + * \param payload address of encrypted payload. + * \param len pointer to payload length (updated). + * \return pointer to plaintext, or `NULL` on error. + */ + unsigned char *(*decrypt)(const br_sslrec_in_class **ctx, + int record_type, unsigned version, + void *payload, size_t *len); +}; + +/** + * \brief Encryption engine for SSL. + * + * When building outgoing records, the SSL engine will use an encryption + * engine that uses a specific context structure, and has a set of + * methods (a vtable) that follows this template. + * + * The encryption engine is responsible for applying encryption and MAC, + * and keeping track of the record sequence number. + */ +typedef struct br_sslrec_out_class_ br_sslrec_out_class; +struct br_sslrec_out_class_ { + /** + * \brief Context size (in bytes). + */ + size_t context_size; + + /** + * \brief Compute maximum plaintext sizes and offsets. + * + * When this function is called, the `*start` and `*end` + * values contain offsets designating the free area in the + * outgoing buffer for plaintext data; that free area is + * preceded by a 5-byte space which will receive the record + * header. + * + * The `max_plaintext()` function is responsible for adjusting + * both `*start` and `*end` to make room for any record-specific + * header, MAC, padding, and possible split. + * + * \param ctx encryption engine context. + * \param start pointer to start of plaintext offset (updated). + * \param end pointer to start of plaintext offset (updated). + */ + void (*max_plaintext)(const br_sslrec_out_class *const *ctx, + size_t *start, size_t *end); + + /** + * \brief Perform record encryption. + * + * This function encrypts the record. The plaintext address and + * length are provided. Returned value is the start of the + * encrypted record (or sequence of records, if a split was + * performed), _including_ the 5-byte header, and `*len` is + * adjusted to the total size of the record(s), there again + * including the header(s). + * + * \param ctx decryption engine context. + * \param record_type record type (23 for application data, etc). + * \param version record version. + * \param plaintext address of plaintext. + * \param len pointer to plaintext length (updated). + * \return pointer to start of built record. + */ + unsigned char *(*encrypt)(const br_sslrec_out_class **ctx, + int record_type, unsigned version, + void *plaintext, size_t *len); +}; + +/** + * \brief Context for a no-encryption engine. + * + * The no-encryption engine processes outgoing records during the initial + * handshake, before encryption is applied. + */ +typedef struct { + /** \brief No-encryption engine vtable. */ + const br_sslrec_out_class *vtable; +} br_sslrec_out_clear_context; + +/** \brief Static, constant vtable for the no-encryption engine. */ +extern const br_sslrec_out_class br_sslrec_out_clear_vtable; + +/* ===================================================================== */ + +/** + * \brief Record decryption engine class, for CBC mode. + * + * This class type extends the decryption engine class with an + * initialisation method that receives the parameters needed + * for CBC processing: block cipher implementation, block cipher key, + * HMAC parameters (hash function, key, MAC length), and IV. If the + * IV is `NULL`, then a per-record IV will be used (TLS 1.1+). + */ +typedef struct br_sslrec_in_cbc_class_ br_sslrec_in_cbc_class; +struct br_sslrec_in_cbc_class_ { + /** + * \brief Superclass, as first vtable field. + */ + br_sslrec_in_class inner; + + /** + * \brief Engine initialisation method. + * + * This method sets the vtable field in the context. + * + * \param ctx context to initialise. + * \param bc_impl block cipher implementation (CBC decryption). + * \param bc_key block cipher key. + * \param bc_key_len block cipher key length (in bytes). + * \param dig_impl hash function for HMAC. + * \param mac_key HMAC key. + * \param mac_key_len HMAC key length (in bytes). + * \param mac_out_len HMAC output length (in bytes). + * \param iv initial IV (or `NULL`). + */ + void (*init)(const br_sslrec_in_cbc_class **ctx, + const br_block_cbcdec_class *bc_impl, + const void *bc_key, size_t bc_key_len, + const br_hash_class *dig_impl, + const void *mac_key, size_t mac_key_len, size_t mac_out_len, + const void *iv); +}; + +/** + * \brief Record encryption engine class, for CBC mode. + * + * This class type extends the encryption engine class with an + * initialisation method that receives the parameters needed + * for CBC processing: block cipher implementation, block cipher key, + * HMAC parameters (hash function, key, MAC length), and IV. If the + * IV is `NULL`, then a per-record IV will be used (TLS 1.1+). + */ +typedef struct br_sslrec_out_cbc_class_ br_sslrec_out_cbc_class; +struct br_sslrec_out_cbc_class_ { + /** + * \brief Superclass, as first vtable field. + */ + br_sslrec_out_class inner; + + /** + * \brief Engine initialisation method. + * + * This method sets the vtable field in the context. + * + * \param ctx context to initialise. + * \param bc_impl block cipher implementation (CBC encryption). + * \param bc_key block cipher key. + * \param bc_key_len block cipher key length (in bytes). + * \param dig_impl hash function for HMAC. + * \param mac_key HMAC key. + * \param mac_key_len HMAC key length (in bytes). + * \param mac_out_len HMAC output length (in bytes). + * \param iv initial IV (or `NULL`). + */ + void (*init)(const br_sslrec_out_cbc_class **ctx, + const br_block_cbcenc_class *bc_impl, + const void *bc_key, size_t bc_key_len, + const br_hash_class *dig_impl, + const void *mac_key, size_t mac_key_len, size_t mac_out_len, + const void *iv); +}; + +/** + * \brief Context structure for decrypting incoming records with + * CBC + HMAC. + * + * The first field points to the vtable. The other fields are opaque + * and shall not be accessed directly. + */ +typedef struct { + /** \brief Pointer to vtable. */ + const br_sslrec_in_cbc_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + uint64_t seq; + union { + const br_block_cbcdec_class *vtable; + br_aes_gen_cbcdec_keys aes; + br_des_gen_cbcdec_keys des; + } bc; + br_hmac_key_context mac; + size_t mac_len; + unsigned char iv[16]; + int explicit_IV; +#endif +} br_sslrec_in_cbc_context; + +/** + * \brief Static, constant vtable for record decryption with CBC. + */ +extern const br_sslrec_in_cbc_class br_sslrec_in_cbc_vtable; + +/** + * \brief Context structure for encrypting outgoing records with + * CBC + HMAC. + * + * The first field points to the vtable. The other fields are opaque + * and shall not be accessed directly. + */ +typedef struct { + /** \brief Pointer to vtable. */ + const br_sslrec_out_cbc_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + uint64_t seq; + union { + const br_block_cbcenc_class *vtable; + br_aes_gen_cbcenc_keys aes; + br_des_gen_cbcenc_keys des; + } bc; + br_hmac_key_context mac; + size_t mac_len; + unsigned char iv[16]; + int explicit_IV; +#endif +} br_sslrec_out_cbc_context; + +/** + * \brief Static, constant vtable for record encryption with CBC. + */ +extern const br_sslrec_out_cbc_class br_sslrec_out_cbc_vtable; + +/* ===================================================================== */ + +/** + * \brief Record decryption engine class, for GCM mode. + * + * This class type extends the decryption engine class with an + * initialisation method that receives the parameters needed + * for GCM processing: block cipher implementation, block cipher key, + * GHASH implementation, and 4-byte IV. + */ +typedef struct br_sslrec_in_gcm_class_ br_sslrec_in_gcm_class; +struct br_sslrec_in_gcm_class_ { + /** + * \brief Superclass, as first vtable field. + */ + br_sslrec_in_class inner; + + /** + * \brief Engine initialisation method. + * + * This method sets the vtable field in the context. + * + * \param ctx context to initialise. + * \param bc_impl block cipher implementation (CTR). + * \param key block cipher key. + * \param key_len block cipher key length (in bytes). + * \param gh_impl GHASH implementation. + * \param iv static IV (4 bytes). + */ + void (*init)(const br_sslrec_in_gcm_class **ctx, + const br_block_ctr_class *bc_impl, + const void *key, size_t key_len, + br_ghash gh_impl, + const void *iv); +}; + +/** + * \brief Record encryption engine class, for GCM mode. + * + * This class type extends the encryption engine class with an + * initialisation method that receives the parameters needed + * for GCM processing: block cipher implementation, block cipher key, + * GHASH implementation, and 4-byte IV. + */ +typedef struct br_sslrec_out_gcm_class_ br_sslrec_out_gcm_class; +struct br_sslrec_out_gcm_class_ { + /** + * \brief Superclass, as first vtable field. + */ + br_sslrec_out_class inner; + + /** + * \brief Engine initialisation method. + * + * This method sets the vtable field in the context. + * + * \param ctx context to initialise. + * \param bc_impl block cipher implementation (CTR). + * \param key block cipher key. + * \param key_len block cipher key length (in bytes). + * \param gh_impl GHASH implementation. + * \param iv static IV (4 bytes). + */ + void (*init)(const br_sslrec_out_gcm_class **ctx, + const br_block_ctr_class *bc_impl, + const void *key, size_t key_len, + br_ghash gh_impl, + const void *iv); +}; + +/** + * \brief Context structure for processing records with GCM. + * + * The same context structure is used for encrypting and decrypting. + * + * The first field points to the vtable. The other fields are opaque + * and shall not be accessed directly. + */ +typedef struct { + /** \brief Pointer to vtable. */ + union { + const void *gen; + const br_sslrec_in_gcm_class *in; + const br_sslrec_out_gcm_class *out; + } vtable; +#ifndef BR_DOXYGEN_IGNORE + uint64_t seq; + union { + const br_block_ctr_class *vtable; + br_aes_gen_ctr_keys aes; + } bc; + br_ghash gh; + unsigned char iv[4]; + unsigned char h[16]; +#endif +} br_sslrec_gcm_context; + +/** + * \brief Static, constant vtable for record decryption with GCM. + */ +extern const br_sslrec_in_gcm_class br_sslrec_in_gcm_vtable; + +/** + * \brief Static, constant vtable for record encryption with GCM. + */ +extern const br_sslrec_out_gcm_class br_sslrec_out_gcm_vtable; + +/* ===================================================================== */ + +/** + * \brief Record decryption engine class, for ChaCha20+Poly1305. + * + * This class type extends the decryption engine class with an + * initialisation method that receives the parameters needed + * for ChaCha20+Poly1305 processing: ChaCha20 implementation, + * Poly1305 implementation, key, and 12-byte IV. + */ +typedef struct br_sslrec_in_chapol_class_ br_sslrec_in_chapol_class; +struct br_sslrec_in_chapol_class_ { + /** + * \brief Superclass, as first vtable field. + */ + br_sslrec_in_class inner; + + /** + * \brief Engine initialisation method. + * + * This method sets the vtable field in the context. + * + * \param ctx context to initialise. + * \param ichacha ChaCha20 implementation. + * \param ipoly Poly1305 implementation. + * \param key secret key (32 bytes). + * \param iv static IV (12 bytes). + */ + void (*init)(const br_sslrec_in_chapol_class **ctx, + br_chacha20_run ichacha, + br_poly1305_run ipoly, + const void *key, const void *iv); +}; + +/** + * \brief Record encryption engine class, for ChaCha20+Poly1305. + * + * This class type extends the encryption engine class with an + * initialisation method that receives the parameters needed + * for ChaCha20+Poly1305 processing: ChaCha20 implementation, + * Poly1305 implementation, key, and 12-byte IV. + */ +typedef struct br_sslrec_out_chapol_class_ br_sslrec_out_chapol_class; +struct br_sslrec_out_chapol_class_ { + /** + * \brief Superclass, as first vtable field. + */ + br_sslrec_out_class inner; + + /** + * \brief Engine initialisation method. + * + * This method sets the vtable field in the context. + * + * \param ctx context to initialise. + * \param ichacha ChaCha20 implementation. + * \param ipoly Poly1305 implementation. + * \param key secret key (32 bytes). + * \param iv static IV (12 bytes). + */ + void (*init)(const br_sslrec_out_chapol_class **ctx, + br_chacha20_run ichacha, + br_poly1305_run ipoly, + const void *key, const void *iv); +}; + +/** + * \brief Context structure for processing records with ChaCha20+Poly1305. + * + * The same context structure is used for encrypting and decrypting. + * + * The first field points to the vtable. The other fields are opaque + * and shall not be accessed directly. + */ +typedef struct { + /** \brief Pointer to vtable. */ + union { + const void *gen; + const br_sslrec_in_chapol_class *in; + const br_sslrec_out_chapol_class *out; + } vtable; +#ifndef BR_DOXYGEN_IGNORE + uint64_t seq; + unsigned char key[32]; + unsigned char iv[12]; + br_chacha20_run ichacha; + br_poly1305_run ipoly; +#endif +} br_sslrec_chapol_context; + +/** + * \brief Static, constant vtable for record decryption with ChaCha20+Poly1305. + */ +extern const br_sslrec_in_chapol_class br_sslrec_in_chapol_vtable; + +/** + * \brief Static, constant vtable for record encryption with ChaCha20+Poly1305. + */ +extern const br_sslrec_out_chapol_class br_sslrec_out_chapol_vtable; + +/* ===================================================================== */ + +/** + * \brief Record decryption engine class, for CCM mode. + * + * This class type extends the decryption engine class with an + * initialisation method that receives the parameters needed + * for CCM processing: block cipher implementation, block cipher key, + * and 4-byte IV. + */ +typedef struct br_sslrec_in_ccm_class_ br_sslrec_in_ccm_class; +struct br_sslrec_in_ccm_class_ { + /** + * \brief Superclass, as first vtable field. + */ + br_sslrec_in_class inner; + + /** + * \brief Engine initialisation method. + * + * This method sets the vtable field in the context. + * + * \param ctx context to initialise. + * \param bc_impl block cipher implementation (CTR+CBC). + * \param key block cipher key. + * \param key_len block cipher key length (in bytes). + * \param iv static IV (4 bytes). + * \param tag_len tag length (in bytes) + */ + void (*init)(const br_sslrec_in_ccm_class **ctx, + const br_block_ctrcbc_class *bc_impl, + const void *key, size_t key_len, + const void *iv, size_t tag_len); +}; + +/** + * \brief Record encryption engine class, for CCM mode. + * + * This class type extends the encryption engine class with an + * initialisation method that receives the parameters needed + * for CCM processing: block cipher implementation, block cipher key, + * and 4-byte IV. + */ +typedef struct br_sslrec_out_ccm_class_ br_sslrec_out_ccm_class; +struct br_sslrec_out_ccm_class_ { + /** + * \brief Superclass, as first vtable field. + */ + br_sslrec_out_class inner; + + /** + * \brief Engine initialisation method. + * + * This method sets the vtable field in the context. + * + * \param ctx context to initialise. + * \param bc_impl block cipher implementation (CTR+CBC). + * \param key block cipher key. + * \param key_len block cipher key length (in bytes). + * \param iv static IV (4 bytes). + * \param tag_len tag length (in bytes) + */ + void (*init)(const br_sslrec_out_ccm_class **ctx, + const br_block_ctrcbc_class *bc_impl, + const void *key, size_t key_len, + const void *iv, size_t tag_len); +}; + +/** + * \brief Context structure for processing records with CCM. + * + * The same context structure is used for encrypting and decrypting. + * + * The first field points to the vtable. The other fields are opaque + * and shall not be accessed directly. + */ +typedef struct { + /** \brief Pointer to vtable. */ + union { + const void *gen; + const br_sslrec_in_ccm_class *in; + const br_sslrec_out_ccm_class *out; + } vtable; +#ifndef BR_DOXYGEN_IGNORE + uint64_t seq; + union { + const br_block_ctrcbc_class *vtable; + br_aes_gen_ctrcbc_keys aes; + } bc; + unsigned char iv[4]; + size_t tag_len; +#endif +} br_sslrec_ccm_context; + +/** + * \brief Static, constant vtable for record decryption with CCM. + */ +extern const br_sslrec_in_ccm_class br_sslrec_in_ccm_vtable; + +/** + * \brief Static, constant vtable for record encryption with CCM. + */ +extern const br_sslrec_out_ccm_class br_sslrec_out_ccm_vtable; + +/* ===================================================================== */ + +/** + * \brief Type for session parameters, to be saved for session resumption. + */ +typedef struct { + /** \brief Session ID buffer. */ + unsigned char session_id[32]; + /** \brief Session ID length (in bytes, at most 32). */ + unsigned char session_id_len; + /** \brief Protocol version. */ + uint16_t version; + /** \brief Cipher suite. */ + uint16_t cipher_suite; + /** \brief Master secret. */ + unsigned char master_secret[48]; +} br_ssl_session_parameters; + +#ifndef BR_DOXYGEN_IGNORE +/* + * Maximum number of cipher suites supported by a client or server. + */ +#define BR_MAX_CIPHER_SUITES 48 +#endif + +/** + * \brief Context structure for SSL engine. + * + * This strucuture is common to the client and server; both the client + * context (`br_ssl_client_context`) and the server context + * (`br_ssl_server_context`) include a `br_ssl_engine_context` as their + * first field. + * + * The engine context manages records, including alerts, closures, and + * transitions to new encryption/MAC algorithms. Processing of handshake + * records is delegated to externally provided code. This structure + * should not be used directly. + * + * Structure contents are opaque and shall not be accessed directly. + */ +typedef struct { +#ifndef