From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/amd/COPYING | 502 ++++++ test/monniaux/glpk-4.65/src/amd/README | 58 + test/monniaux/glpk-4.65/src/amd/amd.h | 67 + test/monniaux/glpk-4.65/src/amd/amd_1.c | 181 +++ test/monniaux/glpk-4.65/src/amd/amd_2.c | 1842 ++++++++++++++++++++++ test/monniaux/glpk-4.65/src/amd/amd_aat.c | 185 +++ test/monniaux/glpk-4.65/src/amd/amd_control.c | 64 + test/monniaux/glpk-4.65/src/amd/amd_defaults.c | 38 + test/monniaux/glpk-4.65/src/amd/amd_dump.c | 180 +++ test/monniaux/glpk-4.65/src/amd/amd_info.c | 120 ++ test/monniaux/glpk-4.65/src/amd/amd_internal.h | 117 ++ test/monniaux/glpk-4.65/src/amd/amd_order.c | 200 +++ test/monniaux/glpk-4.65/src/amd/amd_post_tree.c | 121 ++ test/monniaux/glpk-4.65/src/amd/amd_postorder.c | 207 +++ test/monniaux/glpk-4.65/src/amd/amd_preprocess.c | 119 ++ test/monniaux/glpk-4.65/src/amd/amd_valid.c | 93 ++ 16 files changed, 4094 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/amd/COPYING create mode 100644 test/monniaux/glpk-4.65/src/amd/README create mode 100644 test/monniaux/glpk-4.65/src/amd/amd.h create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_1.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_2.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_aat.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_control.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_defaults.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_dump.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_info.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_internal.h create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_order.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_post_tree.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_postorder.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_preprocess.c create mode 100644 test/monniaux/glpk-4.65/src/amd/amd_valid.c (limited to 'test/monniaux/glpk-4.65/src/amd') diff --git a/test/monniaux/glpk-4.65/src/amd/COPYING b/test/monniaux/glpk-4.65/src/amd/COPYING new file mode 100644 index 00000000..84bba36d --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/COPYING @@ -0,0 +1,502 @@ + GNU LESSER GENERAL PUBLIC LICENSE + Version 2.1, February 1999 + + Copyright (C) 1991, 1999 Free Software Foundation, Inc. + 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + +[This is the first released version of the Lesser GPL. It also counts + as the successor of the GNU Library Public License, version 2, hence + the version number 2.1.] + + Preamble + + The licenses for most software are designed to take away your +freedom to share and change it. By contrast, the GNU General Public +Licenses are intended to guarantee your freedom to share and change +free software--to make sure the software is free for all its users. + + This license, the Lesser General Public License, applies to some +specially designated software packages--typically libraries--of the +Free Software Foundation and other authors who decide to use it. You +can use it too, but we suggest you first think carefully about whether +this license or the ordinary General Public License is the better +strategy to use in any particular case, based on the explanations below. + + When we speak of free software, we are referring to freedom of use, +not price. Our General Public Licenses are designed to make sure that +you have the freedom to distribute copies of free software (and charge +for this service if you wish); that you receive source code or can get +it if you want it; that you can change the software and use pieces of +it in new free programs; and that you are informed that you can do +these things. + + To protect your rights, we need to make restrictions that forbid +distributors to deny you these rights or to ask you to surrender these +rights. These restrictions translate to certain responsibilities for +you if you distribute copies of the library or if you modify it. + + For example, if you distribute copies of the library, whether gratis +or for a fee, you must give the recipients all the rights that we gave +you. You must make sure that they, too, receive or can get the source +code. If you link other code with the library, you must provide +complete object files to the recipients, so that they can relink them +with the library after making changes to the library and recompiling +it. And you must show them these terms so they know their rights. + + We protect your rights with a two-step method: (1) we copyright the +library, and (2) we offer you this license, which gives you legal +permission to copy, distribute and/or modify the library. + + To protect each distributor, we want to make it very clear that +there is no warranty for the free library. Also, if the library is +modified by someone else and passed on, the recipients should know +that what they have is not the original version, so that the original +author's reputation will not be affected by problems that might be +introduced by others. + + Finally, software patents pose a constant threat to the existence of +any free program. We wish to make sure that a company cannot +effectively restrict the users of a free program by obtaining a +restrictive license from a patent holder. Therefore, we insist that +any patent license obtained for a version of the library must be +consistent with the full freedom of use specified in this license. + + Most GNU software, including some libraries, is covered by the +ordinary GNU General Public License. This license, the GNU Lesser +General Public License, applies to certain designated libraries, and +is quite different from the ordinary General Public License. We use +this license for certain libraries in order to permit linking those +libraries into non-free programs. + + When a program is linked with a library, whether statically or using +a shared library, the combination of the two is legally speaking a +combined work, a derivative of the original library. The ordinary +General Public License therefore permits such linking only if the +entire combination fits its criteria of freedom. The Lesser General +Public License permits more lax criteria for linking other code with +the library. + + We call this license the "Lesser" General Public License because it +does Less to protect the user's freedom than the ordinary General +Public License. It also provides other free software developers Less +of an advantage over competing non-free programs. These disadvantages +are the reason we use the ordinary General Public License for many +libraries. However, the Lesser license provides advantages in certain +special circumstances. + + For example, on rare occasions, there may be a special need to +encourage the widest possible use of a certain library, so that it becomes +a de-facto standard. To achieve this, non-free programs must be +allowed to use the library. A more frequent case is that a free +library does the same job as widely used non-free libraries. In this +case, there is little to gain by limiting the free library to free +software only, so we use the Lesser General Public License. + + In other cases, permission to use a particular library in non-free +programs enables a greater number of people to use a large body of +free software. For example, permission to use the GNU C Library in +non-free programs enables many more people to use the whole GNU +operating system, as well as its variant, the GNU/Linux operating +system. + + Although the Lesser General Public License is Less protective of the +users' freedom, it does ensure that the user of a program that is +linked with the Library has the freedom and the wherewithal to run +that program using a modified version of the Library. + + The precise terms and conditions for copying, distribution and +modification follow. Pay close attention to the difference between a +"work based on the library" and a "work that uses the library". The +former contains code derived from the library, whereas the latter must +be combined with the library in order to run. + + GNU LESSER GENERAL PUBLIC LICENSE + TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION + + 0. This License Agreement applies to any software library or other +program which contains a notice placed by the copyright holder or +other authorized party saying it may be distributed under the terms of +this Lesser General Public License (also called "this License"). +Each licensee is addressed as "you". + + A "library" means a collection of software functions and/or data +prepared so as to be conveniently linked with application programs +(which use some of those functions and data) to form executables. + + The "Library", below, refers to any such software library or work +which has been distributed under these terms. A "work based on the +Library" means either the Library or any derivative work under +copyright law: that is to say, a work containing the Library or a +portion of it, either verbatim or with modifications and/or translated +straightforwardly into another language. (Hereinafter, translation is +included without limitation in the term "modification".) + + "Source code" for a work means the preferred form of the work for +making modifications to it. For a library, complete source code means +all the source code for all modules it contains, plus any associated +interface definition files, plus the scripts used to control compilation +and installation of the library. + + Activities other than copying, distribution and modification are not +covered by this License; they are outside its scope. The act of +running a program using the Library is not restricted, and output from +such a program is covered only if its contents constitute a work based +on the Library (independent of the use of the Library in a tool for +writing it). Whether that is true depends on what the Library does +and what the program that uses the Library does. + + 1. You may copy and distribute verbatim copies of the Library's +complete source code as you receive it, in any medium, provided that +you conspicuously and appropriately publish on each copy an +appropriate copyright notice and disclaimer of warranty; keep intact +all the notices that refer to this License and to the absence of any +warranty; and distribute a copy of this License along with the +Library. + + You may charge a fee for the physical act of transferring a copy, +and you may at your option offer warranty protection in exchange for a +fee. + + 2. You may