BR_DOXYGEN_IGNORE + /* + * The error code. When non-zero, then the state is "failed" and + * no I/O may occur until reset. + */ + int err; + + /* + * Configured I/O buffers. They are either disjoint, or identical. + */ + unsigned char *ibuf, *obuf; + size_t ibuf_len, obuf_len; + + /* + * Maximum fragment length applies to outgoing records; incoming + * records can be processed as long as they fit in the input + * buffer. It is guaranteed that incoming records at least as big + * as max_frag_len can be processed. + */ + uint16_t max_frag_len; + unsigned char log_max_frag_len; + unsigned char peer_log_max_frag_len; + + /* + * Buffering management registers. + */ + size_t ixa, ixb, ixc; + size_t oxa, oxb, oxc; + unsigned char iomode; + unsigned char incrypt; + + /* + * Shutdown flag: when set to non-zero, incoming record bytes + * will not be accepted anymore. This is used after a close_notify + * has been received: afterwards, the engine no longer claims that + * it could receive bytes from the transport medium. + */ + unsigned char shutdown_recv; + + /* + * 'record_type_in' is set to the incoming record type when the + * record header has been received. + * 'record_type_out' is used to make the next outgoing record + * header when it is ready to go. + */ + unsigned char record_type_in, record_type_out; + + /* + * When a record is received, its version is extracted: + * -- if 'version_in' is 0, then it is set to the received version; + * -- otherwise, if the received version is not identical to + * the 'version_in' contents, then a failure is reported. + * + * This implements the SSL requirement that all records shall + * use the negotiated protocol version, once decided (in the + * ServerHello). It is up to the handshake handler to adjust this + * field when necessary. + */ + uint16_t version_in; + + /* + * 'version_out' is used when the next outgoing record is ready + * to go. + */ + uint16_t version_out; + + /* + * Record handler contexts. + */ + union { + const br_sslrec_in_class *vtable; + br_sslrec_in_cbc_context cbc; + br_sslrec_gcm_context gcm; + br_sslrec_chapol_context chapol; + br_sslrec_ccm_context ccm; + } in; + union { + const br_sslrec_out_class *vtable; + br_sslrec_out_clear_context clear; + br_sslrec_out_cbc_context cbc; + br_sslrec_gcm_context gcm; + br_sslrec_chapol_context chapol; + br_sslrec_ccm_context ccm; + } out; + + /* + * The "application data" flag. Value: + * 0 handshake is in process, no application data acceptable + * 1 application data can be sent and received + * 2 closing, no application data can be sent, but some + * can still be received (and discarded) + */ + unsigned char application_data; + + /* + * Context RNG. + * + * rng_init_done is initially 0. It is set to 1 when the + * basic structure of the RNG is set, and 2 when some + * entropy has been pushed in. The value 2 marks the RNG + * as "properly seeded". + * + * rng_os_rand_done is initially 0. It is set to 1 when + * some seeding from the OS or hardware has been attempted. + */ + br_hmac_drbg_context rng; + int rng_init_done; + int rng_os_rand_done; + + /* + * Supported minimum and maximum versions, and cipher suites. + */ + uint16_t version_min; + uint16_t version_max; + uint16_t suites_buf[BR_MAX_CIPHER_SUITES]; + unsigned char suites_num; + + /* + * For clients, the server name to send as a SNI extension. For + * servers, the name received in the SNI extension (if any). + */ + char server_name[256]; + + /* + * "Security parameters". These are filled by the handshake + * handler, and used when switching encryption state. + */ + unsigned char client_random[32]; + unsigned char server_random[32]; + br_ssl_session_parameters session; + + /* + * ECDHE elements: curve and point from the peer. The server also + * uses that buffer for the point to send to the client. + */ + unsigned char ecdhe_curve; + unsigned char ecdhe_point[133]; + unsigned char ecdhe_point_len; + + /* + * Secure renegotiation (RFC 5746): 'reneg' can be: + * 0 first handshake (server support is not known) + * 1 peer does not support secure renegotiation + * 2 peer supports secure renegotiation + * + * The saved_finished buffer contains the client and the + * server "Finished" values from the last handshake, in + * that order (12 bytes each). + */ + unsigned char reneg; + unsigned char saved_finished[24]; + + /* + * Behavioural flags. + */ + uint32_t flags; + + /* + * Context variables for the handshake processor. The 'pad' must + * be large enough to accommodate an RSA-encrypted pre-master + * secret, or an RSA signature; since we want to support up to + * RSA-4096, this means at least 512 bytes. (Other pad usages + * require its length to be at least 256.) + */ + struct { + uint32_t *dp; + uint32_t *rp; + const unsigned char *ip; + } cpu; + uint32_t dp_stack[32]; + uint32_t rp_stack[32]; + unsigned char pad[512]; + unsigned char *hbuf_in, *hbuf_out, *saved_hbuf_out; + size_t hlen_in, hlen_out; + void (*hsrun)(void *ctx); + + /* + * The 'action' value communicates OOB information between the + * engine and the handshake processor. + * + * From the engine: + * 0 invocation triggered by I/O + * 1 invocation triggered by explicit close + * 2 invocation triggered by explicit renegotiation + */ + unsigned char action; + + /* + * State for alert messages. Value is either 0, or the value of + * the alert level byte (level is either 1 for warning, or 2 for + * fatal; we convert all other values to 'fatal'). + */ + unsigned char alert; + + /* + * Closure flags. This flag is set when a close_notify has been + * received from the peer. + */ + unsigned char close_received; + + /* + * Multi-hasher for the handshake messages. The handshake handler + * is responsible for resetting it when appropriate. + */ + br_multihash_context mhash; + + /* + * Pointer to the X.509 engine. The engine is supposed to be + * already initialized. It is used to validate the peer's + * certificate. + */ + const br_x509_class **x509ctx; + + /* + * Certificate chain to send. This is used by both client and + * server, when they send their respective Certificate messages. + * If chain_len is 0, then chain may be NULL. + */ + const br_x509_certificate *chain; + size_t chain_len; + const unsigned char *cert_cur; + size_t cert_len; + + /* + * List of supported protocol names (ALPN extension). If unset, + * (number of names is 0), then: + * - the client sends no ALPN extension; + * - the server ignores any incoming ALPN extension. + * + * Otherwise: + * - the client sends an ALPN extension with all the names; + * - the server selects the first protocol in its list that + * the client also supports, or fails (fatal alert 120) + * if the client sends an ALPN extension and there is no + * match. + * + * The 'selected_protocol' field contains 1+n if the matching + * name has index n in the list (the value is 0 if no match was + * performed, e.g. the peer did not send an ALPN extension). + */ + const char **protocol_names; + uint16_t protocol_names_num; + uint16_t selected_protocol; + + /* + * Pointers to implementations; left to NULL for unsupported + * functions. For the raw hash functions, implementations are + * referenced from the multihasher (mhash field). + */ + br_tls_prf_impl prf10; + br_tls_prf_impl prf_sha256; + br_tls_prf_impl prf_sha384; + const br_block_cbcenc_class *iaes_cbcenc; + const br_block_cbcdec_class *iaes_cbcdec; + const br_block_ctr_class *iaes_ctr; + const br_block_ctrcbc_class *iaes_ctrcbc; + const br_block_cbcenc_class *ides_cbcenc; + const br_block_cbcdec_class *ides_cbcdec; + br_ghash ighash; + br_chacha20_run ichacha; + br_poly1305_run ipoly; + const br_sslrec_in_cbc_class *icbc_in; + const br_sslrec_out_cbc_class *icbc_out; + const br_sslrec_in_gcm_class *igcm_in; + const br_sslrec_out_gcm_class *igcm_out; + const br_sslrec_in_chapol_class *ichapol_in; + const br_sslrec_out_chapol_class *ichapol_out; + const br_sslrec_in_ccm_class *iccm_in; + const br_sslrec_out_ccm_class *iccm_out; + const br_ec_impl *iec; + br_rsa_pkcs1_vrfy irsavrfy; + br_ecdsa_vrfy iecdsa; +#endif +} br_ssl_engine_context; + +/** + * \brief Get currently defined engine behavioural flags. + * + * \param cc SSL engine context. + * \return the flags. + */ +static inline uint32_t +br_ssl_engine_get_flags(br_ssl_engine_context *cc) +{ + return cc->flags; +} + +/** + * \brief Set all engine behavioural flags. + * + * \param cc SSL engine context. + * \param flags new value for all flags. + */ +static inline void +br_ssl_engine_set_all_flags(br_ssl_engine_context *cc, uint32_t flags) +{ + cc->flags = flags; +} + +/** + * \brief Set some engine behavioural flags. + * + * The flags set in the `flags` parameter are set in the context; other + * flags are untouched. + * + * \param cc SSL engine context. + * \param flags additional set flags. + */ +static inline void +br_ssl_engine_add_flags(br_ssl_engine_context *cc, uint32_t flags) +{ + cc->flags |= flags; +} + +/** + * \brief Clear some engine behavioural flags. + * + * The flags set in the `flags` parameter are cleared from the context; other + * flags are untouched. + * + * \param cc SSL engine context. + * \param flags flags to remove. + */ +static inline void +br_ssl_engine_remove_flags(br_ssl_engine_context *cc, uint32_t flags) +{ + cc->flags &= ~flags; +} + +/** + * \brief Behavioural flag: enforce server preferences. + * + * If this flag is set, then the server will enforce its own cipher suite + * preference order; otherwise, it follows the client preferences. + */ +#define BR_OPT_ENFORCE_SERVER_PREFERENCES ((uint32_t)1 << 0) + +/** + * \brief Behavioural flag: disable renegotiation. + * + * If this flag is set, then renegotiations are rejected unconditionally: + * they won't be honoured if asked for programmatically, and requests from + * the peer are rejected. + */ +#define BR_OPT_NO_RENEGOTIATION ((uint32_t)1 << 1) + +/** + * \brief Behavioural flag: tolerate lack of client authentication. + * + * If this flag is set in a server and the server requests a client + * certificate, but the authentication fails (the client does not send + * a certificate, or the client's certificate chain cannot be validated), + * then the connection keeps on. Without this flag, a failed client + * authentication terminates the connection. + * + * Notes: + * + * - If the client's certificate can be validated and its public key is + * supported, then a wrong signature value terminates the connection + * regardless of that flag. + * + * - If using full-static ECDH, then a failure to validate the client's + * certificate prevents the handshake from succeeding. + */ +#define BR_OPT_TOLERATE_NO_CLIENT_AUTH ((uint32_t)1 << 2) + +/** + * \brief Behavioural flag: fail on application protocol mismatch. + * + * The ALPN extension ([RFC 7301](https://tools.ietf.org/html/rfc7301)) + * allows the client to send a list of application protocol names, and + * the server to select one. A mismatch is one of the following occurrences: + * + * - On the client: the client sends a list of names, the server + * responds with a protocol name which is _not_ part of the list of + * names sent by the client. + * + * - On the server: the client sends a list of names, and the server + * is also configured with a list of names, but there is no common + * protocol name between the two lists. + * + * Normal behaviour in case of mismatch is to report no matching name + * (`br_ssl_engine_get_selected_protocol()` returns `NULL`) and carry on. + * If the flag is set, then a mismatch implies a protocol failure (if + * the mismatch is detected by the server, it will send a fatal alert). + * + * Note: even with this flag, `br_ssl_engine_get_selected_protocol()` + * may still return `NULL` if the client or the server does not send an + * ALPN extension at all. + */ +#define BR_OPT_FAIL_ON_ALPN_MISMATCH ((uint32_t)1 << 3) + +/** + * \brief Set the minimum and maximum supported protocol versions. + * + * The two provided versions MUST be supported by the implementation + * (i.e. TLS 1.0, 1.1 and 1.2), and `version_max` MUST NOT be lower + * than `version_min`. + * + * \param cc SSL engine context. + * \param version_min minimum supported TLS version. + * \param version_max maximum supported TLS version. + */ +static inline void +br_ssl_engine_set_versions(br_ssl_engine_context *cc, + unsigned version_min, unsigned version_max) +{ + cc->version_min = version_min; + cc->version_max = version_max; +} + +/** + * \brief Set the list of cipher suites advertised by this context. + * + * The provided array is copied into the context. It is the caller + * responsibility to ensure that all provided suites will be supported + * by the context. The engine context has enough room to receive _all_ + * suites supported by the implementation. The provided array MUST NOT + * contain duplicates. + * + * If the engine is for a client, the "signaling" pseudo-cipher suite + * `TLS_FALLBACK_SCSV` can be added at the end of the list, if the + * calling application is performing a voluntary downgrade (voluntary + * downgrades are not recommended, but if such a downgrade is done, then + * adding the fallback pseudo-suite is a good idea). + * + * \param cc SSL engine context. + * \param suites cipher suites. + * \param suites_num number of cipher suites. + */ +void br_ssl_engine_set_suites(br_ssl_engine_context *cc, + const uint16_t *suites, size_t suites_num); + +/** + * \brief Set the X.509 engine. + * + * The caller shall ensure that the X.509 engine is properly initialised. + * + * \param cc SSL engine context. + * \param x509ctx X.509 certificate validation context. + */ +static inline void +br_ssl_engine_set_x509(br_ssl_engine_context *cc, const br_x509_class **x509ctx) +{ + cc->x509ctx = x509ctx; +} + +/** + * \brief Set the supported protocol names. + * + * Protocol names are part of the ALPN extension ([RFC + * 7301](https://tools.ietf.org/html/rfc7301)). Each protocol name is a + * character string, containing no more than 255 characters (256 with the + * terminating zero). When names are set, then: + * + * - The client will send an ALPN extension, containing the names. If + * the server responds with an ALPN extension, the client will verify + * that the response contains one of its name, and report that name + * through `br_ssl_engine_get_selected_protocol()`. + * + * - The server will parse incoming ALPN extension (from clients), and + * try to find a common protocol; if none is found, the connection + * is aborted with a fatal alert. On match, a response ALPN extension + * is sent, and name is reported through + * `br_ssl_engine_get_selected_protocol()`. + * + * The provided array is linked in, and must remain valid while the + * connection is live. + * + * Names MUST NOT be empty. Names MUST NOT be longer than 255 characters + * (excluding the terminating 0). + * + * \param ctx SSL engine context. + * \param names list of protocol names (zero-terminated). + * \param num number of protocol names (MUST be 1 or more). + */ +static inline void +br_ssl_engine_set_protocol_names(br_ssl_engine_context *ctx, + const char **names, size_t num) +{ + ctx->protocol_names = names; + ctx->protocol_names_num = num; +} + +/** + * \brief Get the selected protocol. + * + * If this context was initialised with a non-empty list of protocol + * names, and both client and server sent ALPN extensions during the + * handshake, and a common name was found, then that name is returned. + * Otherwise, `NULL` is returned. + * + * The returned pointer is one of the pointers provided to the context + * with `br_ssl_engine_set_protocol_names()`. + * + * \return the selected protocol, or `NULL`. + */ +static inline const char * +br_ssl_engine_get_selected_protocol(br_ssl_engine_context *ctx) +{ + unsigned k; + + k = ctx->selected_protocol; + return (k == 0 || k == 0xFFFF) ? NULL : ctx->protocol_names[k - 1]; +} + +/** + * \brief Set a hash function implementation (by ID). + * + * Hash functions set with this call will be used for SSL/TLS specific + * usages, not X.509 certificate validation. Only "standard" hash functions + * may be set (MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512). If `impl` + * is `NULL`, then the hash function support is removed, not added. + * + * \param ctx SSL engine context. + * \param id hash function identifier. + * \param impl hash function implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_hash(br_ssl_engine_context *ctx, + int id, const br_hash_class *impl) +{ + br_multihash_setimpl(&ctx->mhash, id, impl); +} + +/** + * \brief Get a hash function implementation (by ID). + * + * This function retrieves a hash function implementation which was + * set with `br_ssl_engine_set_hash()`. + * + * \param ctx SSL engine context. + * \param id hash function identifier. + * \return the hash function implementation (or `NULL`). + */ +static inline const br_hash_class * +br_ssl_engine_get_hash(br_ssl_engine_context *ctx, int id) +{ + return br_multihash_getimpl(&ctx->mhash, id); +} + +/** + * \brief Set the PRF implementation (for TLS 1.0 and 1.1). + * + * This function sets (or removes, if `impl` is `NULL`) the implementation + * for the PRF used in TLS 1.0 and 1.1. + * + * \param cc SSL engine context. + * \param impl PRF implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_prf10(br_ssl_engine_context *cc, br_tls_prf_impl impl) +{ + cc->prf10 = impl; +} + +/** + * \brief Set the PRF implementation with SHA-256 (for TLS 1.2). + * + * This function sets (or removes, if `impl` is `NULL`) the implementation + * for the SHA-256 variant of the PRF used in TLS 1.2. + * + * \param cc SSL engine context. + * \param impl PRF implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_prf_sha256(br_ssl_engine_context *cc, br_tls_prf_impl impl) +{ + cc->prf_sha256 = impl; +} + +/** + * \brief Set the PRF implementation with SHA-384 (for TLS 1.2). + * + * This function sets (or removes, if `impl` is `NULL`) the implementation + * for the SHA-384 variant of the PRF used in TLS 1.2. + * + * \param cc SSL engine context. + * \param impl PRF implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_prf_sha384(br_ssl_engine_context *cc, br_tls_prf_impl impl) +{ + cc->prf_sha384 = impl; +} + +/** + * \brief Set the AES/CBC implementations. + * + * \param cc SSL engine context. + * \param impl_enc AES/CBC encryption implementation (or `NULL`). + * \param impl_dec AES/CBC decryption implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_aes_cbc(br_ssl_engine_context *cc, + const br_block_cbcenc_class *impl_enc, + const br_block_cbcdec_class *impl_dec) +{ + cc->iaes_cbcenc = impl_enc; + cc->iaes_cbcdec = impl_dec; +} + +/** + * \brief Set the "default" AES/CBC implementations. + * + * This function configures in the engine the AES implementations that + * should provide best runtime performance on the local system, while + * still being safe (in particular, constant-time). It also sets the + * handlers for CBC records. + * + * \param cc SSL engine context. + */ +void br_ssl_engine_set_default_aes_cbc(br_ssl_engine_context *cc); + +/** + * \brief Set the AES/CTR implementation. + * + * \param cc SSL engine context. + * \param impl AES/CTR encryption/decryption implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_aes_ctr(br_ssl_engine_context *cc, + const br_block_ctr_class *impl) +{ + cc->iaes_ctr = impl; +} + +/** + * \brief Set the "default" implementations for AES/GCM (AES/CTR + GHASH). + * + * This function configures in the engine the AES/CTR and GHASH + * implementation that should provide best runtime performance on the local + * system, while still being safe (in particular, constant-time). It also + * sets the handlers for GCM records. + * + * \param cc SSL engine context. + */ +void br_ssl_engine_set_default_aes_gcm(br_ssl_engine_context *cc); + +/** + * \brief Set the DES/CBC implementations. + * + * \param cc SSL engine context. + * \param impl_enc DES/CBC encryption implementation (or `NULL`). + * \param impl_dec DES/CBC decryption implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_des_cbc(br_ssl_engine_context *cc, + const br_block_cbcenc_class *impl_enc, + const br_block_cbcdec_class *impl_dec) +{ + cc->ides_cbcenc = impl_enc; + cc->ides_cbcdec = impl_dec; +} + +/** + * \brief Set the "default" DES/CBC implementations. + * + * This function configures in the engine the DES implementations that + * should provide best runtime performance on the local system, while + * still being safe (in particular, constant-time). It also sets the + * handlers for CBC records. + * + * \param cc SSL engine context. + */ +void br_ssl_engine_set_default_des_cbc(br_ssl_engine_context *cc); + +/** + * \brief Set the GHASH implementation (used in GCM mode). + * + * \param cc SSL engine context. + * \param impl GHASH implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_ghash(br_ssl_engine_context *cc, br_ghash impl) +{ + cc->ighash = impl; +} + +/** + * \brief Set the ChaCha20 implementation. + * + * \param cc SSL engine context. + * \param ichacha ChaCha20 implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_chacha20(br_ssl_engine_context *cc, + br_chacha20_run ichacha) +{ + cc->ichacha = ichacha; +} + +/** + * \brief Set the Poly1305 implementation. + * + * \param cc SSL engine context. + * \param ipoly Poly1305 implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_poly1305(br_ssl_engine_context *cc, + br_poly1305_run ipoly) +{ + cc->ipoly = ipoly; +} + +/** + * \brief Set the "default" ChaCha20 and Poly1305 implementations. + * + * This function configures in the engine the ChaCha20 and Poly1305 + * implementations that should provide best runtime performance on the + * local system, while still being safe (in particular, constant-time). + * It also sets the handlers for ChaCha20+Poly1305 records. + * + * \param cc SSL engine context. + */ +void br_ssl_engine_set_default_chapol(br_ssl_engine_context *cc); + +/** + * \brief Set the AES/CTR+CBC implementation. + * + * \param cc SSL engine context. + * \param impl AES/CTR+CBC encryption/decryption implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_aes_ctrcbc(br_ssl_engine_context *cc, + const br_block_ctrcbc_class *impl) +{ + cc->iaes_ctrcbc = impl; +} + +/** + * \brief Set the "default" implementations for AES/CCM. + * + * This function configures in the engine the AES/CTR+CBC + * implementation that should provide best runtime performance on the local + * system, while still being safe (in particular, constant-time). It also + * sets the handlers for CCM records. + * + * \param cc SSL engine context. + */ +void br_ssl_engine_set_default_aes_ccm(br_ssl_engine_context *cc); + +/** + * \brief Set the record encryption and decryption engines for CBC + HMAC. + * + * \param cc SSL engine context. + * \param impl_in record CBC decryption implementation (or `NULL`). + * \param impl_out record CBC encryption implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_cbc(br_ssl_engine_context *cc, + const br_sslrec_in_cbc_class *impl_in, + const br_sslrec_out_cbc_class *impl_out) +{ + cc->icbc_in = impl_in; + cc->icbc_out = impl_out; +} + +/** + * \brief Set the record encryption and decryption engines for GCM. + * + * \param cc SSL engine context. + * \param impl_in record GCM decryption implementation (or `NULL`). + * \param impl_out record GCM encryption implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_gcm(br_ssl_engine_context *cc, + const br_sslrec_in_gcm_class *impl_in, + const br_sslrec_out_gcm_class *impl_out) +{ + cc->igcm_in = impl_in; + cc->igcm_out = impl_out; +} + +/** + * \brief Set the record encryption and decryption engines for CCM. + * + * \param cc SSL engine context. + * \param impl_in record CCM decryption implementation (or `NULL`). + * \param impl_out record CCM encryption implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_ccm(br_ssl_engine_context *cc, + const br_sslrec_in_ccm_class *impl_in, + const br_sslrec_out_ccm_class *impl_out) +{ + cc->iccm_in = impl_in; + cc->iccm_out = impl_out; +} + +/** + * \brief Set the record encryption and decryption engines for + * ChaCha20+Poly1305. + * + * \param cc SSL engine context. + * \param impl_in record ChaCha20 decryption implementation (or `NULL`). + * \param impl_out record ChaCha20 encryption implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_chapol(br_ssl_engine_context *cc, + const br_sslrec_in_chapol_class *impl_in, + const br_sslrec_out_chapol_class *impl_out) +{ + cc->ichapol_in = impl_in; + cc->ichapol_out = impl_out; +} + +/** + * \brief Set the EC implementation. + * + * The elliptic curve implementation will be used for ECDH and ECDHE + * cipher suites, and for ECDSA support. + * + * \param cc SSL engine context. + * \param iec EC implementation (or `NULL`). + */ +static inline void +br_ssl_engine_set_ec(br_ssl_engine_context *cc, const br_ec_impl *iec) +{ + cc->iec = iec; +} + +/** + * \brief Set the "default" EC implementation. + * + * This function sets the elliptic curve implementation for ECDH and + * ECDHE cipher suites, and for ECDSA support. It selects the fastest + * implementation on the current system. + * + * \param cc SSL engine context. + */ +void br_ssl_engine_set_default_ec(br_ssl_engine_context *cc); + +/** + * \brief Get the EC implementation configured in the provided engine. + * + * \param cc SSL engine context. + * \return the EC implementation. + */ +static inline const br_ec_impl * +br_ssl_engine_get_ec(br_ssl_engine_context *cc) +{ + return cc->iec; +} + +/** + * \brief Set the RSA signature verification implementation. + * + * On the client, this is used to verify the server's signature on its + * ServerKeyExchange message (for ECDHE_RSA cipher suites). On the server, + * this is used to verify the client's CertificateVerify message (if a + * client certificate is requested, and that certificate contains a RSA key). + * + * \param cc SSL engine context. + * \param irsavrfy RSA signature verification implementation. + */ +static inline void +br_ssl_engine_set_rsavrfy(br_ssl_engine_context *cc, br_rsa_pkcs1_vrfy irsavrfy) +{ + cc->irsavrfy = irsavrfy; +} + +/** + * \brief Set the "default" RSA implementation (signature verification). + * + * This function sets the RSA implementation (signature verification) + * to the fastest implementation available on the current platform. + * + * \param cc SSL engine context. + */ +void br_ssl_engine_set_default_rsavrfy(br_ssl_engine_context *cc); + +/** + * \brief Get the RSA implementation (signature verification) configured + * in the provided engine. + * + * \param cc SSL engine context. + * \return the RSA signature verification implementation. + */ +static inline br_rsa_pkcs1_vrfy +br_ssl_engine_get_rsavrfy(br_ssl_engine_context *cc) +{ + return cc->irsavrfy; +} + +/* + * \brief Set the ECDSA implementation (signature verification). + * + * On the client, this is used to verify the server's signature on its + * ServerKeyExchange message (for ECDHE_ECDSA cipher suites). On the server, + * this is used to verify the client's CertificateVerify message (if a + * client certificate is requested, that certificate contains an EC key, + * and full-static ECDH is not used). + * + * The ECDSA implementation will use the EC core implementation configured + * in the engine context. + * + * \param cc client context. + * \param iecdsa ECDSA verification implementation. + */ +static inline void +br_ssl_engine_set_ecdsa(br_ssl_engine_context *cc, br_ecdsa_vrfy iecdsa) +{ + cc->iecdsa = iecdsa; +} + +/** + * \brief Set the "default" ECDSA implementation (signature verification). + * + * This function sets the ECDSA implementation (signature verification) + * to the fastest implementation available on the current platform. This + * call also sets the elliptic curve implementation itself, there again + * to the fastest EC implementation available. + * + * \param cc SSL engine context. + */ +void br_ssl_engine_set_default_ecdsa(br_ssl_engine_context *cc); + +/** + * \brief Get the ECDSA implementation (signature verification) configured + * in the provided engine. + * + * \param cc SSL engine context. + * \return the ECDSA signature verification implementation. + */ +static inline br_ecdsa_vrfy +br_ssl_engine_get_ecdsa(br_ssl_engine_context *cc) +{ + return cc->iecdsa; +} + +/** + * \brief Set the I/O buffer for the SSL engine. + * + * Once this call has been made, `br_ssl_client_reset()` or + * `br_ssl_server_reset()` MUST be called before using the context. + * + * The provided buffer will be used as long as the engine context is + * used. The caller is responsible for keeping it available. + * + * If `bidi` is 0, then the engine will operate in half-duplex mode + * (it won't be able to send data while there is unprocessed incoming + * data in the buffer, and it won't be able to receive data while there + * is unsent data in the buffer). The optimal buffer size in half-duplex + * mode is `BR_SSL_BUFSIZE_MONO`; if the buffer is larger, then extra + * bytes are ignored. If the buffer is smaller, then this limits the + * capacity of the engine to support all allowed record sizes. + * + * If `bidi` is 1, then the engine will split the buffer into two + * parts, for separate handling of outgoing and incoming data. This + * enables full-duplex processing, but requires more RAM. The optimal + * buffer size in full-duplex mode is `BR_SSL_BUFSIZE_BIDI`; if the + * buffer is larger, then extra bytes are ignored. If the buffer is + * smaller, then the split will favour the incoming part, so that + * interoperability is maximised. + * + * \param cc SSL engine context + * \param iobuf I/O buffer. + * \param iobuf_len I/O buffer length (in bytes). + * \param bidi non-zero for full-duplex mode. + */ +void br_ssl_engine_set_buffer(br_ssl_engine_context *cc, + void *iobuf, size_t iobuf_len, int bidi); + +/** + * \brief Set the I/O buffers for the SSL engine. + * + * Once this call has been made, `br_ssl_client_reset()` or + * `br_ssl_server_reset()` MUST be called before using the context. + * + * This function is similar to `br_ssl_engine_set_buffer()`, except + * that it enforces full-duplex mode, and the two I/O buffers are + * provided as separate chunks. + * + * The macros `BR_SSL_BUFSIZE_INPUT` and `BR_SSL_BUFSIZE_OUTPUT` + * evaluate to the optimal (maximum) sizes for the input and output + * buffer, respectively. + * + * \param cc SSL engine context + * \param ibuf input buffer. + * \param ibuf_len input buffer length (in bytes). + * \param obuf output buffer. + * \param obuf_len output buffer length (in bytes). + */ +void br_ssl_engine_set_buffers_bidi(br_ssl_engine_context *cc, + void *ibuf, size_t ibuf_len, void *obuf, size_t obuf_len); + +/** + * \brief Inject some "initial entropy" in the context. + * + * This entropy will be added to what can be obtained from the + * underlying operating system, if that OS is supported. + * + * This function may be called several times; all injected entropy chunks + * are cumulatively mixed. + * + * If entropy gathering from the OS is supported and compiled in, then this + * step is optional. Otherwise, it is mandatory to inject randomness, and + * the caller MUST take care to push (as one or several successive calls) + * enough entropy to achieve cryptographic resistance (at least 80 bits, + * preferably 128 or more). The engine will report an error if no entropy + * was provided and none can be obtained from the OS. + * + * Take care that this function cannot assess the cryptographic quality of + * the provided bytes. + * + * In all generality, "entropy" must here be considered to mean "that + * which the attacker cannot predict". If your OS/architecture does not + * have a suitable source of randomness, then you can make do with the + * combination of a large enough secret value (possibly a copy of an + * asymmetric private key that you also store on the system) AND a + * non-repeating value (e.g. current time, provided that the local clock + * cannot be reset or altered by the attacker). + * + * \param cc SSL engine context. + * \param data extra entropy to inject. + * \param len length of the extra data (in bytes). + */ +void br_ssl_engine_inject_entropy(br_ssl_engine_context *cc, + const void *data, size_t len); + +/** + * \brief Get the "server name" in this engine. + * + * For clients, this is the name provided with `br_ssl_client_reset()`; + * for servers, this is the name received from the client as part of the + * ClientHello message. If there is no such name (e.g. the client did + * not send an SNI extension) then the returned string is empty + * (returned pointer points to a byte of value 0). + * + * The returned pointer refers to a buffer inside the context, which may + * be overwritten as part of normal SSL activity (even within the same + * connection, if a renegotiation occurs). + * + * \param cc SSL engine context. + * \return the server name (possibly empty). + */ +static inline const char * +br_ssl_engine_get_server_name(const br_ssl_engine_context *cc) +{ + return cc->server_name; +} + +/** + * \brief Get the protocol version. + * + * This function returns the protocol version that is used by the + * engine. That value is set after sending (for a server) or receiving + * (for a client) the ServerHello message. + * + * \param cc SSL engine context. + * \return the protocol version. + */ +static inline unsigned +br_ssl_engine_get_version(const br_ssl_engine_context *cc) +{ + return cc->session.version; +} + +/** + * \brief Get a copy of the session parameters. + * + * The session parameters are filled during the handshake, so this + * function shall not be called before completion of the handshake. + * The initial handshake is completed when the context first allows + * application data to be injected. + * + * This function copies the current session parameters into the provided + * structure. Beware that the session parameters include the master + * secret, which is sensitive data, to handle with great care. + * + * \param cc SSL engine context. + * \param pp destination structure for the session parameters. + */ +static inline void +br_ssl_engine_get_session_parameters(const br_ssl_engine_context *cc, + br_ssl_session_parameters *pp) +{ + memcpy(pp, &cc->session, sizeof *pp); +} + +/** + * \brief Set the session parameters to the provided values. + * + * This function is meant to be used in the client, before doing a new + * handshake; a session resumption will be attempted with these + * parameters. In the server, this function has no effect. + * + * \param cc SSL engine context. + * \param pp source structure for the session parameters. + */ +static inline void +br_ssl_engine_set_session_parameters(br_ssl_engine_context *cc, + const br_ssl_session_parameters *pp) +{ + memcpy(&cc->session, pp, sizeof *pp); +} + +/** + * \brief Get identifier for the curve used for key exchange. + * + * If the cipher suite uses ECDHE, then this function returns the + * identifier for the curve used for transient parameters. This is + * defined during the course of the handshake, when the ServerKeyExchange + * is sent (on the server) or received (on the