modify your copy or copies of the Library or any portion +of it, thus forming a work based on the Library, and copy and +distribute such modifications or work under the terms of Section 1 +above, provided that you also meet all of these conditions: + + a) The modified work must itself be a software library. + + b) You must cause the files modified to carry prominent notices + stating that you changed the files and the date of any change. + + c) You must cause the whole of the work to be licensed at no + charge to all third parties under the terms of this License. + + d) If a facility in the modified Library refers to a function or a + table of data to be supplied by an application program that uses + the facility, other than as an argument passed when the facility + is invoked, then you must make a good faith effort to ensure that, + in the event an application does not supply such function or + table, the facility still operates, and performs whatever part of + its purpose remains meaningful. + + (For example, a function in a library to compute square roots has + a purpose that is entirely well-defined independent of the + application. Therefore, Subsection 2d requires that any + application-supplied function or table used by this function must + be optional: if the application does not supply it, the square + root function must still compute square roots.) + +These requirements apply to the modified work as a whole. If +identifiable sections of that work are not derived from the Library, +and can be reasonably considered independent and separate works in +themselves, then this License, and its terms, do not apply to those +sections when you distribute them as separate works. But when you +distribute the same sections as part of a whole which is a work based +on the Library, the distribution of the whole must be on the terms of +this License, whose permissions for other licensees extend to the +entire whole, and thus to each and every part regardless of who wrote +it. + +Thus, it is not the intent of this section to claim rights or contest +your rights to work written entirely by you; rather, the intent is to +exercise the right to control the distribution of derivative or +collective works based on the Library. + +In addition, mere aggregation of another work not based on the Library +with the Library (or with a work based on the Library) on a volume of +a storage or distribution medium does not bring the other work under +the scope of this License. + + 3. You may opt to apply the terms of the ordinary GNU General Public +License instead of this License to a given copy of the Library. To do +this, you must alter all the notices that refer to this License, so +that they refer to the ordinary GNU General Public License, version 2, +instead of to this License. (If a newer version than version 2 of the +ordinary GNU General Public License has appeared, then you can specify +that version instead if you wish.) Do not make any other change in +these notices. + + Once this change is made in a given copy, it is irreversible for +that copy, so the ordinary GNU General Public License applies to all +subsequent copies and derivative works made from that copy. + + This option is useful when you wish to copy part of the code of +the Library into a program that is not a library. + + 4. You may copy and distribute the Library (or a portion or +derivative of it, under Section 2) in object code or executable form +under the terms of Sections 1 and 2 above provided that you accompany +it with the complete corresponding machine-readable source code, which +must be distributed under the terms of Sections 1 and 2 above on a +medium customarily used for software interchange. + + If distribution of object code is made by offering access to copy +from a designated place, then offering equivalent access to copy the +source code from the same place satisfies the requirement to +distribute the source code, even though third parties are not +compelled to copy the source along with the object code. + + 5. A program that contains no derivative of any portion of the +Library, but is designed to work with the Library by being compiled or +linked with it, is called a "work that uses the Library". Such a +work, in isolation, is not a derivative work of the Library, and +therefore falls outside the scope of this License. + + However, linking a "work that uses the Library" with the Library +creates an executable that is a derivative of the Library (because it +contains portions of the Library), rather than a "work that uses the +library". The executable is therefore covered by this License. +Section 6 states terms for distribution of such executables. + + When a "work that uses the Library" uses material from a header file +that is part of the Library, the object code for the work may be a +derivative work of the Library even though the source code is not. +Whether this is true is especially significant if the work can be +linked without the Library, or if the work is itself a library. The +threshold for this to be true is not precisely defined by law. + + If such an object file uses only numerical parameters, data +structure layouts and accessors, and small macros and small inline +functions (ten lines or less in length), then the use of the object +file is unrestricted, regardless of whether it is legally a derivative +work. (Executables containing this object code plus portions of the +Library will still fall under Section 6.) + + Otherwise, if the work is a derivative of the Library, you may +distribute the object code for the work under the terms of Section 6. +Any executables containing that work also fall under Section 6, +whether or not they are linked directly with the Library itself. + + 6. As an exception to the Sections above, you may also combine or +link a "work that uses the Library" with the Library to produce a +work containing portions of the Library, and distribute that work +under terms of your choice, provided that the terms permit +modification of the work for the customer's own use and reverse +engineering for debugging such modifications. + + You must give prominent notice with each copy of the work that the +Library is used in it and that the Library and its use are covered by +this License. You must supply a copy of this License. If the work +during execution displays copyright notices, you must include the +copyright notice for the Library among them, as well as a reference +directing the user to the copy of this License. Also, you must do one +of these things: + + a) Accompany the work with the complete corresponding + machine-readable source code for the Library including whatever + changes were used in the work (which must be distributed under + Sections 1 and 2 above); and, if the work is an executable linked + with the Library, with the complete machine-readable "work that + uses the Library", as object code and/or source code, so that the + user can modify the Library and then relink to produce a modified + executable containing the modified Library. (It is understood + that the user who changes the contents of definitions files in the + Library will not necessarily be able to recompile the application + to use the modified definitions.) + + b) Use a suitable shared library mechanism for linking with the + Library. A suitable mechanism is one that (1) uses at run time a + copy of the library already present on the user's computer system, + rather than copying library functions into the executable, and (2) + will operate properly with a modified version of the library, if + the user installs one, as long as the modified version is + interface-compatible with the version that the work was made with. + + c) Accompany the work with a written offer, valid for at + least three years, to give the same user the materials + specified in Subsection 6a, above, for a charge no more + than the cost of performing this distribution. + + d) If distribution of the work is made by offering access to copy + from a designated place, offer equivalent access to copy the above + specified materials from the same place. + + e) Verify that the user has already received a copy of these + materials or that you have already sent this user a copy. + + For an executable, the required form of the "work that uses the +Library" must include any data and utility programs needed for +reproducing the executable from it. However, as a special exception, +the materials to be distributed need not include anything that is +normally distributed (in either source or binary form) with the major +components (compiler, kernel, and so on) of the operating system on +which the executable runs, unless that component itself accompanies +the executable. + + It may happen that this requirement contradicts the license +restrictions of other proprietary libraries that do not normally +accompany the operating system. Such a contradiction means you cannot +use both them and the Library together in an executable that you +distribute. + + 7. You may place library facilities that are a work based on the +Library side-by-side in a single library together with other library +facilities not covered by this License, and distribute such a combined +library, provided that the separate distribution of the work based on +the Library and of the other library facilities is otherwise +permitted, and provided that you do these two things: + + a) Accompany the combined library with a copy of the same work + based on the Library, uncombined with any other library + facilities. This must be distributed under the terms of the + Sections above. + + b) Give prominent notice with the combined library of the fact + that part of it is a work based on the Library, and explaining + where to find the accompanying uncombined form of the same work. + + 8. You may not copy, modify, sublicense, link with, or distribute +the Library except as expressly provided under this License. Any +attempt otherwise to copy, modify, sublicense, link with, or +distribute the Library is void, and will automatically terminate your +rights under this License. However, parties who have received copies, +or rights, from you under this License will not have their licenses +terminated so long as such parties remain in full compliance. + + 9. You are not required to accept this License, since you have not +signed it. However, nothing else grants you permission to modify or +distribute the Library or its derivative works. These actions are +prohibited by law if you do not accept this License. Therefore, by +modifying or distributing the Library (or any work based on the +Library), you indicate your acceptance of this License to do so, and +all its terms and conditions for copying, distributing or modifying +the Library or works based on it. + + 10. Each time you redistribute the Library (or any work based on the +Library), the recipient automatically receives a license from the +original licensor to copy, distribute, link with or modify the Library +subject to these terms and conditions. You may not impose any further +restrictions on the recipients' exercise of the rights granted herein. +You are not responsible for enforcing compliance by third parties with +this License. + + 11. If, as a consequence of a court judgment or allegation of patent +infringement or for any other reason (not limited to patent issues), +conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot +distribute so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you +may not distribute the Library at all. For example, if a patent +license would not permit royalty-free redistribution of the Library by +all those who receive copies directly or indirectly through you, then +the only way you could satisfy both it and this License would be to +refrain entirely from distribution of the Library. + +If any portion of this section is held invalid or unenforceable under any +particular circumstance, the balance of the section is intended to apply, +and the section as a whole is intended to apply in other circumstances. + +It is not the purpose of this section to induce you to infringe any +patents or other property right claims or to contest validity of any +such claims; this section has the sole purpose of protecting the +integrity of the free software distribution system which is +implemented by public license practices. Many people have made +generous contributions to the wide range of software distributed +through that system in reliance on consistent application of that +system; it is up to the author/donor to decide if he or she is willing +to distribute software through any other system and a licensee cannot +impose that choice. + +This section is intended to make thoroughly clear what is believed to +be a consequence of the rest of this License. + + 12. If the distribution and/or use of the Library is restricted in +certain countries either by patents or by copyrighted interfaces, the +original copyright holder who places the Library under this License may add +an explicit geographical distribution limitation excluding those countries, +so that distribution is permitted only in or among countries not thus +excluded. In such case, this License incorporates the limitation as if +written in the body of this License. + + 13. The Free Software Foundation may publish revised and/or new +versions of the Lesser General Public License from time to time. +Such new versions will be similar in spirit to the present version, +but may differ in detail to address new problems or concerns. + +Each version is given a distinguishing version number. If the Library +specifies a version number of this License which applies to it and +"any later version", you have the option of following the terms and +conditions either of that version or of any later version published by +the Free Software Foundation. If the Library does not specify a +license version number, you may choose any version ever published by +the Free Software Foundation. + + 14. If you wish to incorporate parts of the Library into other free +programs whose distribution conditions are incompatible with these, +write to the author to ask for permission. For software which is +copyrighted by the Free Software Foundation, write to the Free +Software Foundation; we sometimes make exceptions for this. Our +decision will be guided by the two goals of preserving the free status +of all derivatives of our free software and of promoting the sharing +and reuse of software generally. + + NO WARRANTY + + 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO +WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. +EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR +OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY +KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE +IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE +LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME +THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN +WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY +AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU +FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR +CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE +LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING +RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A +FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF +SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH +DAMAGES. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Libraries + + If you develop a new library, and you want it to be of the greatest +possible use to the public, we recommend making it free software that +everyone can redistribute and change. You can do so by permitting +redistribution under these terms (or, alternatively, under the terms of the +ordinary General Public License). + + To apply these terms, attach the following notices to the library. It is +safest to attach them to the start of each source file to most effectively +convey the exclusion of warranty; and each file should have at least the +"copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + This library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with this library; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + +Also add information on how to contact you by electronic and paper mail. + +You should also get your employer (if you work as a programmer) or your +school, if any, to sign a "copyright disclaimer" for the library, if +necessary. Here is a sample; alter the names: + + Yoyodyne, Inc., hereby disclaims all copyright interest in the + library `Frob' (a library for tweaking knobs) written by James Random Hacker. + + , 1 April 1990 + Ty Coon, President of Vice + +That's all there is to it! diff --git a/test/monniaux/glpk-4.65/src/amd/README b/test/monniaux/glpk-4.65/src/amd/README new file mode 100644 index 00000000..de950eb4 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/README @@ -0,0 +1,58 @@ +NOTE: Files in this subdirectory are NOT part of the GLPK package, but + are used with GLPK. + + The original code was modified according to GLPK requirements by + Andrew Makhorin . +************************************************************************ +AMD Version 2.2, Copyright (C) 2007 by Timothy A. Davis, +Patrick R. Amestoy, and Iain S. Duff. All Rights Reserved. + +Description: + + AMD is a set of routines for pre-ordering sparse matrices prior to + Cholesky or LU factorization, using the approximate minimum degree + ordering algorithm. Written in ANSI/ISO C with a MATLAB interface, + and in Fortran 77. + +Authors: + + Timothy A. Davis (davis at cise.ufl.edu), University of Florida. + Patrick R. Amestoy, ENSEEIHT, Toulouse, France. + Iain S. Duff, Rutherford Appleton Laboratory, UK. + +AMD License: + + Your use or distribution of AMD or any modified version of AMD + implies that you agree to this License. + + This library is free software; you can redistribute it and/or + modify it under the terms of the GNU Lesser General Public License + as published by the Free Software Foundation; either version 2.1 of + the License, or (at your option) any later version. + + This library is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + + You should have received a copy of the GNU Lesser General Public + License along with this library; if not, write to the Free Software + Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 + USA. + + Permission is hereby granted to use or copy this program under the + terms of the GNU LGPL, provided that the Copyright, this License, + and the Availability of the original version is retained on all + copies. User documentation of any code that uses this code or any + modified version of this code must cite the Copyright, this License, + the Availability note, and "Used by permission." Permission to + modify the code and to distribute modified code is granted, provided + the Copyright, this License, and the Availability note are retained, + and a notice that the code was modified is included. + + AMD is available under alternate licences; contact T. Davis for + details. + +Availability: + + http://www.cise.ufl.edu/research/sparse/amd diff --git a/test/monniaux/glpk-4.65/src/amd/amd.h b/test/monniaux/glpk-4.65/src/amd/amd.h new file mode 100644 index 00000000..be662d95 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd.h @@ -0,0 +1,67 @@ +/* amd.h */ + +/* Written by Andrew Makhorin . */ + +#ifndef GLPAMD_H +#define GLPAMD_H + +#define AMD_DATE "May 31, 2007" +#define AMD_VERSION_CODE(main, sub) ((main) * 1000 + (sub)) +#define AMD_MAIN_VERSION 2 +#define AMD_SUB_VERSION 2 +#define AMD_SUBSUB_VERSION 0 +#define AMD_VERSION AMD_VERSION_CODE(AMD_MAIN_VERSION, AMD_SUB_VERSION) + +#define AMD_CONTROL 5 +#define AMD_INFO 20 + +#define AMD_DENSE 0 +#define AMD_AGGRESSIVE 1 + +#define AMD_DEFAULT_DENSE 10.0 +#define AMD_DEFAULT_AGGRESSIVE 1 + +#define AMD_STATUS 0 +#define AMD_N 1 +#define AMD_NZ 2 +#define AMD_SYMMETRY 3 +#define AMD_NZDIAG 4 +#define AMD_NZ_A_PLUS_AT 5 +#define AMD_NDENSE 6 +#define AMD_MEMORY 7 +#define AMD_NCMPA 8 +#define AMD_LNZ 9 +#define AMD_NDIV 10 +#define AMD_NMULTSUBS_LDL 11 +#define AMD_NMULTSUBS_LU 12 +#define AMD_DMAX 13 + +#define AMD_OK 0 +#define AMD_OUT_OF_MEMORY (-1) +#define AMD_INVALID (-2) +#define AMD_OK_BUT_JUMBLED 1 + +#define amd_order _glp_amd_order +int amd_order(int n, const int Ap[], const int Ai[], int P[], + double Control[], double Info[]); + +#define amd_2 _glp_amd_2 +void amd_2(int n, int Pe[], int Iw[], int Len[], int iwlen, int pfree, + int Nv[], int Next[], int Last[], int Head[], int Elen[], + int Degree[], int W[], double Control[], double Info[]); + +#define amd_valid _glp_amd_valid +int amd_valid(int n_row, int n_col, const int Ap[], const int Ai[]); + +#define amd_defaults _glp_amd_defaults +void amd_defaults(double Control[]); + +#define amd_control _glp_amd_control +void amd_control(double Control[]); + +#define amd_info _glp_amd_info +void amd_info(double Info[]); + +#endif + +/* eof */ diff --git a/test/monniaux/glpk-4.65/src/amd/amd_1.c b/test/monniaux/glpk-4.65/src/amd/amd_1.c new file mode 100644 index 00000000..4f9b07d7 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_1.c @@ -0,0 +1,181 @@ +/* ========================================================================= */ +/* === AMD_1 =============================================================== */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* AMD_1: Construct A+A' for a sparse matrix A and perform the AMD ordering. + * + * The n-by-n sparse matrix A can be unsymmetric. It is stored in MATLAB-style + * compressed-column form, with sorted row indices in each column, and no + * duplicate entries. Diagonal entries may be present, but they are ignored. + * Row indices of column j of A are stored in Ai [Ap [j] ... Ap [j+1]-1]. + * Ap [0] must be zero, and nz = Ap [n] is the number of entries in A. The + * size of the matrix, n, must be greater than or equal to zero. + * + * This routine must be preceded by a call to AMD_aat, which computes the + * number of entries in each row/column in A+A', excluding the diagonal. + * Len [j], on input, is the number of entries in row/column j of A+A'. This + * routine constructs the matrix A+A' and then calls AMD_2. No error checking + * is performed (this was done in AMD_valid). + */ + +#include "amd_internal.h" + +GLOBAL void AMD_1 +( + Int n, /* n > 0 */ + const Int Ap [ ], /* input of size n+1, not modified */ + const Int Ai [ ], /* input of size nz = Ap [n], not modified */ + Int P [ ], /* size n output permutation */ + Int Pinv [ ], /* size n output inverse permutation */ + Int Len [ ], /* size n input, undefined on output */ + Int slen, /* slen >= sum (Len [0..n-1]) + 7n, + * ideally slen = 1.2 * sum (Len) + 8n */ + Int S [ ], /* size slen workspace */ + double Control [ ], /* input array of size AMD_CONTROL */ + double Info [ ] /* output array of size AMD_INFO */ +) +{ + Int i, j, k, p, pfree, iwlen, pj, p1, p2, pj2, *Iw, *Pe, *Nv, *Head, + *Elen, *Degree, *s, *W, *Sp, *Tp ; + + /* --------------------------------------------------------------------- */ + /* construct the matrix for AMD_2 */ + /* --------------------------------------------------------------------- */ + + ASSERT (n > 0) ; + + iwlen = slen - 6*n ; + s = S ; + Pe = s ; s += n ; + Nv = s ; s += n ; + Head = s ; s += n ; + Elen = s ; s += n ; + Degree = s ; s += n ; + W = s ; s += n ; + Iw = s ; s += iwlen ; + + ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; + + /* construct the pointers for A+A' */ + Sp = Nv ; /* use Nv and W as workspace for Sp and Tp [ */ + Tp = W ; + pfree = 0 ; + for (j = 0 ; j < n ; j++) + { + Pe [j] = pfree ; + Sp [j] = pfree ; + pfree += Len [j] ; + } + + /* Note that this restriction on iwlen is slightly more restrictive than + * what is strictly required in AMD_2. AMD_2 can operate with no elbow + * room at all, but it will be very slow. For better performance, at + * least size-n elbow room is enforced. */ + ASSERT (iwlen >= pfree + n) ; + +#ifndef NDEBUG + for (p = 0 ; p < iwlen ; p++) Iw [p] = EMPTY ; +#endif + + for (k = 0 ; k < n ; k++) + { + AMD_DEBUG1 (("Construct row/column k= "ID" of A+A'\n", k)) ; + p1 = Ap [k] ; + p2 = Ap [k+1] ; + + /* construct A+A' */ + for (p = p1 ; p < p2 ; ) + { + /* scan the upper triangular part of A */ + j = Ai [p] ; + ASSERT (j >= 0 && j < n) ; + if (j < k) + { + /* entry A (j,k) in the strictly upper triangular part */ + ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; + ASSERT (Sp [k] < (k == n-1 ? pfree : Pe [k+1])) ; + Iw [Sp [j]++] = k ; + Iw [Sp [k]++] = j ; + p++ ; + } + else if (j == k) + { + /* skip the diagonal */ + p++ ; + break ; + } + else /* j > k */ + { + /* first entry below the diagonal */ + break ; + } + /* scan lower triangular part of A, in column j until reaching + * row k. Start where last scan left off. */ + ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; + pj2 = Ap [j+1] ; + for (pj = Tp [j] ; pj < pj2 ; ) + { + i = Ai [pj] ; + ASSERT (i >= 0 && i < n) ; + if (i < k) + { + /* A (i,j) is only in the lower part, not in upper */ + ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; + ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; + Iw [Sp [i]++] = j ; + Iw [Sp [j]++] = i ; + pj++ ; + } + else if (i == k) + { + /* entry A (k,j) in lower part and A (j,k) in upper */ + pj++ ; + break ; + } + else /* i > k */ + { + /* consider this entry later, when k advances to i */ + break ; + } + } + Tp [j] = pj ; + } + Tp [k] = p ; + } + + /* clean up, for remaining mismatched entries */ + for (j = 0 ; j < n ; j++) + { + for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) + { + i = Ai [pj] ; + ASSERT (i >= 0 && i < n) ; + /* A (i,j) is only in the lower part, not in upper */ + ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; + ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; + Iw [Sp [i]++] = j ; + Iw [Sp [j]++] = i ; + } + } + +#ifndef NDEBUG + for (j = 0 ; j < n-1 ; j++) ASSERT (Sp [j] == Pe [j+1]) ; + ASSERT (Sp [n-1] == pfree) ; +#endif + + /* Tp and Sp no longer needed ] */ + + /* --------------------------------------------------------------------- */ + /* order the matrix */ + /* --------------------------------------------------------------------- */ + + AMD_2 (n, Pe, Iw, Len, iwlen, pfree, + Nv, Pinv, P, Head, Elen, Degree, W, Control, Info) ; +} diff --git a/test/monniaux/glpk-4.65/src/amd/amd_2.c b/test/monniaux/glpk-4.65/src/amd/amd_2.c new file mode 100644 index 00000000..36ae828a --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_2.c @@ -0,0 +1,1842 @@ +/* ========================================================================= */ +/* === AMD_2 =============================================================== */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* AMD_2: performs the AMD ordering on a symmetric sparse matrix A, followed + * by a postordering (via depth-first search) of the assembly tree using the + * AMD_postorder routine. + */ + +#include "amd_internal.h" + +/* ========================================================================= */ +/* === clear_flag ========================================================== */ +/* ========================================================================= */ + +static Int clear_flag (Int wflg, Int wbig, Int W [ ], Int n) +{ + Int x ; + if (wflg < 2 || wflg >= wbig) + { + for (x = 0 ; x < n ; x++) + { + if (W [x] != 0) W [x] = 1 ; + } + wflg = 2 ; + } + /* at this point, W [0..n-1] < wflg holds */ + return (wflg) ; +} + + +/* ========================================================================= */ +/* === AMD_2 =============================================================== */ +/* ========================================================================= */ + +GLOBAL void AMD_2 +( + Int n, /* A is n-by-n, where n > 0 */ + Int Pe [ ], /* Pe [0..n-1]: index in Iw of row i on input */ + Int Iw [ ], /* workspace of size iwlen. Iw [0..pfree-1] + * holds the matrix on input */ + Int Len [ ], /* Len [0..n-1]: length for row/column i on input */ + Int iwlen, /* length of Iw. iwlen >= pfree + n */ + Int pfree, /* Iw [pfree ... iwlen-1] is empty on input */ + + /* 7 size-n workspaces, not defined on input: */ + Int Nv [ ], /* the size of each supernode on output */ + Int Next [ ], /* the output inverse permutation */ + Int Last [ ], /* the output permutation */ + Int Head [ ], + Int Elen [ ], /* the size columns of L for each supernode */ + Int Degree [ ], + Int W [ ], + + /* control parameters and output statistics */ + double Control [ ], /* array of size AMD_CONTROL */ + double Info [ ] /* array of size AMD_INFO */ +) +{ + +/* + * Given a representation of the nonzero pattern of a symmetric matrix, A, + * (excluding the diagonal) perform an approximate minimum (UMFPACK/MA38-style) + * degree ordering to compute a pivot order such that the introduction of + * nonzeros (fill-in) in the Cholesky factors A = LL' is kept low. At each + * step, the pivot selected is the one with the minimum UMFAPACK/MA38-style + * upper-bound on the external degree. This routine can optionally perform + * aggresive absorption (as done by MC47B in the Harwell Subroutine + * Library). + * + * The approximate degree algorithm implemented here is the symmetric analog of + * the degree update algorithm in MA38 and UMFPACK (the Unsymmetric-pattern + * MultiFrontal PACKage, both by Davis and Duff). The routine is based on the + * MA27 minimum degree ordering algorithm by Iain Duff and John Reid. + * + * This routine is a translation of the original AMDBAR and MC47B routines, + * in Fortran, with the following modifications: + * + * (1) dense rows/columns are removed prior to ordering the matrix, and placed + * last in the output order. The presence of a dense row/column can + * increase the ordering time by up to O(n^2), unless they are removed + * prior to ordering. + * + * (2) the minimum degree ordering is followed by a postordering (depth-first + * search) of the assembly tree. Note that mass elimination (discussed + * below) combined with the approximate degree update can lead to the mass + * elimination of nodes with lower exact degree than the current pivot + * element. No additional fill-in is caused in the representation of the + * Schur complement. The mass-eliminated nodes merge with the current + * pivot element. They are ordered prior to the current pivot element. + * Because they can have lower exact degree than the current element, the + * merger of two or more of these nodes in the current pivot element can + * lead to a single element that is not a "fundamental supernode". The + * diagonal block can have zeros in it. Thus, the assembly tree used here + * is not guaranteed to be the precise supernodal elemination tree (with + * "funadmental" supernodes), and the postordering performed by this + * routine is not guaranteed to be a precise postordering of the + * elimination tree. + * + * (3) input parameters are added, to control aggressive absorption and the + * detection of "dense" rows/columns of A. + * + * (4) additional statistical information is returned, such as the number of + * nonzeros in L, and the flop counts for subsequent LDL' and LU + * factorizations. These are slight upper bounds, because of the mass + * elimination issue discussed above. + * + * (5) additional routines are added to interface this routine to MATLAB + * to provide a simple C-callable user-interface, to check inputs