client). If the + * cipher suite does not use ECDHE (e.g. static ECDH, or RSA key + * exchange), then this value is indeterminate. + * + * @param cc SSL engine context. + * @return the ECDHE curve identifier. + */ +static inline int +br_ssl_engine_get_ecdhe_curve(br_ssl_engine_context *cc) +{ + return cc->ecdhe_curve; +} + +/** + * \brief Get the current engine state. + * + * An SSL engine (client or server) has, at any time, a state which is + * the combination of zero, one or more of these flags: + * + * - `BR_SSL_CLOSED` + * + * Engine is finished, no more I/O (until next reset). + * + * - `BR_SSL_SENDREC` + * + * Engine has some bytes to send to the peer. + * + * - `BR_SSL_RECVREC` + * + * Engine expects some bytes from the peer. + * + * - `BR_SSL_SENDAPP` + * + * Engine may receive application data to send (or flush). + * + * - `BR_SSL_RECVAPP` + * + * Engine has obtained some application data from the peer, + * that should be read by the caller. + * + * If no flag at all is set (state value is 0), then the engine is not + * fully initialised yet. + * + * The `BR_SSL_CLOSED` flag is exclusive; when it is set, no other flag + * is set. To distinguish between a normal closure and an error, use + * `br_ssl_engine_last_error()`. + * + * Generally speaking, `BR_SSL_SENDREC` and `BR_SSL_SENDAPP` are mutually + * exclusive: the input buffer, at any point, either accumulates + * plaintext data, or contains an assembled record that is being sent. + * Similarly, `BR_SSL_RECVREC` and `BR_SSL_RECVAPP` are mutually exclusive. + * This may change in a future library version. + * + * \param cc SSL engine context. + * \return the current engine state. + */ +unsigned br_ssl_engine_current_state(const br_ssl_engine_context *cc); + +/** \brief SSL engine state: closed or failed. */ +#define BR_SSL_CLOSED 0x0001 +/** \brief SSL engine state: record data is ready to be sent to the peer. */ +#define BR_SSL_SENDREC 0x0002 +/** \brief SSL engine state: engine may receive records from the peer. */ +#define BR_SSL_RECVREC 0x0004 +/** \brief SSL engine state: engine may accept application data to send. */ +#define BR_SSL_SENDAPP 0x0008 +/** \brief SSL engine state: engine has received application data. */ +#define BR_SSL_RECVAPP 0x0010 + +/** + * \brief Get the engine error indicator. + * + * The error indicator is `BR_ERR_OK` (0) if no error was encountered + * since the last call to `br_ssl_client_reset()` or + * `br_ssl_server_reset()`. Other status values are "sticky": they + * remain set, and prevent all I/O activity, until cleared. Only the + * reset calls clear the error indicator. + * + * \param cc SSL engine context. + * \return 0, or a non-zero error code. + */ +static inline int +br_ssl_engine_last_error(const br_ssl_engine_context *cc) +{ + return cc->err; +} + +/* + * There are four I/O operations, each identified by a symbolic name: + * + * sendapp inject application data in the engine + * recvapp retrieving application data from the engine + * sendrec sending records on the transport medium + * recvrec receiving records from the transport medium + * + * Terminology works thus: in a layered model where the SSL engine sits + * between the application and the network, "send" designates operations + * where bytes flow from application to network, and "recv" for the + * reverse operation. Application data (the plaintext that is to be + * conveyed through SSL) is "app", while encrypted records are "rec". + * Note that from the SSL engine point of view, "sendapp" and "recvrec" + * designate bytes that enter the engine ("inject" operation), while + * "recvapp" and "sendrec" designate bytes that exit the engine + * ("extract" operation). + * + * For the operation 'xxx', two functions are defined: + * + * br_ssl_engine_xxx_buf + * Returns a pointer and length to the buffer to use for that + * operation. '*len' is set to the number of bytes that may be read + * from the buffer (extract operation) or written to the buffer + * (inject operation). If no byte may be exchanged for that operation + * at that point, then '*len' is set to zero, and NULL is returned. + * The engine state is unmodified by this call. + * + * br_ssl_engine_xxx_ack + * Informs the engine that 'len' bytes have been read from the buffer + * (extract operation) or written to the buffer (inject operation). + * The 'len' value MUST NOT be zero. The 'len' value MUST NOT exceed + * that which was obtained from a preceding br_ssl_engine_xxx_buf() + * call. + */ + +/** + * \brief Get buffer for application data to send. + * + * If the engine is ready to accept application data to send to the + * peer, then this call returns a pointer to the buffer where such + * data shall be written, and its length is written in `*len`. + * Otherwise, `*len` is set to 0 and `NULL` is returned. + * + * \param cc SSL engine context. + * \param len receives the application data output buffer length, or 0. + * \return the application data output buffer, or `NULL`. + */ +unsigned char *br_ssl_engine_sendapp_buf( + const br_ssl_engine_context *cc, size_t *len); + +/** + * \brief Inform the engine of some new application data. + * + * After writing `len` bytes in the buffer returned by + * `br_ssl_engine_sendapp_buf()`, the application shall call this + * function to trigger any relevant processing. The `len` parameter + * MUST NOT be 0, and MUST NOT exceed the value obtained in the + * `br_ssl_engine_sendapp_buf()` call. + * + * \param cc SSL engine context. + * \param len number of bytes pushed (not zero). + */ +void br_ssl_engine_sendapp_ack(br_ssl_engine_context *cc, size_t len); + +/** + * \brief Get buffer for received application data. + * + * If the engine has received application data from the peer, hen this + * call returns a pointer to the buffer from where such data shall be + * read, and its length is written in `*len`. Otherwise, `*len` is set + * to 0 and `NULL` is returned. + * + * \param cc SSL engine context. + * \param len receives the application data input buffer length, or 0. + * \return the application data input buffer, or `NULL`. + */ +unsigned char *br_ssl_engine_recvapp_buf( + const br_ssl_engine_context *cc, size_t *len); + +/** + * \brief Acknowledge some received application data. + * + * After reading `len` bytes from the buffer returned by + * `br_ssl_engine_recvapp_buf()`, the application shall call this + * function to trigger any relevant processing. The `len` parameter + * MUST NOT be 0, and MUST NOT exceed the value obtained in the + * `br_ssl_engine_recvapp_buf()` call. + * + * \param cc SSL engine context. + * \param len number of bytes read (not zero). + */ +void br_ssl_engine_recvapp_ack(br_ssl_engine_context *cc, size_t len); + +/** + * \brief Get buffer for record data to send. + * + * If the engine has prepared some records to send to the peer, then this + * call returns a pointer to the buffer from where such data shall be + * read, and its length is written in `*len`. Otherwise, `*len` is set + * to 0 and `NULL` is returned. + * + * \param cc SSL engine context. + * \param len receives the record data output buffer length, or 0. + * \return the record data output buffer, or `NULL`. + */ +unsigned char *br_ssl_engine_sendrec_buf( + const br_ssl_engine_context *cc, size_t *len); + +/** + * \brief Acknowledge some sent record data. + * + * After reading `len` bytes from the buffer returned by + * `br_ssl_engine_sendrec_buf()`, the application shall call this + * function to trigger any relevant processing. The `len` parameter + * MUST NOT be 0, and MUST NOT exceed the value obtained in the + * `br_ssl_engine_sendrec_buf()` call. + * + * \param cc SSL engine context. + * \param len number of bytes read (not zero). + */ +void br_ssl_engine_sendrec_ack(br_ssl_engine_context *cc, size_t len); + +/** + * \brief Get buffer for incoming records. + * + * If the engine is ready to accept records from the peer, then this + * call returns a pointer to the buffer where such data shall be + * written, and its length is written in `*len`. Otherwise, `*len` is + * set to 0 and `NULL` is returned. + * + * \param cc SSL engine context. + * \param len receives the record data input buffer length, or 0. + * \return the record data input buffer, or `NULL`. + */ +unsigned char *br_ssl_engine_recvrec_buf( + const br_ssl_engine_context *cc, size_t *len); + +/** + * \brief Inform the engine of some new record data. + * + * After writing `len` bytes in the buffer returned by + * `br_ssl_engine_recvrec_buf()`, the application shall call this + * function to trigger any relevant processing. The `len` parameter + * MUST NOT be 0, and MUST NOT exceed the value obtained in the + * `br_ssl_engine_recvrec_buf()` call. + * + * \param cc SSL engine context. + * \param len number of bytes pushed (not zero). + */ +void br_ssl_engine_recvrec_ack(br_ssl_engine_context *cc, size_t len); + +/** + * \brief Flush buffered application data. + * + * If some application data has been buffered in the engine, then wrap + * it into a record and mark it for sending. If no application data has + * been buffered but the engine would be ready to accept some, AND the + * `force` parameter is non-zero, then an empty record is assembled and + * marked for sending. In all other cases, this function does nothing. + * + * Empty records are technically legal, but not all existing SSL/TLS + * implementations support them. Empty records can be useful as a + * transparent "keep-alive" mechanism to maintain some low-level + * network activity. + * + * \param cc SSL engine context. + * \param force non-zero to force sending an empty record. + */ +void br_ssl_engine_flush(br_ssl_engine_context *cc, int force); + +/** + * \brief Initiate a closure. + * + * If, at that point, the context is open and in ready state, then a + * `close_notify` alert is assembled and marked for sending; this + * triggers the closure protocol. Otherwise, no such alert is assembled. + * + * \param cc SSL engine context. + */ +void br_ssl_engine_close(br_ssl_engine_context *cc); + +/** + * \brief Initiate a renegotiation. + * + * If the engine is failed or closed, or if the peer is known not to + * support secure renegotiation (RFC 5746), or if renegotiations have + * been disabled with the `BR_OPT_NO_RENEGOTIATION` flag, or if there + * is buffered incoming application data, then this function returns 0 + * and nothing else happens. + * + * Otherwise, this function returns 1, and a renegotiation attempt is + * triggered (if a handshake is already ongoing at that point, then + * no new handshake is triggered). + * + * \param cc SSL engine context. + * \return 1 on success, 0 on error. + */ +int br_ssl_engine_renegotiate(br_ssl_engine_context *cc); + +/** + * \brief Export key material from a connected SSL engine (RFC 5705). + * + * This calls compute a secret key of arbitrary length from the master + * secret of a connected SSL engine. If the provided context is not + * currently in "application data" state (initial handshake is not + * finished, another handshake is ongoing, or the connection failed or + * was closed), then this function returns 0. Otherwise, a secret key of + * length `len` bytes is computed and written in the buffer pointed to + * by `dst`, and 1 is returned. + * + * The computed key follows the specification described in RFC 5705. + * That RFC includes two key computations, with and without a "context + * value". If `context` is `NULL`, then the variant without context is + * used; otherwise, the `context_len` bytes located at the address + * pointed to by `context` are used in the computation. Note that it + * is possible to have a "with context" key with a context length of + * zero bytes, by setting `context` to a non-`NULL` value but + * `context_len` to 0. + * + * When context bytes are used, the context length MUST NOT exceed + * 65535 bytes. + * + * \param cc SSL engine context. + * \param dst destination buffer for exported key. + * \param len exported key length (in bytes). + * \param label disambiguation label. + * \param context context value (or `NULL`). + * \param context_len context length (in bytes). + * \return 1 on success, 0 on error. + */ +int br_ssl_key_export(br_ssl_engine_context *cc, + void *dst, size_t len, const char *label, + const void *context, size_t context_len); + +/* + * Pre-declaration for the SSL client context. + */ +typedef struct br_ssl_client_context_ br_ssl_client_context; + +/** + * \brief Type for the client certificate, if requested by the server. + */ +typedef struct { + /** + * \brief Authentication type. + * + * This is either `BR_AUTH_RSA` (RSA signature), `BR_AUTH_ECDSA` + * (ECDSA signature), or `BR_AUTH_ECDH` (static ECDH key exchange). + */ + int auth_type; + + /** + * \brief Hash function for computing the CertificateVerify. + * + * This is the symbolic identifier for the hash function that + * will be used to produce the hash of handshake messages, to + * be signed into the CertificateVerify. For full static ECDH + * (client and server certificates are both EC in the same + * curve, and static ECDH is used), this value is set to -1. + * + * Take care that with TLS 1.0 and 1.1, that value MUST match + * the protocol requirements: value must be 0 (MD5+SHA-1) for + * a RSA signature, or 2 (SHA-1) for an ECDSA signature. Only + * TLS 1.2 allows for other hash functions. + */ + int hash_id; + + /** + * \brief Certificate chain to send to the server. + * + * This is an array of `br_x509_certificate` objects, each + * normally containing a DER-encoded certificate. The client + * code does not try to decode these elements. If there is no + * chain to send to the server, then this pointer shall be + * set to `NULL`. + */ + const br_x509_certificate *chain; + + /** + * \brief Certificate chain length (number of certificates). + * + * If there is no chain to send to the server, then this value + * shall be set to 0. + */ + size_t chain_len; + +} br_ssl_client_certificate; + +/* + * Note: the constants below for signatures match the TLS constants. + */ + +/** \brief Client authentication type: static ECDH. */ +#define BR_AUTH_ECDH 0 +/** \brief Client authentication type: RSA signature. */ +#define BR_AUTH_RSA 1 +/** \brief Client authentication type: ECDSA signature. */ +#define BR_AUTH_ECDSA 3 + +/** + * \brief Class type for a certificate handler (client side). + * + * A certificate handler selects a client certificate chain to send to + * the server, upon explicit request from that server. It receives + * the list of trust anchor DN from the server, and supported types + * of certificates and signatures, and returns the chain to use. It + * is also invoked to perform the corresponding private key operation + * (a signature, or an ECDH computation). + * + * The SSL client engine will first push the trust anchor DN with + * `start_name_list()`, `start_name()`, `append_name()`, `end_name()` + * and `end_name_list()`. Then it will call `choose()`, to select the + * actual chain (and signature/hash algorithms). Finally, it will call + * either `do_sign()` or `do_keyx()`, depending on the algorithm choices. + */ +typedef struct br_ssl_client_certificate_class_ br_ssl_client_certificate_class; +struct br_ssl_client_certificate_class_ { + /** + * \brief Context size (in bytes). + */ + size_t context_size; + + /** + * \brief Begin reception of a list of trust anchor names. This + * is called while parsing the incoming CertificateRequest. + * + * \param pctx certificate handler context. + */ + void (*start_name_list)(const br_ssl_client_certificate_class **pctx); + + /** + * \brief Begin reception of a new trust anchor name. + * + * The total encoded name length is provided; it is less than + * 65535 bytes. + * + * \param pctx certificate handler context. + * \param len encoded name length (in bytes). + */ + void (*start_name)(const br_ssl_client_certificate_class **pctx, + size_t len); + + /** + * \brief Receive some more bytes for the current trust anchor name. + * + * The provided reference (`data`) points to a transient buffer + * they may be reused as soon as this function returns. The chunk + * length (`len`) is never zero. + * + * \param pctx certificate handler context. + * \param data anchor name chunk. + * \param len anchor name chunk length (in bytes). + */ + void (*append_name)(const br_ssl_client_certificate_class **pctx, + const unsigned char *data, size_t len); + + /** + * \brief End current trust anchor name. + * + * This function is called when all the encoded anchor name data + * has been provided. + * + * \param pctx certificate handler context. + */ + void (*end_name)(const br_ssl_client_certificate_class **pctx); + + /** + * \brief End list of trust anchor names. + * + * This function is called when all the anchor names in the + * CertificateRequest message have been obtained. + * + * \param pctx certificate handler context. + */ + void (*end_name_list)(const br_ssl_client_certificate_class **pctx); + + /** + * \brief Select client certificate and algorithms. + * + * This callback function shall fill the provided `choices` + * structure with the selected algorithms and certificate chain. + * The `hash_id`, `chain` and `chain_len` fields must be set. If + * the client cannot or does not wish to send a certificate, + * then it shall set `chain` to `NULL` and `chain_len` to 0. + * + * The `auth_types` parameter describes the authentication types, + * signature algorithms and hash functions that are supported by + * both the client context and the server, and compatible with + * the current protocol version. This is a bit field with the + * following contents: + * + * - If RSA signatures with hash function x are supported, then + * bit x is set. + * + * - If ECDSA signatures with hash function x are supported, + * then bit 8+x is set. + * + * - If static ECDH is supported, with a RSA-signed certificate, + * then bit 16 is set. + * + * - If static ECDH is supported, with an ECDSA-signed certificate, + * then bit 17 is set. + * + * Notes: + * + * - When using TLS 1.0 or 1.1, the hash function for RSA + * signatures is always the special MD5+SHA-1 (id 0), and the + * hash function for ECDSA signatures is always SHA-1 (id 2). + * + * - When using TLS 1.2, the list of hash functions is trimmed + * down to include only hash functions that the client context + * can support. The actual server list can be obtained with + * `br_ssl_client_get_server_hashes()`; that list may be used + * to select the certificate chain to send to the server. + * + * \param pctx certificate handler context. + * \param cc SSL client context. + * \param auth_types supported authentication types and algorithms. + * \param choices destination structure for the policy choices. + */ + void (*choose)(const br_ssl_client_certificate_class **pctx, + const br_ssl_client_context *cc, uint32_t auth_types, + br_ssl_client_certificate *choices); + + /** + * \brief Perform key exchange (client part). + * + * This callback is invoked in case of a full static ECDH key + * exchange: + * + * - the cipher suite uses `ECDH_RSA` or `ECDH_ECDSA`; + * + * - the server requests a client certificate; + * + * - the client has, and sends, a client certificate that + * uses an EC key in the same curve as the server's key, + * and chooses static ECDH (the `hash_id` field in the choice + * structure was set to -1). + * + * In that situation, this callback is invoked to compute the + * client-side ECDH: the provided `data` (of length `*len` bytes) + * is the server's public key point (as decoded from its + * certificate), and the client shall multiply that point with + * its own private key, and write back the X coordinate of the + * resulting point in the same buffer, starting at offset 0. + * The `*len` value shall be modified to designate the actual + * length of the X coordinate. + * + * The callback must uphold the following: + * + * - If the input array does not have the proper length for + * an encoded curve point, then an error (0) shall be reported. + * + * - If the input array has the proper length, then processing + * MUST be constant-time, even if the data is not a valid + * encoded point. + * + * - This callback MUST check that the input point is valid. + * + * Returned value is 1 on success, 0 on error. + * + * \param pctx certificate handler context. + * \param data server public key point. + * \param len public key point length / X coordinate length. + * \return 1 on success, 0 on error. + */ + uint32_t (*do_keyx)(const br_ssl_client_certificate_class **pctx, + unsigned char *data, size_t *len); + + /** + * \brief Perform a signature (client authentication). + * + * This callback is invoked when a client certificate was sent, + * and static ECDH is not used. It shall compute a signature, + * using the client's private key, over the provided hash value + * (which is the hash of all previous handshake messages). + * + * On input, the hash value to sign is in `data`, of size + * `hv_len`; the involved hash function is identified by + * `hash_id`. The signature shall be computed and written + * back into `data`; the total size of that buffer is `len` + * bytes. + * + * This callback shall verify that the signature length does not + * exceed `len` bytes, and abstain from writing the signature if + * it does not fit. + * + * For RSA signatures, the `hash_id` may be 0, in which case + * this is the special header-less signature specified in TLS 1.0 + * and 1.1, with a 36-byte hash value. Otherwise, normal PKCS#1 + * v1.5 signatures shall be computed. + * + * For ECDSA signatures, the signature value shall use the ASN.1 + * based encoding. + * + * Returned value is the signature length (in bytes), or 0 on error. + * + * \param pctx certificate handler context. + * \param hash_id hash function identifier. + * \param hv_len hash value length (in bytes). + * \param data input/output buffer (hash value, then signature). + * \param len total buffer length (in bytes). + * \return signature length (in bytes) on success, or 0 on error. + */ + size_t (*do_sign)(const br_ssl_client_certificate_class **pctx, + int hash_id, size_t hv_len, unsigned char *data, size_t len); +}; + +/** + * \brief A single-chain RSA client certificate handler. + * + * This handler uses a single certificate chain, with a RSA + * signature. The list of trust anchor DN is ignored. + * + * Apart from the first field (vtable pointer), its contents are + * opaque and shall not be accessed directly. + */ +typedef struct { + /** \brief Pointer to vtable. */ + const br_ssl_client_certificate_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + const br_x509_certificate *chain; + size_t chain_len; + const br_rsa_private_key *sk; + br_rsa_pkcs1_sign irsasign; +#endif +} br_ssl_client_certificate_rsa_context; + +/** + * \brief A single-chain EC client certificate handler. + * + * This handler uses a single certificate chain, with a RSA + * signature. The list of trust anchor DN is ignored. + * + * This handler may support both static ECDH, and ECDSA signatures + * (either usage may be selectively disabled). + * + * Apart from the first field (vtable pointer), its contents are + * opaque and shall not be accessed directly. + */ +typedef struct { + /** \brief Pointer to vtable. */ + const br_ssl_client_certificate_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + const br_x509_certificate *chain; + size_t chain_len; + const br_ec_private_key *sk; + unsigned allowed_usages; + unsigned issuer_key_type; + const br_multihash_context *mhash; + const br_ec_impl *iec; + br_ecdsa_sign iecdsa; +#endif +} br_ssl_client_certificate_ec_context; + +/** + * \brief Context structure for a SSL client. + * + * The first field (called `eng`) is the SSL engine; all functions that + * work on a `br_ssl_engine_context` structure shall take as parameter + * a pointer to that field. The other structure fields are opaque and + * must not be accessed directly. + */ +struct br_ssl_client_context_ { + /** + * \brief The encapsulated engine context. + */ + br_ssl_engine_context eng; + +#ifndef BR_DOXYGEN_IGNORE + /* + * Minimum ClientHello length; padding with an extension (RFC + * 7685) is added if necessary to match at least that length. + * Such padding is nominally unnecessary, but it has been used + * to work around some server implementation bugs. + */ + uint16_t min_clienthello_len; + + /* + * Bit field for algoithms (hash + signature) supported by the + * server when requesting a client certificate. + */ + uint32_t hashes; + + /* + * Server's public key curve. + */ + int server_curve; + + /* + * Context for certificate handler. + */ + const br_ssl_client_certificate_class **client_auth_vtable; + + /* + * Client authentication type. + */ + unsigned char auth_type; + + /* + * Hash function to use for the client signature. This is 0xFF + * if static ECDH is used. + */ + unsigned char hash_id; + + /* + * For the core certificate handlers, thus avoiding (in most + * cases) the need for an externally provided policy context. + */ + union { + const br_ssl_client_certificate_class *vtable; + br_ssl_client_certificate_rsa_context single_rsa; + br_ssl_client_certificate_ec_context single_ec; + } client_auth; + + /* + * Implementations. + */ + br_rsa_public irsapub; +#endif +}; + +/** + * \brief Get the hash functions and signature algorithms supported by + * the server. + * + * This value is a bit field: + * + * - If RSA (PKCS#1 v1.5) is supported with hash function of ID `x`, + * then bit `x` is set (hash function ID is 0 for the special MD5+SHA-1, + * or 2 to 6 for the SHA family). + * + * - If ECDSA is supported with hash function of ID `x`, then bit `8+x` + * is set. + * + * - Newer algorithms are symbolic 16-bit identifiers that do not + * represent signature algorithm and hash function separately. If + * the TLS-level identifier is `0x0800+x` for a `x` in the 0..15 + * range, then bit `16+x` is set. + * + * "New algorithms" are currently defined only in draft documents, so + * this support is subject to possible change. Right now (early 2017), + * this maps ed25519 (EdDSA on Curve25519) to bit 23, and ed448 (EdDSA + * on Curve448) to bit 24. If the identifiers on the wire change in + * future document, then the decoding mechanism in BearSSL will be + * amended to keep mapping ed25519 and ed448 on bits 23 and 24, + * respectively. Mapping of other new algorithms (e.g. RSA/PSS) is not + * guaranteed yet. + * + * \param cc client context. + * \return the server-supported hash functions and signature algorithms. + */ +static inline uint32_t +br_ssl_client_get_server_hashes(const br_ssl_client_context *cc) +{ + return cc->hashes; +} + +/** + * \brief Get the server key curve. + * + * This function returns the ID for the curve used by the server's public + * key. This is set when the server's certificate chain is processed; + * this value is 0 if the server's key is not an EC key. + * + * \return the server's public key curve ID, or 0. + */ +static inline int +br_ssl_client_get_server_curve(const br_ssl_client_context *cc) +{ + return cc->server_curve; +} + +/* + * Each br_ssl_client_init_xxx() function sets the list of supported + * cipher suites and used implementations, as specified by the profile + * name 'xxx'. Defined profile names are: + * + * full all supported versions and suites; constant-time implementations + * TODO: add other profiles + */ + +/** + * \brief SSL client profile: full. + * + * This function initialises the provided SSL client context with + * all supported algorithms and cipher suites. It also initialises + * a companion X.509 validation engine with all supported algorithms, + * and the provided trust anchors; the X.509 engine will be used by + * the client context to validate the server's certificate. + * + * \param cc client context to initialise. + * \param xc X.509 validation context to initialise. + * \param trust_anchors trust anchors to use. + * \param trust_anchors_num number of trust anchors. + */ +void br_ssl_client_init_full(br_ssl_client_context *cc, + br_x509_minimal_context *xc, + const br_x509_trust_anchor *trust_anchors, size_t trust_anchors_num); + +/** + * \brief Clear the complete contents of a SSL client context. + * + * Everything is cleared, including the reference to the configured buffer, + * implementations, cipher suites and state. This is a preparatory step + * to assembling a custom profile. + * + * \param cc client context to clear. + */ +void br_ssl_client_zero(br_ssl_client_context *cc); + +/** + * \brief Set an externally provided client certificate handler context. + * + * The handler's methods are invoked when the server requests a client + * certificate. + * + * \param cc client context. + * \param pctx certificate handler context (pointer to its vtable field). + */ +static inline void +br_ssl_client_set_client_certificate(br_ssl_client_context *cc, + const br_ssl_client_certificate_class **pctx) +{ + cc->client_auth_vtable = pctx; +} + +/** + * \brief Set the RSA public-key operations implementation. + * + * This will be used to encrypt the pre-master secret with the server's + * RSA public key (RSA-encryption cipher suites only). + * + * \param cc client context. + * \param irsapub RSA public-key encryption implementation. + */ +static inline void +br_ssl_client_set_rsapub(br_ssl_client_context *cc, br_rsa_public irsapub) +{ + cc->irsapub = irsapub; +} + +/** + * \brief Set the "default" RSA implementation for public-key operations. + * + * This sets the RSA implementation in the client context (for encrypting + * the pre-master secret, in `TLS_RSA_*` cipher suites) to the fastest + * available on the current platform. + * + * \param cc client context. + */ +void br_ssl_client_set_default_rsapub(br_ssl_client_context *cc); + +/** + * \brief Set the minimum ClientHello length (RFC 7685 padding). + * + * If this value is set and the ClientHello would be shorter, then + * the Pad ClientHello extension will be added with enough padding bytes + * to reach the target size. Because of the extension header, the resulting + * size will sometimes be slightly more than `len` bytes if the target + * size cannot be exactly met. + * + * The target length relates to the _contents_ of the ClientHello, not + * counting its 4-byte header. For instance, if `len` is set to 512, + * then the padding will bring the ClientHello size to 516 bytes with its + * header, and 521 bytes when counting the 5-byte record header. + * + * \param cc client context. + * \param len minimum ClientHello length (in bytes). + */ +static inline void +br_ssl_client_set_min_clienthello_len(br_ssl_client_context *cc, uint16_t len) +{ + cc->min_clienthello_len = len; +} + +/** + * \brief Prepare or reset a client context for a new connection. + * + * The `server_name` parameter is used to fill the SNI extension; the + * X.509 "minimal" engine will also match that name against the server + * names included in the server's certificate. If the parameter is + * `NULL` then no SNI extension will be sent, and the X.509 "minimal" + * engine (if used for server certificate validation) will not check + * presence of any specific name in the received certificate. + * + * Therefore, setting the `server_name` to `NULL` shall be reserved + * to cases where alternate or additional methods are used to ascertain + * that the right server public key is used (e.g. a "known key" model). + * + * If `resume_session` is non-zero and the context was previously used + * then the session parameters may be reused (depending on whether the + * server previously sent a non-empty session ID, and accepts the session + * resumption). The session parameters for session resumption can also + * be set explicitly with `br_ssl_engine_set_session_parameters()`. + * + * On failure, the context is marked as failed, and this function + * returns 0. A possible failure condition is when no initial entropy + * was injected, and none could be obtained from the OS (either OS + * randomness gathering is not supported, or it failed). + * + * \param cc client context. + * \param server_name target server name, or `NULL`. + * \param resume_session non-zero to try session resumption. + * \return 0 on failure, 1 on success. + */ +int br_ssl_client_reset(br_ssl_client_context *cc, + const char *server_name, int resume_session); + +/** + * \brief Forget any session in the context. + * + * This means that the next handshake that uses this context will + * necessarily be a full handshake (this applies both to new connections + * and to renegotiations). + * + * \param cc client context. + */ +static inline void +br_ssl_client_forget_session(br_ssl_client_context *cc) +{ + cc->eng.session.session_id_len = 0; +} + +/** + * \brief Set client certificate chain and key (single RSA case). + * + * This function sets a client certificate chain, that the client will + * send to the server whenever a client certificate is requested. This + * certificate uses an RSA public key; the corresponding private key is + * invoked for authentication. Trust anchor names sent by the server are + * ignored. + * + * The provided chain and private key are linked in the client context; + * they must remain valid as long as they may be used, i.e. normally + * for the duration of the connection, since they might be invoked + * again upon renegotiations. + * + * \param cc SSL client context. + * \param chain client certificate chain (SSL order: EE comes first). + * \param chain_len client chain length (number of certificates). + * \param sk client private key. + * \param irsasign RSA signature implementation (PKCS#1 v1.5). + */ +void br_ssl_client_set_single_rsa(br_ssl_client_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_rsa_private_key *sk, br_rsa_pkcs1_sign irsasign); + +/* + * \brief Set the client certificate chain and key (single EC case). + * + * This function sets a client certificate chain, that the client will + * send to the server whenever a client certificate is requested. This + * certificate uses an EC public key; the corresponding private key is + * invoked for authentication. Trust anchor names sent by the server are + * ignored. + * + * The provided chain and private key are linked in the client context; + * they must remain valid as long as they may be used, i.e. normally + * for the duration of the connection, since they might be invoked + * again upon renegotiations. + * + * The `allowed_usages` is a combination of usages, namely + * `BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`. The `BR_KEYTYPE_KEYX` + * value allows full static ECDH, while the `BR_KEYTYPE_SIGN` value + * allows ECDSA signatures. If ECDSA signatures are used, then an ECDSA + * signature implementation must be provided; otherwise, the `iecdsa` + * parameter may be 0. + * + * The `cert_issuer_key_type` value is either `BR_KEYTYPE_RSA` or + * `BR_KEYTYPE_EC`; it is the type of the public key used the the CA + * that issued (signed) the client certificate. That value is used with + * full static ECDH: support of the certificate by the server depends + * on how the certificate was signed. (Note: when using TLS 1.2, this + * parameter is ignored; but its value matters for TLS 1.0 and 1.1.) + * + * \param cc server context. + * \param chain server certificate chain to send. + * \param chain_len chain length (number of certificates). + * \param sk server private key (EC). + * \param allowed_usages allowed private key usages. + * \param cert_issuer_key_type issuing CA's key type. + * \param iec EC core implementation. + * \param iecdsa ECDSA signature implementation ("asn1" format). + */ +void br_ssl_client_set_single_ec(br_ssl_client_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_ec_private_key *sk, unsigned allowed_usages, + unsigned cert_issuer_key_type, + const br_ec_impl *iec, br_ecdsa_sign iecdsa); + +/** + * \brief Type for a "translated cipher suite", as an array of two + * 16-bit integers. + * + * The first element is the cipher suite identifier (as used on the wire). + * The second element is the concatenation of four 4-bit elements which + * characterise the cipher suite contents. In most to least significant + * order, these 4-bit elements are: + * + * - Bits 12 to 15: key exchange + server key type + * + * | val | symbolic constant | suite type | details | + * | :-- | :----------------------- | :---------- | :----------------------------------------------- | + * | 0 | `BR_SSLKEYX_RSA` | RSA | RSA key exchange, key is RSA (encryption) | + * | 1 | `BR_SSLKEYX_ECDHE_RSA` | ECDHE_RSA | ECDHE key exchange, key is RSA (signature) | + * | 2 | `BR_SSLKEYX_ECDHE_ECDSA` | ECDHE_ECDSA | ECDHE key exchange, key is EC (signature) | + * | 3 | `BR_SSLKEYX_ECDH_RSA` | ECDH_RSA | Key is EC (key exchange), cert signed with RSA | + * | 4 | `BR_SSLKEYX_ECDH_ECDSA` | ECDH_ECDSA | Key is EC (key exchange), cert signed with ECDSA | + * + * - Bits 8 to 11: symmetric encryption algorithm + * + * | val | symbolic constant | symmetric encryption | key strength (bits) | + * | :-- | :--------------------- | :------------------- | :------------------ | + * | 0 | `BR_SSLENC_3DES_CBC` | 3DES/CBC | 168 | + * | 1 | `BR_SSLENC_AES128_CBC` | AES-128/CBC | 128 | + * | 2 | `BR_SSLENC_AES256_CBC` | AES-256/CBC | 256 | + * | 3 | `BR_SSLENC_AES128_GCM` | AES-128/GCM | 128 | + * | 4 | `BR_SSLENC_AES256_GCM` | AES-256/GCM | 256 | + * | 5 | `BR_SSLENC_CHACHA20` | ChaCha20/Poly1305 | 256 | + * + * - Bits 4 to 7: MAC algorithm + * + * | val | symbolic constant | MAC type | details | + * | :-- | :----------------- | :----------- | :------------------------------------ | + * | 0 | `BR_SSLMAC_AEAD` | AEAD | No dedicated MAC (encryption is AEAD) | + * | 2 | `BR_SSLMAC_SHA1` | HMAC/SHA-1 | Value matches `br_sha1_ID` | + * | 4 | `BR_SSLMAC_SHA256` | HMAC/SHA-256 | Value matches `br_sha256_ID` | + * | 5 | `BR_SSLMAC_SHA384` | HMAC/SHA-384 | Value matches `br_sha384_ID` | + * + * - Bits 0 to 3: hash function for PRF when used with TLS-1.2 + * + * | val | symbolic constant | hash function | details | + * | :-- | :----------------- | :------------ | :----------------------------------- | + * | 4 | `BR_SSLPRF_SHA256` | SHA-256 | Value matches `br_sha256_ID` | + * | 5 | `BR_SSLPRF_SHA384` | SHA-384 | Value matches `br_sha384_ID` | + * + * For instance, cipher suite `TLS_RSA_WITH_AES_128_GCM_SHA256` has + * standard identifier 0x009C, and is translated to 0x0304, for, in + * that order: RSA key exchange (0), AES-128/GCM (3), AEAD integrity (0), + * SHA-256 in the TLS PRF (4). + */ +typedef uint16_t br_suite_translated[2]; + +#ifndef BR_DOXYGEN_IGNORE +/* + * Constants are already documented in the br_suite_translated type. + */ + +#define BR_SSLKEYX_RSA 0 +#define BR_SSLKEYX_ECDHE_RSA 1 +#define BR_SSLKEYX_ECDHE_ECDSA 2 +#define BR_SSLKEYX_ECDH_RSA 3 +#define BR_SSLKEYX_ECDH_ECDSA 4 + +#define BR_SSLENC_3DES_CBC 0 +#define BR_SSLENC_AES128_CBC 1 +#define BR_SSLENC_AES256_CBC 2 +#define BR_SSLENC_AES128_GCM 3 +#define BR_SSLENC_AES256_GCM 4 +#define BR_SSLENC_CHACHA20 5 + +#define BR_SSLMAC_AEAD 0 +#define BR_SSLMAC_SHA1 br_sha1_ID +#define BR_SSLMAC_SHA256 br_sha256_ID +#define BR_SSLMAC_SHA384 br_sha384_ID + +#define BR_SSLPRF_SHA256 br_sha256_ID +#define BR_SSLPRF_SHA384 br_sha384_ID + +#endif + +/* + * Pre-declaration for the SSL server context. + */ +typedef struct br_ssl_server_context_ br_ssl_server_context; + +/** + * \brief Type for the server policy choices, taken after analysis of + * the client message (ClientHello). + */ +typedef struct { + /** + * \brief Cipher suite to use with that client. + */ + uint16_t cipher_suite; + + /** + * \brief Hash function or algorithm for signing the ServerKeyExchange. + * + * This parameter is ignored for `TLS_RSA_*` and `TLS_ECDH_*` + * cipher suites; it is used only for `TLS_ECDHE_*` suites, in + * which the server _signs_ the ephemeral EC Diffie-Hellman + * parameters sent to the client. + * + * This identifier must be one of the following values: + * + * - `0xFF00 + id`, where `id` is a hash function identifier + * (0 for MD5+SHA-1, or 2 to 6 for one of the SHA functions); + * + * - a full 16-bit identifier, lower than `0xFF00`. + * + * If the first option is used, then the SSL engine will + * compute the hash of the data that is to be signed, with the + * designated hash function. The `do_sign()` method will be + * invoked with that hash value provided in the the `data` + * buffer. + * + * If the second option is used, then the SSL engine will NOT + * compute a hash on the data; instead, it will provide the + * to-be-signed data itself in `data`, i.e. the concatenation of + * the client random, server random, and encoded ECDH + * parameters. Furthermore, with TLS-1.2 and later, the 16-bit + * identifier will be used "as is" in the protocol, in the + * SignatureAndHashAlgorithm; for instance, `0x0401` stands for + * RSA PKCS#1 v1.5 signature (the `01`) with SHA-256 as hash + * function (the `04`). + * + * Take care that with TLS 1.0 and 1.1, the hash function is + * constrainted by the protocol: RSA signature must use + * MD5+SHA-1 (so use `0xFF00`), while ECDSA must use SHA-1 + * (`0xFF02`). Since TLS 1.0 and 1.1 don't include a + * SignatureAndHashAlgorithm field in their ServerKeyExchange + * messages, any value below `0xFF00` will be usable to send the + * raw ServerKeyExchange data to the `do_sign()` callback, but + * that callback must still follow the protocol requirements + * when generating the signature. + */ + unsigned algo_id; + + /** + * \brief Certificate chain to send to the client. + * + * This is an array of `br_x509_certificate` objects, each + * normally containing a DER-encoded certificate. The server + * code does not try to decode these elements. + */ + const br_x509_certificate *chain; + + /** + * \brief Certificate chain length (number of certificates). + */ + size_t chain_len; + +} br_ssl_server_choices; + +/** + * \brief Class type for a policy handler (server side). + * + * A policy handler selects the policy parameters for a connection + * (cipher suite and other algorithms, and certificate chain to send to + * the client); it also performs the server-side computations involving + * its permanent private key. + * + * The SSL server engine will invoke first `choose()`, once the + * ClientHello message has been received, then either `do_keyx()` + * `do_sign()`, depending on the cipher suite. + */ +typedef struct br_ssl_server_policy_class_ br_ssl_server_policy_class; +struct br_ssl_server_policy_class_ { + /** + * \brief Context size (in bytes). + */ + size_t context_size; + + /** + * \brief Select algorithms and certificates for this connection. + * + * This callback function shall fill the provided `choices` + * structure with the policy choices for this connection. This + * entails selecting the cipher suite, hash function for signing + * the ServerKeyExchange (applicable only to ECDHE cipher suites), + * and certificate chain to send. + * + * The callback receives a pointer to the server context that + * contains the relevant data. In particular, the functions + * `br_ssl_server_get_client_suites()`, + * `br_ssl_server_get_client_hashes()` and + * `br_ssl_server_get_client_curves()` can be used to obtain + * the cipher suites, hash functions and elliptic curves + * supported by both the client and server, respectively. The + * `br_ssl_engine_get_version()` and `br_ssl_engine_get_server_name()` + * functions yield the protocol version and requested server name + * (SNI), respectively. + * + * This function may modify its context structure (`pctx`) in + * arbitrary ways to keep track of its own choices. + * + * This function shall return 1 if appropriate policy choices + * could be made, or 0 if this connection cannot be pursued. + * + * \param pctx policy context. + * \param cc SSL server context. + * \param choices destination structure for the policy choices. + * \return 1 on success, 0 on error. + */ + int (*choose)(const br_ssl_server_policy_class **pctx, + const br_ssl_server_context *cc, + br_ssl_server_choices *choices); + + /** + * \brief Perform key exchange (server part). + * + * This callback is invoked to perform the server-side cryptographic + * operation for a key exchange that is not ECDHE. This callback + * uses the private key. + * + * **For RSA key exchange**, the provided `data` (of length `*len` + * bytes) shall be decrypted with the server's private key, and + * the 48-byte premaster secret copied back to the first 48 bytes + * of `data`. + * + * - The caller makes sure that `*len` is at least 59 bytes. + * + * - This callback MUST check that the provided length matches + * that of the key modulus; it shall report an error otherwise. + * + * - If the length matches that of the RSA key modulus, then + * processing MUST be constant-time, even if decryption fails, + * or the padding is incorrect, or the plaintext message length + * is not exactly 48 bytes. + * + * - This callback needs not check the two first bytes of the + * obtained pre-master secret (the caller will do that). + * + * - If an error is reported (0), then what the callback put + * in the first 48 bytes of `data` is unimportant (the caller + * will use random bytes instead). + * + * **For ECDH key exchange**, the provided `data` (of length `*len` + * bytes) is the elliptic curve point from the client. The + * callback shall multiply it with its private key, and store + * the resulting X coordinate in `data`, starting at offset 0, + * and set `*len` to the length of the X coordinate. + * + * - If the input array does not have the proper length for + * an encoded curve point, then an error (0) shall be reported. + * + * - If the input array has the proper length, then processing + * MUST be constant-time, even if the data is not a valid + * encoded point. + * + * - This callback MUST check that the input point is valid. + * + * Returned value is 1 on success, 0 on error. + * + * \param pctx policy context. + * \param data key exchange data from the client. + * \param len key exchange data length (in bytes). + * \return 1 on success, 0 on error. + */ + uint32_t (*do_keyx)(const br_ssl_server_policy_class **pctx, + unsigned char *data, size_t *len); + + /** + * \brief Perform a signature (for a ServerKeyExchange message). + * + * This callback function is invoked for ECDHE cipher suites. On + * input, the hash value or message to sign is in `data`, of + * size `hv_len`; the involved hash function or algorithm is + * identified by `algo_id`. The signature shall be computed and + * written back into `data`; the total size of that buffer is + * `len` bytes. + * + * This callback shall verify that the signature length does not + * exceed `len` bytes, and abstain from writing the signature if + * it does not fit. + * + * The `algo_id` value matches that which was written in the + * `choices` structures by the `choose()` callback. This will be + * one of the following: + * + * - `0xFF00 + id` for a hash function identifier `id`. In + * that case, the `data` buffer contains a hash value + * already computed over the data that is to be signed, + * of length `hv_len`. The `id` may be 0 to designate the + * special MD5+SHA-1 concatenation (old-style RSA signing). + * + * - Another value, lower than `0xFF00`. The `data` buffer + * then contains the raw, non-hashed data to be signed + * (concatenation of the client and server randoms and + * ECDH parameters). The callback is responsible to apply + * any relevant hashing as part of the signing process. + * + * Returned value is the signature length (in bytes), or 0 on error. + * + * \param pctx policy context. + * \param algo_id hash function / algorithm identifier. + * \param data input/output buffer (message/hash, then signature). + * \param hv_len hash value or message length (in bytes). + * \param len total buffer length (in bytes). + * \return signature length (in bytes) on success, or 0 on error. + */ + size_t (*do_sign)(const br_ssl_server_policy_class **pctx, + unsigned algo_id, + unsigned char *data, size_t hv_len, size_t len); +}; + +/** + * \brief A single-chain RSA policy handler. + * + * This policy context uses a single certificate chain, and a RSA + * private key. The context can be restricted to only signatures or + * only key exchange. + * + * Apart from the first field (vtable pointer), its contents are + * opaque and shall not be accessed directly. + */ +typedef struct { + /** \brief Pointer to vtable. */ + const br_ssl_server_policy_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + const br_x509_certificate *chain; + size_t chain_len; + const br_rsa_private_key *sk; + unsigned allowed_usages; + br_rsa_private irsacore; + br_rsa_pkcs1_sign irsasign; +#endif +} br_ssl_server_policy_rsa_context; + +/** + * \brief A single-chain EC policy handler. + * + * This policy context uses a single certificate chain, and an EC + * private key. The context can be restricted to only signatures or + * only key exchange. + * + * Due to how TLS is defined, this context must be made aware whether + * the server certificate was itself signed with RSA or ECDSA. The code + * does not try to decode the certificate to obtain that information. + * + * Apart from the first field (vtable pointer), its contents are + * opaque and shall not be accessed directly. + */ +typedef struct { + /** \brief Pointer to vtable. */ + const br_ssl_server_policy_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + const br_x509_certificate *chain; + size_t chain_len; + const br_ec_private_key *sk; + unsigned allowed_usages; + unsigned cert_issuer_key_type; + const br_multihash_context *mhash; + const br_ec_impl *iec; + br_ecdsa_sign iecdsa; +#endif +} br_ssl_server_policy_ec_context; + +/** + * \brief Class type for a session parameter cache. + * + * Session parameters are saved in the cache with `save()`, and + * retrieved with `load()`. The cache implementation can apply any + * storage and eviction strategy that it sees fit. The SSL server + * context that performs the request is provided, so that its + * functionalities may be used by the implementation (e.g. hash + * functions or random number generation). + */ +typedef struct br_ssl_session_cache_class_ br_ssl_session_cache_class; +struct br_ssl_session_cache_class_ { + /** + * \brief Context size (in bytes). + */ + size_t context_size; + + /** + * \brief Record a session. + * + * This callback should record the provided session parameters. + * The `params` structure is transient, so its contents shall + * be copied into the cache. The session ID has been randomly + * generated and always has length exactly 32 bytes. + * + * \param ctx session cache context. + * \param server_ctx SSL server context. + * \param params session parameters to save. + */ + void (*save)(const br_ssl_session_cache_class **ctx, + br_ssl_server_context *server_ctx, + const br_ssl_session_parameters *params); + + /** + * \brief Lookup a session in the cache. + * + * The session ID to lookup is in `params` and always has length + * exactly 32 bytes. If the session parameters are found in the + * cache, then the parameters shall be copied into the `params` + * structure. Returned value is 1 on successful lookup, 0 + * otherwise. + * + * \param ctx session cache context. + * \param server_ctx SSL server context. + * \param params destination for session parameters. + * \return 1 if found, 0 otherwise. + */ + int (*load)(const br_ssl_session_cache_class **ctx, + br_ssl_server_context *server_ctx, + br_ssl_session_parameters *params); +}; + +/** + * \brief Context for a basic cache system. + * + * The system stores session parameters in a buffer provided at + * initialisation time. Each entry uses exactly 100 bytes, and + * buffer sizes up to 4294967295 bytes are supported. + * + * Entries are evicted with a LRU (Least Recently Used) policy. A + * search tree is maintained to keep lookups fast even with large + * caches. + * + * Apart from the first field (vtable pointer), the structure + * contents are opaque and shall not be accessed directly. + */ +typedef struct { + /** \brief Pointer to vtable. */ + const br_ssl_session_cache_class *vtable; +#ifndef BR_DOXYGEN_IGNORE + unsigned char *store; + size_t store_len, store_ptr; + unsigned char index_key[32]; + const br_hash_class *hash; + int init_done; + uint32_t head, tail, root; +#endif +} br_ssl_session_cache_lru; + +/** + * \brief Initialise a LRU session cache with the provided storage space. + * + * The provided storage space must remain valid as long as the cache + * is used. Arbitrary lengths are supported, up to 4294967295 bytes; + * each entry uses up exactly 100 bytes. + * + * \param cc session cache context. + * \param store storage space for