for + * errors, compute the symmetry of the pattern of A and the number of + * nonzeros in each row/column of A+A', to compute the pattern of A+A', + * to perform the assembly tree postordering, and to provide debugging + * ouput. Many of these functions are also provided by the Fortran + * Harwell Subroutine Library routine MC47A. + * + * (6) both int and UF_long versions are provided. In the descriptions below + * and integer is and int or UF_long depending on which version is + * being used. + + ********************************************************************** + ***** CAUTION: ARGUMENTS ARE NOT CHECKED FOR ERRORS ON INPUT. ****** + ********************************************************************** + ** If you want error checking, a more versatile input format, and a ** + ** simpler user interface, use amd_order or amd_l_order instead. ** + ** This routine is not meant to be user-callable. ** + ********************************************************************** + + * ---------------------------------------------------------------------------- + * References: + * ---------------------------------------------------------------------------- + * + * [1] Timothy A. Davis and Iain Duff, "An unsymmetric-pattern multifrontal + * method for sparse LU factorization", SIAM J. Matrix Analysis and + * Applications, vol. 18, no. 1, pp. 140-158. Discusses UMFPACK / MA38, + * which first introduced the approximate minimum degree used by this + * routine. + * + * [2] Patrick Amestoy, Timothy A. Davis, and Iain S. Duff, "An approximate + * minimum degree ordering algorithm," SIAM J. Matrix Analysis and + * Applications, vol. 17, no. 4, pp. 886-905, 1996. Discusses AMDBAR and + * MC47B, which are the Fortran versions of this routine. + * + * [3] Alan George and Joseph Liu, "The evolution of the minimum degree + * ordering algorithm," SIAM Review, vol. 31, no. 1, pp. 1-19, 1989. + * We list below the features mentioned in that paper that this code + * includes: + * + * mass elimination: + * Yes. MA27 relied on supervariable detection for mass elimination. + * + * indistinguishable nodes: + * Yes (we call these "supervariables"). This was also in the MA27 + * code - although we modified the method of detecting them (the + * previous hash was the true degree, which we no longer keep track + * of). A supervariable is a set of rows with identical nonzero + * pattern. All variables in a supervariable are eliminated together. + * Each supervariable has as its numerical name that of one of its + * variables (its principal variable). + * + * quotient graph representation: + * Yes. We use the term "element" for the cliques formed during + * elimination. This was also in the MA27 code. The algorithm can + * operate in place, but it will work more efficiently if given some + * "elbow room." + * + * element absorption: + * Yes. This was also in the MA27 code. + * + * external degree: + * Yes. The MA27 code was based on the true degree. + * + * incomplete degree update and multiple elimination: + * No. This was not in MA27, either. Our method of degree update + * within MC47B is element-based, not variable-based. It is thus + * not well-suited for use with incomplete degree update or multiple + * elimination. + * + * Authors, and Copyright (C) 2004 by: + * Timothy A. Davis, Patrick Amestoy, Iain S. Duff, John K. Reid. + * + * Acknowledgements: This work (and the UMFPACK package) was supported by the + * National Science Foundation (ASC-9111263, DMS-9223088, and CCR-0203270). + * The UMFPACK/MA38 approximate degree update algorithm, the unsymmetric analog + * which forms the basis of AMD, was developed while Tim Davis was supported by + * CERFACS (Toulouse, France) in a post-doctoral position. This C version, and + * the etree postorder, were written while Tim Davis was on sabbatical at + * Stanford University and Lawrence Berkeley National Laboratory. + + * ---------------------------------------------------------------------------- + * INPUT ARGUMENTS (unaltered): + * ---------------------------------------------------------------------------- + + * n: The matrix order. Restriction: n >= 1. + * + * iwlen: The size of the Iw array. On input, the matrix is stored in + * Iw [0..pfree-1]. However, Iw [0..iwlen-1] should be slightly larger + * than what is required to hold the matrix, at least iwlen >= pfree + n. + * Otherwise, excessive compressions will take place. The recommended + * value of iwlen is 1.2 * pfree + n, which is the value used in the + * user-callable interface to this routine (amd_order.c). The algorithm + * will not run at all if iwlen < pfree. Restriction: iwlen >= pfree + n. + * Note that this is slightly more restrictive than the actual minimum + * (iwlen >= pfree), but AMD_2 will be very slow with no elbow room. + * Thus, this routine enforces a bare minimum elbow room of size n. + * + * pfree: On input the tail end of the array, Iw [pfree..iwlen-1], is empty, + * and the matrix is stored in Iw [0..pfree-1]. During execution, + * additional data is placed in Iw, and pfree is modified so that + * Iw [pfree..iwlen-1] is always the unused part of Iw. + * + * Control: A double array of size AMD_CONTROL containing input parameters + * that affect how the ordering is computed. If NULL, then default + * settings are used. + * + * Control [AMD_DENSE] is used to determine whether or not a given input + * row is "dense". A row is "dense" if the number of entries in the row + * exceeds Control [AMD_DENSE] times sqrt (n), except that rows with 16 or + * fewer entries are never considered "dense". To turn off the detection + * of dense rows, set Control [AMD_DENSE] to a negative number, or to a + * number larger than sqrt (n). The default value of Control [AMD_DENSE] + * is AMD_DEFAULT_DENSE, which is defined in amd.h as 10. + * + * Control [AMD_AGGRESSIVE] is used to determine whether or not aggressive + * absorption is to be performed. If nonzero, then aggressive absorption + * is performed (this is the default). + + * ---------------------------------------------------------------------------- + * INPUT/OUPUT ARGUMENTS: + * ---------------------------------------------------------------------------- + * + * Pe: An integer array of size n. On input, Pe [i] is the index in Iw of + * the start of row i. Pe [i] is ignored if row i has no off-diagonal + * entries. Thus Pe [i] must be in the range 0 to pfree-1 for non-empty + * rows. + * + * During execution, it is used for both supervariables and elements: + * + * Principal supervariable i: index into Iw of the description of + * supervariable i. A supervariable represents one or more rows of + * the matrix with identical nonzero pattern. In this case, + * Pe [i] >= 0. + * + * Non-principal supervariable i: if i has been absorbed into another + * supervariable j, then Pe [i] = FLIP (j), where FLIP (j) is defined + * as (-(j)-2). Row j has the same pattern as row i. Note that j + * might later be absorbed into another supervariable j2, in which + * case Pe [i] is still FLIP (j), and Pe [j] = FLIP (j2) which is + * < EMPTY, where EMPTY is defined as (-1) in amd_internal.h. + * + * Unabsorbed element e: the index into Iw of the description of element + * e, if e has not yet been absorbed by a subsequent element. Element + * e is created when the supervariable of the same name is selected as + * the pivot. In this case, Pe [i] >= 0. + * + * Absorbed element e: if element e is absorbed into element e2, then + * Pe [e] = FLIP (e2). This occurs when the pattern of e (which we + * refer to as Le) is found to be a subset of the pattern of e2 (that + * is, Le2). In this case, Pe [i] < EMPTY. If element e is "null" + * (it has no nonzeros outside its pivot block), then Pe [e] = EMPTY, + * and e is the root of an assembly subtree (or the whole tree if + * there is just one such root). + * + * Dense variable i: if i is "dense", then Pe [i] = EMPTY. + * + * On output, Pe holds the assembly tree/forest, which implicitly + * represents a pivot order with identical fill-in as the actual order + * (via a depth-first search of the tree), as follows. If Nv [i] > 0, + * then i represents a node in the assembly tree, and the parent of i is + * Pe [i], or EMPTY if i is a root. If Nv [i] = 0, then (i, Pe [i]) + * represents an edge in a subtree, the root of which is a node in the + * assembly tree. Note that i refers to a row/column in the original + * matrix, not the permuted matrix. + * + * Info: A double array of size AMD_INFO. If present, (that is, not NULL), + * then statistics about the ordering are returned in the Info array. + * See amd.h for a description. + + * ---------------------------------------------------------------------------- + * INPUT/MODIFIED (undefined on output): + * ---------------------------------------------------------------------------- + * + * Len: An integer array of size n. On input, Len [i] holds the number of + * entries in row i of the matrix, excluding the diagonal. The contents + * of Len are undefined on output. + * + * Iw: An integer array of size iwlen. On input, Iw [0..pfree-1] holds the + * description of each row i in the matrix. The matrix must be symmetric, + * and both upper and lower triangular parts must be present. The + * diagonal must not be present. Row i is held as follows: + * + * Len [i]: the length of the row i data structure in the Iw array. + * Iw [Pe [i] ... Pe [i] + Len [i] - 1]: + * the list of column indices for nonzeros in row i (simple + * supervariables), excluding the diagonal. All supervariables + * start with one row/column each (supervariable i is just row i). + * If Len [i] is zero on input, then Pe [i] is ignored on input. + * + * Note that the rows need not be in any particular order, and there + * may be empty space between the rows. + * + * During execution, the supervariable i experiences fill-in. This is + * represented by placing in i a list of the elements that cause fill-in + * in supervariable i: + * + * Len [i]: the length of supervariable i in the Iw array. + * Iw [Pe [i] ... Pe [i] + Elen [i] - 1]: + * the list of elements that contain i. This list is kept short + * by removing absorbed elements. + * Iw [Pe [i] + Elen [i] ... Pe [i] + Len [i] - 1]: + * the list of supervariables in i. This list is kept short by + * removing nonprincipal variables, and any entry j that is also + * contained in at least one of the elements (j in Le) in the list + * for i (e in row i). + * + * When supervariable i is selected as pivot, we