cached entries. + * \param store_len storage space length (in bytes). + */ +void br_ssl_session_cache_lru_init(br_ssl_session_cache_lru *cc, + unsigned char *store, size_t store_len); + +/** + * \brief Forget an entry in an LRU session cache. + * + * The session cache context must have been initialised. The entry + * with the provided session ID (of exactly 32 bytes) is looked for + * in the cache; if located, it is disabled. + * + * \param cc session cache context. + * \param id session ID to forget. + */ +void br_ssl_session_cache_lru_forget( + br_ssl_session_cache_lru *cc, const unsigned char *id); + +/** + * \brief Context structure for a SSL server. + * + * The first field (called `eng`) is the SSL engine; all functions that + * work on a `br_ssl_engine_context` structure shall take as parameter + * a pointer to that field. The other structure fields are opaque and + * must not be accessed directly. + */ +struct br_ssl_server_context_ { + /** + * \brief The encapsulated engine context. + */ + br_ssl_engine_context eng; + +#ifndef BR_DOXYGEN_IGNORE + /* + * Maximum version from the client. + */ + uint16_t client_max_version; + + /* + * Session cache. + */ + const br_ssl_session_cache_class **cache_vtable; + + /* + * Translated cipher suites supported by the client. The list + * is trimmed to include only the cipher suites that the + * server also supports; they are in the same order as in the + * client message. + */ + br_suite_translated client_suites[BR_MAX_CIPHER_SUITES]; + unsigned char client_suites_num; + + /* + * Hash functions supported by the client, with ECDSA and RSA + * (bit mask). For hash function with id 'x', set bit index is + * x for RSA, x+8 for ECDSA. For newer algorithms, with ID + * 0x08**, bit 16+k is set for algorithm 0x0800+k. + */ + uint32_t hashes; + + /* + * Curves supported by the client (bit mask, for named curves). + */ + uint32_t curves; + + /* + * Context for chain handler. + */ + const br_ssl_server_policy_class **policy_vtable; + uint16_t sign_hash_id; + + /* + * For the core handlers, thus avoiding (in most cases) the + * need for an externally provided policy context. + */ + union { + const br_ssl_server_policy_class *vtable; + br_ssl_server_policy_rsa_context single_rsa; + br_ssl_server_policy_ec_context single_ec; + } chain_handler; + + /* + * Buffer for the ECDHE private key. + */ + unsigned char ecdhe_key[70]; + size_t ecdhe_key_len; + + /* + * Trust anchor names for client authentication. "ta_names" and + * "tas" cannot be both non-NULL. + */ + const br_x500_name *ta_names; + const br_x509_trust_anchor *tas; + size_t num_tas; + size_t cur_dn_index; + const unsigned char *cur_dn; + size_t cur_dn_len; + + /* + * Buffer for the hash value computed over all handshake messages + * prior to CertificateVerify, and identifier for the hash function. + */ + unsigned char hash_CV[64]; + size_t hash_CV_len; + int hash_CV_id; + + /* + * Server-specific implementations. + * (none for now) + */ +#endif +}; + +/* + * Each br_ssl_server_init_xxx() function sets the list of supported + * cipher suites and used implementations, as specified by the profile + * name 'xxx'. Defined profile names are: + * + * full_rsa all supported algorithm, server key type is RSA + * full_ec all supported algorithm, server key type is EC + * TODO: add other profiles + * + * Naming scheme for "minimal" profiles: min123 + * + * -- character 1: key exchange + * r = RSA + * e = ECDHE_RSA + * f = ECDHE_ECDSA + * u = ECDH_RSA + * v = ECDH_ECDSA + * -- character 2: version / PRF + * 0 = TLS 1.0 / 1.1 with MD5+SHA-1 + * 2 = TLS 1.2 with SHA-256 + * 3 = TLS 1.2 with SHA-384 + * -- character 3: encryption + * a = AES/CBC + * d = 3DES/CBC + * g = AES/GCM + * c = ChaCha20+Poly1305 + */ + +/** + * \brief SSL server profile: full_rsa. + * + * This function initialises the provided SSL server context with + * all supported algorithms and cipher suites that rely on a RSA + * key pair. + * + * \param cc server context to initialise. + * \param chain server certificate chain. + * \param chain_len certificate chain length (number of certificate). + * \param sk RSA private key. + */ +void br_ssl_server_init_full_rsa(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_rsa_private_key *sk); + +/** + * \brief SSL server profile: full_ec. + * + * This function initialises the provided SSL server context with + * all supported algorithms and cipher suites that rely on an EC + * key pair. + * + * The key type of the CA that issued the server's certificate must + * be provided, since it matters for ECDH cipher suites (ECDH_RSA + * suites require a RSA-powered CA). The key type is either + * `BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`. + * + * \param cc server context to initialise. + * \param chain server certificate chain. + * \param chain_len chain length (number of certificates). + * \param cert_issuer_key_type certificate issuer's key type. + * \param sk EC private key. + */ +void br_ssl_server_init_full_ec(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + unsigned cert_issuer_key_type, const br_ec_private_key *sk); + +/** + * \brief SSL server profile: minr2g. + * + * This profile uses only TLS_RSA_WITH_AES_128_GCM_SHA256. Server key is + * RSA, and RSA key exchange is used (not forward secure, but uses little + * CPU in the client). + * + * \param cc server context to initialise. + * \param chain server certificate chain. + * \param chain_len certificate chain length (number of certificate). + * \param sk RSA private key. + */ +void br_ssl_server_init_minr2g(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_rsa_private_key *sk); + +/** + * \brief SSL server profile: mine2g. + * + * This profile uses only TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256. Server key + * is RSA, and ECDHE key exchange is used. This suite provides forward + * security, with a higher CPU expense on the client, and a somewhat + * larger code footprint (compared to "minr2g"). + * + * \param cc server context to initialise. + * \param chain server certificate chain. + * \param chain_len certificate chain length (number of certificate). + * \param sk RSA private key. + */ +void br_ssl_server_init_mine2g(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_rsa_private_key *sk); + +/** + * \brief SSL server profile: minf2g. + * + * This profile uses only TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256. + * Server key is EC, and ECDHE key exchange is used. This suite provides + * forward security, with a higher CPU expense on the client and server + * (by a factor of about 3 to 4), and a somewhat larger code footprint + * (compared to "minu2g" and "minv2g"). + * + * \param cc server context to initialise. + * \param chain server certificate chain. + * \param chain_len certificate chain length (number of certificate). + * \param sk EC private key. + */ +void br_ssl_server_init_minf2g(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_ec_private_key *sk); + +/** + * \brief SSL server profile: minu2g. + * + * This profile uses only TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256. + * Server key is EC, and ECDH key exchange is used; the issuing CA used + * a RSA key. + * + * The "minu2g" and "minv2g" profiles do not provide forward secrecy, + * but are the lightest on the server (for CPU usage), and are rather + * inexpensive on the client as well. + * + * \param cc server context to initialise. + * \param chain server certificate chain. + * \param chain_len certificate chain length (number of certificate). + * \param sk EC private key. + */ +void br_ssl_server_init_minu2g(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_ec_private_key *sk); + +/** + * \brief SSL server profile: minv2g. + * + * This profile uses only TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256. + * Server key is EC, and ECDH key exchange is used; the issuing CA used + * an EC key. + * + * The "minu2g" and "minv2g" profiles do not provide forward secrecy, + * but are the lightest on the server (for CPU usage), and are rather + * inexpensive on the client as well. + * + * \param cc server context to initialise. + * \param chain server certificate chain. + * \param chain_len certificate chain length (number of certificate). + * \param sk EC private key. + */ +void br_ssl_server_init_minv2g(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_ec_private_key *sk); + +/** + * \brief SSL server profile: mine2c. + * + * This profile uses only TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256. + * Server key is RSA, and ECDHE key exchange is used. This suite + * provides forward security. + * + * \param cc server context to initialise. + * \param chain server certificate chain. + * \param chain_len certificate chain length (number of certificate). + * \param sk RSA private key. + */ +void br_ssl_server_init_mine2c(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_rsa_private_key *sk); + +/** + * \brief SSL server profile: minf2c. + * + * This profile uses only TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256. + * Server key is EC, and ECDHE key exchange is used. This suite provides + * forward security. + * + * \param cc server context to initialise. + * \param chain server certificate chain. + * \param chain_len certificate chain length (number of certificate). + * \param sk EC private key. + */ +void br_ssl_server_init_minf2c(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_ec_private_key *sk); + +/** + * \brief Get the supported client suites. + * + * This function shall be called only after the ClientHello has been + * processed, typically from the policy engine. The returned array + * contains the cipher suites that are supported by both the client + * and the server; these suites are in client preference order, unless + * the `BR_OPT_ENFORCE_SERVER_PREFERENCES` flag was set, in which case + * they are in server preference order. + * + * The suites are _translated_, which means that each suite is given + * as two 16-bit integers: the standard suite identifier, and its + * translated version, broken down into its individual components, + * as explained with the `br_suite_translated` type. + * + * The returned array is allocated in the context and will be rewritten + * by each handshake. + * + * \param cc server context. + * \param num receives the array size (number of suites). + * \return the translated common cipher suites, in preference order. + */ +static inline const br_suite_translated * +br_ssl_server_get_client_suites(const br_ssl_server_context *cc, size_t *num) +{ + *num = cc->client_suites_num; + return cc->client_suites; +} + +/** + * \brief Get the hash functions and signature algorithms supported by + * the client. + * + * This value is a bit field: + * + * - If RSA (PKCS#1 v1.5) is supported with hash function of ID `x`, + * then bit `x` is set (hash function ID is 0 for the special MD5+SHA-1, + * or 2 to 6 for the SHA family). + * + * - If ECDSA is supported with hash function of ID `x`, then bit `8+x` + * is set. + * + * - Newer algorithms are symbolic 16-bit identifiers that do not + * represent signature algorithm and hash function separately. If + * the TLS-level identifier is `0x0800+x` for a `x` in the 0..15 + * range, then bit `16+x` is set. + * + * "New algorithms" are currently defined only in draft documents, so + * this support is subject to possible change. Right now (early 2017), + * this maps ed25519 (EdDSA on Curve25519) to bit 23, and ed448 (EdDSA + * on Curve448) to bit 24. If the identifiers on the wire change in + * future document, then the decoding mechanism in BearSSL will be + * amended to keep mapping ed25519 and ed448 on bits 23 and 24, + * respectively. Mapping of other new algorithms (e.g. RSA/PSS) is not + * guaranteed yet. + * + * \param cc server context. + * \return the client-supported hash functions and signature algorithms. + */ +static inline uint32_t +br_ssl_server_get_client_hashes(const br_ssl_server_context *cc) +{ + return cc->hashes; +} + +/** + * \brief Get the elliptic curves supported by the client. + * + * This is a bit field (bit x is set if curve of ID x is supported). + * + * \param cc server context. + * \return the client-supported elliptic curves. + */ +static inline uint32_t +br_ssl_server_get_client_curves(const br_ssl_server_context *cc) +{ + return cc->curves; +} + +/** + * \brief Clear the complete contents of a SSL server context. + * + * Everything is cleared, including the reference to the configured buffer, + * implementations, cipher suites and state. This is a preparatory step + * to assembling a custom profile. + * + * \param cc server context to clear. + */ +void br_ssl_server_zero(br_ssl_server_context *cc); + +/** + * \brief Set an externally provided policy context. + * + * The policy context's methods are invoked to decide the cipher suite + * and certificate chain, and to perform operations involving the server's + * private key. + * + * \param cc server context. + * \param pctx policy context (pointer to its vtable field). + */ +static inline void +br_ssl_server_set_policy(br_ssl_server_context *cc, + const br_ssl_server_policy_class **pctx) +{ + cc->policy_vtable = pctx; +} + +/** + * \brief Set the server certificate chain and key (single RSA case). + * + * This function uses a policy context included in the server context. + * It configures use of a single server certificate chain with a RSA + * private key. The `allowed_usages` is a combination of usages, namely + * `BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`; this enables or disables + * the corresponding cipher suites (i.e. `TLS_RSA_*` use the RSA key for + * key exchange, while `TLS_ECDHE_RSA_*` use the RSA key for signatures). + * + * \param cc server context. + * \param chain server certificate chain to send to the client. + * \param chain_len chain length (number of certificates). + * \param sk server private key (RSA). + * \param allowed_usages allowed private key usages. + * \param irsacore RSA core implementation. + * \param irsasign RSA signature implementation (PKCS#1 v1.5). + */ +void br_ssl_server_set_single_rsa(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_rsa_private_key *sk, unsigned allowed_usages, + br_rsa_private irsacore, br_rsa_pkcs1_sign irsasign); + +/** + * \brief Set the server certificate chain and key (single EC case). + * + * This function uses a policy context included in the server context. + * It configures use of a single server certificate chain with an EC + * private key. The `allowed_usages` is a combination of usages, namely + * `BR_KEYTYPE_KEYX` and/or `BR_KEYTYPE_SIGN`; this enables or disables + * the corresponding cipher suites (i.e. `TLS_ECDH_*` use the EC key for + * key exchange, while `TLS_ECDHE_ECDSA_*` use the EC key for signatures). + * + * In order to support `TLS_ECDH_*` cipher suites (non-ephemeral ECDH), + * the algorithm type of the key used by the issuing CA to sign the + * server's certificate must be provided, as `cert_issuer_key_type` + * parameter (this value is either `BR_KEYTYPE_RSA` or `BR_KEYTYPE_EC`). + * + * \param cc server context. + * \param chain server certificate chain to send. + * \param chain_len chain length (number of certificates). + * \param sk server private key (EC). + * \param allowed_usages allowed private key usages. + * \param cert_issuer_key_type issuing CA's key type. + * \param iec EC core implementation. + * \param iecdsa ECDSA signature implementation ("asn1" format). + */ +void br_ssl_server_set_single_ec(br_ssl_server_context *cc, + const br_x509_certificate *chain, size_t chain_len, + const br_ec_private_key *sk, unsigned allowed_usages, + unsigned cert_issuer_key_type, + const br_ec_impl *iec, br_ecdsa_sign iecdsa); + +/** + * \brief Activate client certificate authentication. + * + * The trust anchor encoded X.500 names (DN) to send to the client are + * provided. A client certificate will be requested and validated through + * the X.509 validator configured in the SSL engine. If `num` is 0, then + * client certificate authentication is disabled. + * + * If the client does not send a certificate, or on validation failure, + * the handshake aborts. Unauthenticated clients can be tolerated by + * setting the `BR_OPT_TOLERATE_NO_CLIENT_AUTH` flag. + * + * The provided array is linked in, not copied, so that pointer must + * remain valid as long as anchor names may be used. + * + * \param cc server context. + * \param ta_names encoded trust anchor names. + * \param num number of encoded trust anchor names. + */ +static inline void +br_ssl_server_set_trust_anchor_names(br_ssl_server_context *cc, + const br_x500_name *ta_names, size_t num) +{ + cc->ta_names = ta_names; + cc->tas = NULL; + cc->num_tas = num; +} + +/** + * \brief Activate client certificate authentication. + * + * This is a variant for `br_ssl_server_set_trust_anchor_names()`: the + * trust anchor names are provided not as an array of stand-alone names + * (`br_x500_name` structures), but as an array of trust anchors + * (`br_x509_trust_anchor` structures). The server engine itself will + * only use the `dn` field of each trust anchor. This is meant to allow + * defining a single array of trust anchors, to be used here and in the + * X.509 validation engine itself. + * + * The provided array is linked in, not copied, so that pointer must + * remain valid as long as anchor names may be used. + * + * \param cc server context. + * \param tas trust anchors (only names are used). + * \param num number of trust anchors. + */ +static inline void +br_ssl_server_set_trust_anchor_names_alt(br_ssl_server_context *cc, + const br_x509_trust_anchor *tas, size_t num) +{ + cc->ta_names = NULL; + cc->tas = tas; + cc->num_tas = num; +} + +/** + * \brief Configure the cache for session parameters. + * + * The cache context is provided as a pointer to its first field (vtable + * pointer). + * + * \param cc server context. + * \param vtable session cache context. + */ +static inline void +br_ssl_server_set_cache(br_ssl_server_context *cc, + const br_ssl_session_cache_class **vtable) +{ + cc->cache_vtable = vtable; +} + +/** + * \brief Prepare or reset a server context for handling an incoming client. + * + * \param cc server context. + * \return 1 on success, 0 on error. + */ +int br_ssl_server_reset(br_ssl_server_context *cc); + +/* ===================================================================== */ + +/* + * Context for the simplified I/O context. The transport medium is accessed + * through the low_read() and low_write() callback functions, each with + * its own opaque context pointer. + * + * low_read() read some bytes, at most 'len' bytes, into data[]. The + * returned value is the number of read bytes, or -1 on error. + * The 'len' parameter is guaranteed never to exceed 20000, + * so the length always fits in an 'int' on all platforms. + * + * low_write() write up to 'len' bytes, to be read from data[]. The + * returned value is the number of written bytes, or -1 on + * error. The 'len' parameter is guaranteed never to exceed + * 20000, so the length always fits in an 'int' on all + * parameters. + * + * A socket closure (if the transport medium is a socket) should be reported + * as an error (-1). The callbacks shall endeavour to block until at least + * one byte can be read or written; a callback returning 0 at times is + * acceptable, but this normally leads to the callback being immediately + * called again, so the callback should at least always try to block for + * some time if no I/O can take place. + * + * The SSL engine naturally applies some buffering, so the callbacks need + * not apply buffers of their own. + */ +/** + * \brief Context structure for the simplified SSL I/O wrapper. + * + * This structure is initialised with `br_sslio_init()`. Its contents + * are opaque and shall not be accessed directly. + */ +typedef struct { +#ifndef BR_DOXYGEN_IGNORE + br_ssl_engine_context *engine; + int (*low_read)(void *read_context, + unsigned char *data, size_t len); + void *read_context; + int (*low_write)(void *write_context, + const unsigned char *data, size_t len); + void *write_context; +#endif +} br_sslio_context; + +/** + * \brief Initialise a simplified I/O wrapper context. + * + * The simplified I/O wrapper offers a simpler read/write API for a SSL + * engine (client or server), using the provided callback functions for + * reading data from, or writing data to, the transport medium. + * + * The callback functions have the following semantics: + * + * - Each callback receives an opaque context value (of type `void *`) + * that the callback may use arbitrarily (or possibly ignore). + * + * - `low_read()` reads at least one byte, at most `len` bytes, from + * the transport medium. Read bytes shall be written in `data`. + * + * - `low_write()` writes at least one byte, at most `len` bytes, unto + * the transport medium. The bytes to write are read from `data`. + * + * - The `len` parameter is never zero, and is always lower than 20000. + * + * - The number of processed bytes (read or written) is returned. Since + * that number is less than 20000, it always fits on an `int`. + * + * - On error, the callbacks return -1. Reaching end-of-stream is an + * error. Errors are permanent: the SSL connection is terminated. + * + * - Callbacks SHOULD NOT return 0. This is tolerated, as long as + * callbacks endeavour to block for some non-negligible amount of + * time until at least one byte can be sent or received (if a + * callback returns 0, then the wrapper invokes it again + * immediately). + * + * - Callbacks MAY return as soon as at least one byte is processed; + * they MAY also insist on reading or writing _all_ requested bytes. + * Since SSL is a self-terminated protocol (each record has a length + * header), this does not change semantics. + * + * - Callbacks need not apply any buffering (for performance) since SSL + * itself uses buffers. + * + * \param ctx wrapper context to initialise. + * \param engine SSL engine to wrap. + * \param low_read callback for reading data from the transport. + * \param read_context context pointer for `low_read()`. + * \param low_write callback for writing data on the transport. + * \param write_context context pointer for `low_write()`. + */ +void br_sslio_init(br_sslio_context *ctx, + br_ssl_engine_context *engine, + int (*low_read)(void *read_context, + unsigned char *data, size_t len), + void *read_context, + int (*low_write)(void *write_context, + const unsigned char *data, size_t len), + void *write_context); + +/** + * \brief Read some application data from a SSL connection. + * + * If `len` is zero, then this function returns 0 immediately. In + * all other cases, it never returns 0. + * + * This call returns only when at least one byte has been obtained. + * Returned value is the number of bytes read, or -1 on error. The + * number of bytes always fits on an 'int' (data from a single SSL/TLS + * record is returned). + * + * On error or SSL closure, this function returns -1. The caller should + * inspect the error status on the SSL engine to distinguish between + * normal closure and error. + * + * \param cc SSL wrapper context. + * \param dst destination buffer for application data. + * \param len maximum number of bytes to obtain. + * \return number of bytes obtained, or -1 on error. + */ +int br_sslio_read(br_sslio_context *cc, void *dst, size_t len); + +/** + * \brief Read application data from a SSL connection. + * + * This calls returns only when _all_ requested `len` bytes are read, + * or an error is reached. Returned value is 0 on success, -1 on error. + * A normal (verified) SSL closure before that many bytes are obtained + * is reported as an error by this function. + * + * \param cc SSL wrapper context. + * \param dst destination buffer for application data. + * \param len number of bytes to obtain. + * \return 0 on success, or -1 on error. + */ +int br_sslio_read_all(br_sslio_context *cc, void *dst, size_t len); + +/** + * \brief Write some application data unto a SSL connection. + * + * If `len` is zero, then this function returns 0 immediately. In + * all other cases, it never returns 0. + * + * This call returns only when at least one byte has been written. + * Returned value is the number of bytes written, or -1 on error. The + * number of bytes always fits on an 'int' (less than 20000). + * + * On error or SSL closure, this function returns -1. The caller should + * inspect the error status on the SSL engine to distinguish between + * normal closure and error. + * + * **Important:** SSL is buffered; a "written" byte is a byte that was + * injected into the wrapped SSL engine, but this does not necessarily mean + * that it has been scheduled for sending. Use `br_sslio_flush()` to + * ensure that all pending data has been sent to the transport medium. + * + * \param cc SSL wrapper context. + * \param src source buffer for application data. + * \param len maximum number of bytes to write. + * \return number of bytes written, or -1 on error. + */ +int br_sslio_write(br_sslio_context *cc, const void *src, size_t len); + +/** + * \brief Write application data unto a SSL connection. + * + * This calls returns only when _all_ requested `len` bytes have been + * written, or an error is reached. Returned value is 0 on success, -1 + * on error. A normal (verified) SSL closure before that many bytes are + * written is reported as an error by this function. + * + * **Important:** SSL is buffered; a "written" byte is a byte that was + * injected into the wrapped SSL engine, but this does not necessarily mean + * that it has been scheduled for sending. Use `br_sslio_flush()` to + * ensure that all pending data has been sent to the transport medium. + * + * \param cc SSL wrapper context. + * \param src source buffer for application data. + * \param len number of bytes to write. + * \return 0 on success, or -1 on error. + */ +int br_sslio_write_all(br_sslio_context *cc, const void *src, size_t len); + +/** + * \brief Flush pending data. + * + * This call makes sure that any buffered application data in the + * provided context (including the wrapped SSL engine) has been sent + * to the transport medium (i.e. accepted by the `low_write()` callback + * method). If there is no such pending data, then this function does + * nothing (and returns a success, i.e. 0). + * + * If the underlying transport medium has its own buffers, then it is + * up to the caller to ensure the corresponding flushing. + * + * Returned value is 0 on success, -1 on error. + * + * \param cc SSL wrapper context. + * \return 0 on success, or -1 on error. + */ +int br_sslio_flush(br_sslio_context *cc); + +/** + * \brief Close the SSL connection. + * + * This call runs the SSL closure protocol (sending a `close_notify`, + * receiving the response `close_notify`). When it returns, the SSL + * connection is finished. It is still up to the caller to manage the + * possible transport-level termination, if applicable (alternatively, + * the underlying transport stream may be reused for non-SSL messages). + * + * Returned value is 0 on success, -1 on error. A failure by the peer + * to process the complete closure protocol (i.e. sending back the + * `close_notify`) is an error. + * + * \param cc SSL wrapper context. + * \return 0 on success, or -1 on error. + */ +int br_sslio_close(br_sslio_context *cc); + +/* ===================================================================== */ + +/* + * Symbolic constants for cipher suites. + */ + +/* From RFC 5246 */ +#define BR_TLS_NULL_WITH_NULL_NULL 0x0000 +#define BR_TLS_RSA_WITH_NULL_MD5 0x0001 +#define BR_TLS_RSA_WITH_NULL_SHA 0x0002 +#define BR_TLS_RSA_WITH_NULL_SHA256 0x003B +#define BR_TLS_RSA_WITH_RC4_128_MD5 0x0004 +#define BR_TLS_RSA_WITH_RC4_128_SHA 0x0005 +#define BR_TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x000A +#define BR_TLS_RSA_WITH_AES_128_CBC_SHA 0x002F +#define BR_TLS_RSA_WITH_AES_256_CBC_SHA 0x0035 +#define BR_TLS_RSA_WITH_AES_128_CBC_SHA256 0x003C +#define BR_TLS_RSA_WITH_AES_256_CBC_SHA256 0x003D +#define BR_TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA 0x000D +#define BR_TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA 0x0010 +#define BR_TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 0x0013 +#define BR_TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 0x0016 +#define BR_TLS_DH_DSS_WITH_AES_128_CBC_SHA 0x0030 +#define BR_TLS_DH_RSA_WITH_AES_128_CBC_SHA 0x0031 +#define BR_TLS_DHE_DSS_WITH_AES_128_CBC_SHA 0x0032 +#define BR_TLS_DHE_RSA_WITH_AES_128_CBC_SHA 0x0033 +#define BR_TLS_DH_DSS_WITH_AES_256_CBC_SHA 0x0036 +#define BR_TLS_DH_RSA_WITH_AES_256_CBC_SHA 0x0037 +#define BR_TLS_DHE_DSS_WITH_AES_256_CBC_SHA 0x0038 +#define BR_TLS_DHE_RSA_WITH_AES_256_CBC_SHA 0x0039 +#define BR_TLS_DH_DSS_WITH_AES_128_CBC_SHA256 0x003E +#define BR_TLS_DH_RSA_WITH_AES_128_CBC_SHA256 0x003F +#define BR_TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 0x0040 +#define BR_TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 0x0067 +#define BR_TLS_DH_DSS_WITH_AES_256_CBC_SHA256 0x0068 +#define BR_TLS_DH_RSA_WITH_AES_256_CBC_SHA256 0x0069 +#define BR_TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 0x006A +#define BR_TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 0x006B +#define BR_TLS_DH_anon_WITH_RC4_128_MD5 0x0018 +#define BR_TLS_DH_anon_WITH_3DES_EDE_CBC_SHA 0x001B +#define BR_TLS_DH_anon_WITH_AES_128_CBC_SHA 0x0034 +#define BR_TLS_DH_anon_WITH_AES_256_CBC_SHA 0x003A +#define BR_TLS_DH_anon_WITH_AES_128_CBC_SHA256 0x006C +#define BR_TLS_DH_anon_WITH_AES_256_CBC_SHA256 0x006D + +/* From RFC 4492 */ +#define BR_TLS_ECDH_ECDSA_WITH_NULL_SHA 0xC001 +#define BR_TLS_ECDH_ECDSA_WITH_RC4_128_SHA 0xC002 +#define BR_TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA 0xC003 +#define BR_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA 0xC004 +#define BR_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA 0xC005 +#define BR_TLS_ECDHE_ECDSA_WITH_NULL_SHA 0xC006 +#define BR_TLS_ECDHE_ECDSA_WITH_RC4_128_SHA 0xC007 +#define BR_TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA 0xC008 +#define BR_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA 0xC009 +#define BR_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA 0xC00A +#define BR_TLS_ECDH_RSA_WITH_NULL_SHA 0xC00B +#define BR_TLS_ECDH_RSA_WITH_RC4_128_SHA 0xC00C +#define BR_TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA 0xC00D +#define BR_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA 0xC00E +#define BR_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA 0xC00F +#define BR_TLS_ECDHE_RSA_WITH_NULL_SHA 0xC010 +#define BR_TLS_ECDHE_RSA_WITH_RC4_128_SHA 0xC011 +#define BR_TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA 0xC012 +#define BR_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0xC013 +#define BR_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0xC014 +#define BR_TLS_ECDH_anon_WITH_NULL_SHA 0xC015 +#define BR_TLS_ECDH_anon_WITH_RC4_128_SHA 0xC016 +#define BR_TLS_ECDH_anon_WITH_3DES_EDE_CBC_SHA 0xC017 +#define BR_TLS_ECDH_anon_WITH_AES_128_CBC_SHA 0xC018 +#define BR_TLS_ECDH_anon_WITH_AES_256_CBC_SHA 0xC019 + +/* From RFC 5288 */ +#define BR_TLS_RSA_WITH_AES_128_GCM_SHA256 0x009C +#define BR_TLS_RSA_WITH_AES_256_GCM_SHA384 0x009D +#define BR_TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 0x009E +#define BR_TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 0x009F +#define BR_TLS_DH_RSA_WITH_AES_128_GCM_SHA256 0x00A0 +#define BR_TLS_DH_RSA_WITH_AES_256_GCM_SHA384 0x00A1 +#define BR_TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 0x00A2 +#define BR_TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 0x00A3 +#define BR_TLS_DH_DSS_WITH_AES_128_GCM_SHA256 0x00A4 +#define BR_TLS_DH_DSS_WITH_AES_256_GCM_SHA384 0x00A5 +#define BR_TLS_DH_anon_WITH_AES_128_GCM_SHA256 0x00A6 +#define BR_TLS_DH_anon_WITH_AES_256_GCM_SHA384 0x00A7 + +/* From RFC 5289 */ +#define BR_TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 0xC023 +#define BR_TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 0xC024 +#define BR_TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 0xC025 +#define BR_TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 0xC026 +#define BR_TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0xC027 +#define BR_TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0xC028 +#define BR_TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 0xC029 +#define BR_TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 0xC02A +#define BR_TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 0xC02B +#define BR_TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 0xC02C +#define BR_TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 0xC02D +#define BR_TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 0xC02E +#define BR_TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 0xC02F +#define BR_TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0xC030 +#define BR_TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 0xC031 +#define BR_TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 0xC032 + +/* From RFC 6655 and 7251 */ +#define BR_TLS_RSA_WITH_AES_128_CCM 0xC09C +#define BR_TLS_RSA_WITH_AES_256_CCM 0xC09D +#define BR_TLS_RSA_WITH_AES_128_CCM_8 0xC0A0 +#define BR_TLS_RSA_WITH_AES_256_CCM_8 0xC0A1 +#define BR_TLS_ECDHE_ECDSA_WITH_AES_128_CCM 0xC0AC +#define BR_TLS_ECDHE_ECDSA_WITH_AES_256_CCM 0xC0AD +#define BR_TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 0xC0AE +#define BR_TLS_ECDHE_ECDSA_WITH_AES_256_CCM_8 0xC0AF + +/* From RFC 7905 */ +#define BR_TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA8 +#define BR_TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256 0xCCA9 +#define BR_TLS_DHE_RSA_WITH_CHACHA20_POLY1305_SHA256 0xCCAA +#define BR_TLS_PSK_WITH_CHACHA20_POLY1305_SHA256 0xCCAB +#define BR_TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256 0xCCAC +#define BR_TLS_DHE_PSK_WITH_CHACHA20_POLY1305_SHA256 0xCCAD +#define BR_TLS_RSA_PSK_WITH_CHACHA20_POLY1305_SHA256 0xCCAE + +/* From RFC 7507 */ +#define BR_TLS_FALLBACK_SCSV 0x5600 + +/* + * Symbolic constants for alerts. + */ +#define BR_ALERT_CLOSE_NOTIFY 0 +#define BR_ALERT_UNEXPECTED_MESSAGE 10 +#define BR_ALERT_BAD_RECORD_MAC 20 +#define BR_ALERT_RECORD_OVERFLOW 22 +#define BR_ALERT_DECOMPRESSION_FAILURE 30 +#define BR_ALERT_HANDSHAKE_FAILURE 40 +#define BR_ALERT_BAD_CERTIFICATE 42 +#define BR_ALERT_UNSUPPORTED_CERTIFICATE 43 +#define BR_ALERT_CERTIFICATE_REVOKED 44 +#define BR_ALERT_CERTIFICATE_EXPIRED 45 +#define BR_ALERT_CERTIFICATE_UNKNOWN 46 +#define BR_ALERT_ILLEGAL_PARAMETER 47 +#define BR_ALERT_UNKNOWN_CA 48 +#define BR_ALERT_ACCESS_DENIED 49 +#define BR_ALERT_DECODE_ERROR 50 +#define BR_ALERT_DECRYPT_ERROR 51 +#define BR_ALERT_PROTOCOL_VERSION 70 +#define BR_ALERT_INSUFFICIENT_SECURITY 71 +#define BR_ALERT_INTERNAL_ERROR 80 +#define BR_ALERT_USER_CANCELED 90 +#define BR_ALERT_NO_RENEGOTIATION 100 +#define BR_ALERT_UNSUPPORTED_EXTENSION 110 +#define BR_ALERT_NO_APPLICATION_PROTOCOL 120 + +#ifdef __cplusplus +} +#endif + +#endif -- cgit