create an element e of + * the same name (e=i): + * + * Len [e]: the length of element e in the Iw array. + * Iw [Pe [e] ... Pe [e] + Len [e] - 1]: + * the list of supervariables in element e. + * + * An element represents the fill-in that occurs when supervariable i is + * selected as pivot (which represents the selection of row i and all + * non-principal variables whose principal variable is i). We use the + * term Le to denote the set of all supervariables in element e. Absorbed + * supervariables and elements are pruned from these lists when + * computationally convenient. + * + * CAUTION: THE INPUT MATRIX IS OVERWRITTEN DURING COMPUTATION. + * The contents of Iw are undefined on output. + + * ---------------------------------------------------------------------------- + * OUTPUT (need not be set on input): + * ---------------------------------------------------------------------------- + * + * Nv: An integer array of size n. During execution, ABS (Nv [i]) is equal to + * the number of rows that are represented by the principal supervariable + * i. If i is a nonprincipal or dense variable, then Nv [i] = 0. + * Initially, Nv [i] = 1 for all i. Nv [i] < 0 signifies that i is a + * principal variable in the pattern Lme of the current pivot element me. + * After element me is constructed, Nv [i] is set back to a positive + * value. + * + * On output, Nv [i] holds the number of pivots represented by super + * row/column i of the original matrix, or Nv [i] = 0 for non-principal + * rows/columns. Note that i refers to a row/column in the original + * matrix, not the permuted matrix. + * + * Elen: An integer array of size n. See the description of Iw above. At the + * start of execution, Elen [i] is set to zero for all rows i. During + * execution, Elen [i] is the number of elements in the list for + * supervariable i. When e becomes an element, Elen [e] = FLIP (esize) is + * set, where esize is the size of the element (the number of pivots, plus + * the number of nonpivotal entries). Thus Elen [e] < EMPTY. + * Elen (i) = EMPTY set when variable i becomes nonprincipal. + * + * For variables, Elen (i) >= EMPTY holds until just before the + * postordering and permutation vectors are computed. For elements, + * Elen [e] < EMPTY holds. + * + * On output, Elen [i] is the degree of the row/column in the Cholesky + * factorization of the permuted matrix, corresponding to the original row + * i, if i is a super row/column. It is equal to EMPTY if i is + * non-principal. Note that i refers to a row/column in the original + * matrix, not the permuted matrix. + * + * Note that the contents of Elen on output differ from the Fortran + * version (Elen holds the inverse permutation in the Fortran version, + * which is instead returned in the Next array in this C version, + * described below). + * + * Last: In a degree list, Last [i] is the supervariable preceding i, or EMPTY + * if i is the head of the list. In a hash bucket, Last [i] is the hash + * key for i. + * + * Last [Head [hash]] is also used as the head of a hash bucket if + * Head [hash] contains a degree list (see the description of Head, + * below). + * + * On output, Last [0..n-1] holds the permutation. That is, if + * i = Last [k], then row i is the kth pivot row (where k ranges from 0 to + * n-1). Row Last [k] of A is the kth row in the permuted matrix, PAP'. + * + * Next: Next [i] is the supervariable following i in a link list, or EMPTY if + * i is the last in the list. Used for two kinds of lists: degree lists + * and hash buckets (a supervariable can be in only one kind of list at a + * time). + * + * On output Next [0..n-1] holds the inverse permutation. That is, if + * k = Next [i], then row i is the kth pivot row. Row i of A appears as + * the (Next[i])-th row in the permuted matrix, PAP'. + * + * Note that the contents of Next on output differ from the Fortran + * version (Next is undefined on output in the Fortran version). + + * ---------------------------------------------------------------------------- + * LOCAL WORKSPACE (not input or output - used only during execution): + * ---------------------------------------------------------------------------- + * + * Degree: An integer array of size n. If i is a supervariable, then + * Degree [i] holds the current approximation of the external degree of + * row i (an upper bound). The external degree is the number of nonzeros + * in row i, minus ABS (Nv [i]), the diagonal part. The bound is equal to + * the exact external degree if Elen [i] is less than or equal to two. + * + * We also use the term "external degree" for elements e to refer to + * |Le \ Lme|. If e is an element, then Degree [e] is |Le|, which is the + * degree of the off-diagonal part of the element e (not including the + * diagonal part). + * + * Head: An integer array of size n. Head is used for degree lists. + * Head [deg] is the first supervariable in a degree list. All + * supervariables i in a degree list Head [deg] have the same approximate + * degree, namely, deg = Degree [i]. If the list Head [deg] is empty then + * Head [deg] = EMPTY. + * + * During supervariable detection Head [hash] also serves as a pointer to + * a hash bucket. If Head [hash] >= 0, there is a degree list of degree + * hash. The hash bucket head pointer is Last [Head [hash]]. If + * Head [hash] = EMPTY, then the degree list and hash bucket are both + * empty. If Head [hash] < EMPTY, then the degree list is empty, and + * FLIP (Head [hash]) is the head of the hash bucket. After supervariable + * detection is complete, all hash buckets are empty, and the + * (Last [Head [hash]] = EMPTY) condition is restored for the non-empty + * degree lists. + * + * W: An integer array of size n. The flag array W determines the status of + * elements and variables, and the external degree of elements. + * + * for elements: + * if W [e] = 0, then the element e is absorbed. + * if W [e] >= wflg, then W [e] - wflg is the size of the set + * |Le \ Lme|, in terms of nonzeros (the sum of ABS (Nv [i]) for + * each principal variable i that is both in the pattern of + * element e and NOT in the pattern of the current pivot element, + * me). + * if wflg > W [e] > 0, then e is not absorbed and has not yet been + * seen in the scan of the element lists in the computation of + * |Le\Lme| in Scan 1 below. + * + * for variables: + * during supervariable detection, if W [j] != wflg then j is + * not in the pattern of variable i. + * + * The W array is initialized by setting W [i] = 1 for all i, and by + * setting wflg = 2. It is reinitialized if wflg becomes too large (to + * ensure that wflg+n does not cause integer overflow). + + * ---------------------------------------------------------------------------- + * LOCAL INTEGERS: + * ---------------------------------------------------------------------------- + */ + + Int deg, degme, dext, lemax, e, elenme, eln, i, ilast, inext, j, + jlast, jnext, k, knt1, knt2, knt3, lenj, ln, me, mindeg, nel, nleft, + nvi, nvj, nvpiv, slenme, wbig, we, wflg, wnvi, ok, ndense, ncmpa, + dense, aggressive ; + + unsigned Int hash ; /* unsigned, so that hash % n is well defined.*/ + +/* + * deg: the degree of a variable or element + * degme: size, |Lme|, of the current element, me (= Degree [me]) + * dext: external degree, |Le \ Lme|, of some element e + * lemax: largest |Le| seen so far (called dmax in Fortran version) + * e: an element + * elenme: the length, Elen [me], of element list of pivotal variable + * eln: the length, Elen [...], of an element list + * hash: the computed value of the hash function + * i: a supervariable + * ilast: the entry in a link list preceding i + * inext: the entry in a link list following i + * j: a supervariable + * jlast: the entry in a link list preceding j + * jnext: the entry in a link list, or path, following j + * k: the pivot order of an element or variable + * knt1: loop counter used during element construction + * knt2: loop counter used during element construction + * knt3: loop counter used during compression + * lenj: Len [j] + * ln: length of a supervariable list + * me: current supervariable being eliminated, and the current + * element created by eliminating that supervariable + * mindeg: current minimum degree + * nel: number of pivots selected so far + * nleft: n - nel, the number of nonpivotal rows/columns remaining + * nvi: the number of variables in a supervariable i (= Nv [i]) + * nvj: the number of variables in a supervariable j (= Nv [j]) + * nvpiv: number of pivots in current element + * slenme: number of variables in variable list of pivotal variable + * wbig: = INT_MAX - n for the int version, UF_long_max - n for the + * UF_long version. wflg is not allowed to be >= wbig. + * we: W [e] + * wflg: used for flagging the W array. See description of Iw. + * wnvi: wflg - Nv [i] + * x: either a supervariable or an element + * + * ok: true if supervariable j can be absorbed into i + * ndense: number of "dense" rows/columns + * dense: rows/columns with initial degree > dense are considered "dense" + * aggressive: true if aggressive absorption is being performed + * ncmpa: number of garbage collections + + * ---------------------------------------------------------------------------- + * LOCAL DOUBLES, used for statistical output only (except for alpha): + * ---------------------------------------------------------------------------- + */ + + double f, r, ndiv, s, nms_lu, nms_ldl, dmax, alpha, lnz, lnzme ; + +/* + * f: nvpiv + * r: degme + nvpiv + * ndiv: number of divisions for LU or LDL' factorizations + * s: number of multiply-subtract pairs for LU factorization, for the + * current element me + * nms_lu number of multiply-subtract pairs for LU factorization + * nms_ldl number of multiply-subtract pairs for LDL' factorization + * dmax: the largest number of entries in any column of L, including the + * diagonal + * alpha: "dense" degree ratio + * lnz: the number of nonzeros in L (excluding the diagonal) + * lnzme: the number of nonzeros in L (excl. the diagonal) for the + * current element me + + * ---------------------------------------------------------------------------- + * LOCAL "POINTERS" (indices into the Iw array) + * ---------------------------------------------------------------------------- +*/ + + Int p, p1, p2, p3, p4, pdst, pend, pj, pme, pme1, pme2, pn, psrc ; + +/* + * Any parameter (Pe [...] or pfree) or local variable starting with "p" (for + * Pointer) is an index into Iw, and all indices into Iw use variables starting + * with "p." The only exception to this rule is the iwlen input argument. + * + * p: pointer into lots of things + * p1: Pe [i] for some variable i (start of element list) + * p2: Pe [i] + Elen [i] - 1 for some variable i + * p3: index of first supervariable in clean list + * p4: + * pdst: destination pointer, for compression + * pend: end of memory to compress + * pj: pointer into an element or variable + * pme: pointer into the current element (pme1...pme2) + * pme1: the current element, me, is stored in Iw [pme1...pme2] + * pme2: the end of the current element + * pn: pointer into a "clean" variable, also used to compress + * psrc: source pointer, for compression +*/ + +/* ========================================================================= */ +/* INITIALIZATIONS */ +/* ========================================================================= */ + + /* Note that this restriction on iwlen is slightly more restrictive than + * what is actually required in AMD_2. AMD_2 can operate with no elbow + * room at all, but it will be slow. For better performance, at least + * size-n elbow room is enforced. */ + ASSERT (iwlen >= pfree + n) ; + ASSERT (n > 0) ; + + /* initialize output statistics */ + lnz = 0 ; + ndiv = 0 ; + nms_lu = 0 ; + nms_ldl = 0 ; + dmax = 1 ; + me = EMPTY ; + + mindeg = 0 ; + ncmpa = 0 ; + nel = 0 ; + lemax = 0 ; + + /* get control parameters */ + if (Control != (double *) NULL) + { + alpha = Control [AMD_DENSE] ; + aggressive = (Control [AMD_AGGRESSIVE] != 0) ; + } + else + { + alpha = AMD_DEFAULT_DENSE ; + aggressive = AMD_DEFAULT_AGGRESSIVE ; + } + /* Note: if alpha is NaN, this is undefined: */ + if (alpha < 0) + { + /* only remove completely dense rows/columns */ + dense = n-2 ; + } + else + { + dense = alpha * sqrt ((double) n) ; + } + dense = MAX (16, dense) ; + dense = MIN (n, dense) ; + AMD_DEBUG1 (("\n\nAMD (debug), alpha %g, aggr. "ID"\n", + alpha, aggressive)) ; + + for (i = 0 ; i < n ; i++) + { + Last [i] = EMPTY ; + Head [i] = EMPTY ; + Next [i] = EMPTY ; + /* if separate Hhead array is used for hash buckets: * + Hhead [i] = EMPTY ; + */ + Nv [i] = 1 ; + W [i] = 1 ; + Elen [i] = 0 ; + Degree [i] = Len [i] ; + } + +#ifndef NDEBUG + AMD_DEBUG1 (("\n======Nel "ID" initial\n", nel)) ; + AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, Last, + Head, Elen, Degree, W, -1) ; +#endif + + /* initialize wflg */ + wbig = Int_MAX - n ; + wflg = clear_flag (0, wbig, W, n) ; + + /* --------------------------------------------------------------------- */ + /* initialize degree lists and eliminate dense and empty rows */ + /* --------------------------------------------------------------------- */ + + ndense = 0 ; + + for (i = 0 ; i < n ; i++) + { + deg = Degree [i] ; + ASSERT (deg >= 0 && deg < n) ; + if (deg == 0) + { + + /* ------------------------------------------------------------- + * we have a variable that can be eliminated at once because + * there is no off-diagonal non-zero in its row. Note that + * Nv [i] = 1 for an empty variable i. It is treated just + * the same as an eliminated element i. + * ------------------------------------------------------------- */ + + Elen [i] = FLIP (1) ; + nel++ ; + Pe [i] = EMPTY ; + W [i] = 0 ; + + } + else if (deg > dense) + { + + /* ------------------------------------------------------------- + * Dense variables are not treated as elements, but as unordered, + * non-principal variables that have no parent. They do not take + * part in the postorder, since Nv [i] = 0. Note that the Fortran + * version does not have this option. + * ------------------------------------------------------------- */ + + AMD_DEBUG1 (("Dense node "ID" degree "ID"\n", i, deg)) ; + ndense++ ; + Nv [i] = 0 ; /* do not postorder this node */ + Elen [i] = EMPTY ; + nel++ ; + Pe [i] = EMPTY ; + + } + else + { + + /* ------------------------------------------------------------- + * place i in the degree list corresponding to its degree + * ------------------------------------------------------------- */ + + inext = Head [deg] ; + ASSERT (inext >= EMPTY && inext < n) ; + if (inext != EMPTY) Last [inext] = i ; + Next [i] = inext ; + Head [deg] = i ; + + } + } + +/* ========================================================================= */ +/* WHILE (selecting pivots) DO */ +/* ========================================================================= */ + + while (nel < n) + { + +#ifndef NDEBUG + AMD_DEBUG1 (("\n======Nel "ID"\n", nel)) ; + if (AMD_debug >= 2) + { + AMD_dump (n, Pe, Iw, Len, iwlen, pfree, Nv, Next, + Last, Head, Elen, Degree, W, nel) ; + } +#endif + +/* ========================================================================= */ +/* GET PIVOT OF MINIMUM DEGREE */ +/* ========================================================================= */ + + /* ----------------------------------------------------------------- */ + /* find next supervariable for elimination */ + /* ----------------------------------------------------------------- */ + + ASSERT (mindeg >= 0 && mindeg < n) ; + for (deg = mindeg ; deg < n ; deg++) + { + me = Head [deg] ; + if (me != EMPTY) break ; + } + mindeg = deg ; + ASSERT (me >= 0 && me < n) ; + AMD_DEBUG1 (("=================me: "ID"\n", me)) ; + + /* ----------------------------------------------------------------- */ + /* remove chosen variable from link list */ + /* ----------------------------------------------------------------- */ + + inext = Next [me] ; + ASSERT (inext >= EMPTY && inext < n) ; + if (inext != EMPTY) Last [inext] = EMPTY ; + Head [deg] = inext ; + + /* ----------------------------------------------------------------- */ + /* me represents the elimination of pivots nel to nel+Nv[me]-1. */ + /* place me itself as the first in this set. */ + /* ----------------------------------------------------------------- */ + + elenme = Elen [me] ; + nvpiv = Nv [me] ; + ASSERT (nvpiv > 0) ; + nel += nvpiv ; + +/* ========================================================================= */ +/* CONSTRUCT NEW ELEMENT */ +/* ========================================================================= */ + + /* ----------------------------------------------------------------- + * At this point, me is the pivotal supervariable. It will be + * converted into the current element. Scan list of the pivotal + * supervariable, me, setting tree pointers and constructing new list + * of supervariables for the new element, me. p is a pointer to the + * current position in the old list. + * ----------------------------------------------------------------- */ + + /* flag the variable "me" as being in Lme by negating Nv [me] */ + Nv [me] = -nvpiv ; + degme = 0 ; + ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ; + + if (elenme == 0) + { + + /* ------------------------------------------------------------- */ + /* construct the new element in place */ + /* ------------------------------------------------------------- */ + + pme1 = Pe [me] ; + pme2 = pme1 - 1 ; + + for (p = pme1 ; p <= pme1 + Len [me] - 1 ; p++) + { + i = Iw [p] ; + ASSERT (i >= 0 && i < n && Nv [i] >= 0) ; + nvi = Nv [i] ; + if (nvi > 0) + { + + /* ----------------------------------------------------- */ + /* i is a principal variable not yet placed in Lme. */ + /* store i in new list */ + /* ----------------------------------------------------- */ + + /* flag i as being in Lme by negating Nv [i] */ + degme += nvi ; + Nv [i] = -nvi ; + Iw [++pme2] = i ; + + /* ----------------------------------------------------- */ + /* remove variable i from degree list. */ + /* ----------------------------------------------------- */ + + ilast = Last [i] ; + inext = Next [i] ; + ASSERT (ilast >= EMPTY && ilast < n) ; + ASSERT (inext >= EMPTY && inext < n) ; + if (inext != EMPTY) Last [inext] = ilast ; + if (ilast != EMPTY) + { + Next [ilast] = inext ; + } + else + { + /* i is at the head of the degree list */ + ASSERT (Degree [i] >= 0 && Degree [i] < n) ; + Head [Degree [i]] = inext ; + } + } + } + } + else + { + + /* ------------------------------------------------------------- */ + /* construct the new element in empty space, Iw [pfree ...] */ + /* ------------------------------------------------------------- */ + + p = Pe [me] ; + pme1 = pfree ; + slenme = Len [me] - elenme ; + + for (knt1 = 1 ; knt1 <= elenme + 1 ; knt1++) + { + + if (knt1 > elenme) + { + /* search the supervariables in me. */ + e = me ; + pj = p ; + ln = slenme ; + AMD_DEBUG2 (("Search sv: "ID" "ID" "ID"\n", me,pj,ln)) ; + } + else + { + /* search the elements in me. */ + e = Iw [p++] ; + ASSERT (e >= 0 && e < n) ; + pj = Pe [e] ; + ln = Len [e] ; + AMD_DEBUG2 (("Search element e "ID" in me "ID"\n", e,me)) ; + ASSERT (Elen [e] < EMPTY && W [e] > 0 && pj >= 0) ; + } + ASSERT (ln >= 0 && (ln == 0 || (pj >= 0 && pj < iwlen))) ; + + /* --------------------------------------------------------- + * search for different supervariables and add them to the + * new list, compressing when necessary. this loop is + * executed once for each element in the list and once for + * all the supervariables in the list. + * --------------------------------------------------------- */ + + for (knt2 = 1 ; knt2 <= ln ; knt2++) + { + i = Iw [pj++] ; + ASSERT (i >= 0 && i < n && (i == me || Elen [i] >= EMPTY)); + nvi = Nv [i] ; + AMD_DEBUG2 ((": "ID" "ID" "ID" "ID"\n", + i, Elen [i], Nv [i], wflg)) ; + + if (nvi > 0) + { + + /* ------------------------------------------------- */ + /* compress Iw, if necessary */ + /* ------------------------------------------------- */ + + if (pfree >= iwlen) + { + + AMD_DEBUG1 (("GARBAGE COLLECTION\n")) ; + + /* prepare for compressing Iw by adjusting pointers + * and lengths so that the lists being searched in + * the inner and outer loops contain only the + * remaining entries. */ + + Pe [me] = p ; + Len [me] -= knt1 ; + /* check if nothing left of supervariable me */ + if (Len [me] == 0) Pe [me] = EMPTY ; + Pe [e] = pj ; + Len [e] = ln - knt2 ; + /* nothing left of element e */ + if (Len [e] == 0) Pe [e] = EMPTY ; + + ncmpa++ ; /* one more garbage collection */ + + /* store first entry of each object in Pe */ + /* FLIP the first entry in each object */ + for (j = 0 ; j < n ; j++) + { + pn = Pe [j] ; + if (pn >= 0) + { + ASSERT (pn >= 0 && pn < iwlen) ; + Pe [j] = Iw [pn] ; + Iw [pn] = FLIP (j) ; + } + } + + /* psrc/pdst point to source/destination */ + psrc = 0 ; + pdst = 0 ; + pend = pme1 - 1 ; + + while (psrc <= pend) + { + /* search for next FLIP'd entry */ + j = FLIP (Iw [psrc++]) ; + if (j >= 0) + { + AMD_DEBUG2 (("Got object j: "ID"\n", j)) ; + Iw [pdst] = Pe [j] ; + Pe [j] = pdst++ ; + lenj = Len [j] ; + /* copy from source to destination */ + for (knt3 = 0 ; knt3 <= lenj - 2 ; knt3++) + { + Iw [pdst++] = Iw [psrc++] ; + } + } + } + + /* move the new partially-constructed element */ + p1 = pdst ; + for (psrc = pme1 ; psrc <= pfree-1 ; psrc++) + { + Iw [pdst++] = Iw [psrc] ; + } + pme1 = p1 ; + pfree = pdst ; + pj = Pe [e] ; + p = Pe [me] ; + + } + + /* ------------------------------------------------- */ + /* i is a principal variable not yet placed in Lme */ + /* store i in new list */ + /* ------------------------------------------------- */ + + /* flag i as being in Lme by negating Nv [i] */ + degme += nvi ; + Nv [i] = -nvi ; + Iw [pfree++] = i ; + AMD_DEBUG2 ((" s: "ID" nv "ID"\n", i, Nv [i])); + + /* ------------------------------------------------- */ + /* remove variable i from degree link list */ + /* ------------------------------------------------- */ + + ilast = Last [i] ; + inext = Next [i] ; + ASSERT (ilast >= EMPTY && ilast < n) ; + ASSERT (inext >= EMPTY && inext < n) ; + if (inext != EMPTY) Last [inext] = ilast ; + if (ilast != EMPTY) + { + Next [ilast] = inext ; + } + else + { + /* i is at the head of the degree list */ + ASSERT (Degree [i] >= 0 && Degree [i] < n) ; + Head [Degree [i]] = inext ; + } + } + } + + if (e != me) + { + /* set tree pointer and flag to indicate element e is + * absorbed into new element me (the parent of e is me) */ + AMD_DEBUG1 ((" Element "ID" => "ID"\n", e, me)) ; + Pe [e] = FLIP (me) ; + W [e] = 0 ; + } + } + + pme2 = pfree - 1 ; + } + + /* ----------------------------------------------------------------- */ + /* me has now been converted into an element in Iw [pme1..pme2] */ + /* ----------------------------------------------------------------- */ + + /* degme holds the external degree of new element */ + Degree [me] = degme ; + Pe [me] = pme1 ; + Len [me] = pme2 - pme1 + 1 ; + ASSERT (Pe [me] >= 0 && Pe [me] < iwlen) ; + + Elen [me] = FLIP (nvpiv + degme) ; + /* FLIP (Elen (me)) is now the degree of pivot (including + * diagonal part). */ + +#ifndef NDEBUG + AMD_DEBUG2 (("New element structure: length= "ID"\n", pme2-pme1+1)) ; + for (pme = pme1 ; pme <= pme2 ; pme++) AMD_DEBUG3 ((" "ID"", Iw[pme])); + AMD_DEBUG3 (("\n")) ; +#endif + + /* ----------------------------------------------------------------- */ + /* make sure that wflg is not too large. */ + /* ----------------------------------------------------------------- */ + + /* With the current value of wflg, wflg+n must not cause integer + * overflow */ + + wflg = clear_flag (wflg, wbig, W, n) ; + +/* ========================================================================= */ +/* COMPUTE (W [e] - wflg) = |Le\Lme| FOR ALL ELEMENTS */ +/* ========================================================================= */ + + /* ----------------------------------------------------------------- + * Scan 1: compute the external degrees of previous elements with + * respect to the current element. That is: + * (W [e] - wflg) = |Le \ Lme| + * for each element e that appears in any supervariable in Lme. The + * notation Le refers to the pattern (list of supervariables) of a + * previous element e, where e is not yet absorbed, stored in + * Iw [Pe [e] + 1 ... Pe [e] + Len [e]]. The notation Lme + * refers to the pattern of the current element (stored in + * Iw [pme1..pme2]). If aggressive absorption is enabled, and + * (W [e] - wflg) becomes zero, then the element e will be absorbed + * in Scan 2. + * ----------------------------------------------------------------- */ + + AMD_DEBUG2 (("me: ")) ; + for (pme = pme1 ; pme <= pme2 ; pme++) + { + i = Iw [pme] ; + ASSERT (i >= 0 && i < n) ; + eln = Elen [i] ; + AMD_DEBUG3 ((""ID" Elen "ID": \n", i, eln)) ; + if (eln > 0) + { + /* note that Nv [i] has been negated to denote i in Lme: */ + nvi = -Nv [i] ; + ASSERT (nvi > 0 && Pe [i] >= 0 && Pe [i] < iwlen) ; + wnvi = wflg - nvi ; + for (p = Pe [i] ; p <= Pe [i] + eln - 1 ; p++) + { + e = Iw [p] ; + ASSERT (e >= 0 && e < n) ; + we = W [e] ; + AMD_DEBUG4 ((" e "ID" we "ID" ", e, we)) ; + if (we >= wflg) + { + /* unabsorbed element e has been seen in this loop */ + AMD_DEBUG4 ((" unabsorbed, first time seen")) ; + we -= nvi ; + } + else if (we != 0) + { + /* e is an unabsorbed element */ + /* this is the first we have seen e in all of Scan 1 */ + AMD_DEBUG4 ((" unabsorbed")) ; + we = Degree [e] + wnvi ; + } + AMD_DEBUG4 (("\n")) ; + W [e] = we ; + } + } + } + AMD_DEBUG2 (("\n")) ; + +/* ========================================================================= */ +/* DEGREE UPDATE AND ELEMENT ABSORPTION */ +/* ========================================================================= */ + + /* ----------------------------------------------------------------- + * Scan 2: for each i in Lme, sum up the degree of Lme (which is + * degme), plus the sum of the external degrees of each Le for the + * elements e appearing within i, plus the supervariables in i. + * Place i in hash list. + * ----------------------------------------------------------------- */ + + for (pme = pme1 ; pme <= pme2 ; pme++) + { + i = Iw [pme] ; + ASSERT (i >= 0 && i < n && Nv [i] < 0 && Elen [i] >= 0) ; + AMD_DEBUG2 (("Updating: i "ID" "ID" "ID"\n", i, Elen[i], Len [i])); + p1 = Pe [i] ; + p2 = p1 + Elen [i] - 1 ; + pn = p1 ; + hash = 0 ; + deg = 0 ; + ASSERT (p1 >= 0 && p1 < iwlen && p2 >= -1 && p2 < iwlen) ; + + /* ------------------------------------------------------------- */ + /* scan the element list associated with supervariable i */ + /* ------------------------------------------------------------- */ + + /* UMFPACK/MA38-style approximate degree: */ + if (aggressive) + { + for (p = p1 ; p <= p2 ; p++) + { + e = Iw [p] ; + ASSERT (e >= 0 && e < n) ; + we = W [e] ; + if (we != 0) + { + /* e is an unabsorbed element */ + /* dext = | Le \ Lme | */ + dext = we - wflg ; + if (dext > 0) + { + deg += dext ; + Iw [pn++] = e ; + hash += e ; + AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ; + } + else + { + /* external degree of e is zero, absorb e into me*/ + AMD_DEBUG1 ((" Element "ID" =>"ID" (aggressive)\n", + e, me)) ; + ASSERT (dext == 0) ; + Pe [e] = FLIP (me) ; + W [e] = 0 ; + } + } + } + } + else + { + for (p = p1 ; p <= p2 ; p++) + { + e = Iw [p] ; + ASSERT (e >= 0 && e < n) ; + we = W [e] ; + if (we != 0) + { + /* e is an unabsorbed element */ + dext = we - wflg ; + ASSERT (dext >= 0) ; + deg += dext ; + Iw [pn++] = e ; + hash += e ; + AMD_DEBUG4 ((" e: "ID" hash = "ID"\n",e,hash)) ; + } + } + } + + /* count the number of elements in i (including me): */ + Elen [i] = pn - p1 + 1 ; + + /* ------------------------------------------------------------- */ + /* scan the supervariables in the list associated with i */ + /* ------------------------------------------------------------- */ + + /* The bulk of the AMD run time is typically spent in this loop, + * particularly if the matrix has many dense rows that are not + * removed prior to ordering. */ + p3 = pn ; + p4 = p1 + Len [i] ; + for (p = p2 + 1 ; p < p4 ; p++) + { + j = Iw [p] ; + ASSERT (j >= 0 && j < n) ; + nvj = Nv [j] ; + if (nvj > 0) + { + /* j is unabsorbed, and not in Lme. */ + /* add to degree and add to new list */ + deg += nvj ; + Iw [pn++] = j ; + hash += j ; + AMD_DEBUG4 ((" s: "ID" hash "ID" Nv[j]= "ID"\n", + j, hash, nvj)) ; + } + } + + /* ------------------------------------------------------------- */ + /* update the degree and check for mass elimination */ + /* ------------------------------------------------------------- */ + + /* with aggressive absorption, deg==0 is identical to the + * Elen [i] == 1 && p3 == pn test, below. */ + ASSERT (IMPLIES (aggressive, (deg==0) == (Elen[i]==1 && p3==pn))) ; + + if (Elen [i] == 1 && p3 == pn) + { + + /* --------------------------------------------------------- */ + /* mass elimination */ + /* --------------------------------------------------------- */ + + /* There is nothing left of this node except for an edge to + * the current pivot element. Elen [i] is 1, and there are + * no variables adjacent to node i. Absorb i into the + * current pivot element, me. Note that if there are two or + * more mass eliminations, fillin due to mass elimination is + * possible within the nvpiv-by-nvpiv pivot block. It is this + * step that causes AMD's analysis to be an upper bound. + * + * The reason is that the selected pivot has a lower + * approximate degree than the true degree of the two mass + * eliminated nodes. There is no edge between the two mass + * eliminated nodes. They are merged with the current pivot + * anyway. + * + * No fillin occurs in the Schur complement, in any case, + * and this effect does not decrease the quality of the + * ordering itself, just the quality of the nonzero and + * flop count analysis. It also means that the post-ordering + * is not an exact elimination tree post-ordering. */ + + AMD_DEBUG1 ((" MASS i "ID" => parent e "ID"\n", i, me)) ; + Pe [i] = FLIP (me) ; + nvi = -Nv [i] ; + degme -= nvi ; + nvpiv += nvi ; + nel += nvi ; + Nv [i] = 0 ; + Elen [i] = EMPTY ; + + } + else + { + + /* --------------------------------------------------------- */ + /* update the upper-bound degree of i */ + /* --------------------------------------------------------- */ + + /* the following degree does not yet include the size + * of the current element, which is added later: */ + + Degree [i] = MIN (Degree [i], deg) ; + + /* --------------------------------------------------------- */ + /* add me to the list for i */ + /* --------------------------------------------------------- */ + + /* move first supervariable to end of list */ + Iw [pn] = Iw [p3] ; + /* move first element to end of element part of list */ + Iw [p3] = Iw [p1] ; + /* add new element, me, to front of list. */ + Iw [p1] = me ; + /* store the new length of the list in Len [i] */ + Len [i] = pn - p1 + 1 ; + + /* --------------------------------------------------------- */ + /* place in hash bucket. Save hash key of i in Last [i]. */ + /* --------------------------------------------------------- */ + + /* NOTE: this can fail if hash is negative, because the ANSI C + * standard does not define a % b when a and/or b are negative. + * That's why hash is defined as an unsigned Int, to avoid this + * problem. */ + hash = hash % n ; + ASSERT (((Int) hash) >= 0 && ((Int) hash) < n) ; + + /* if the Hhead array is not used: */ + j = Head [hash] ; + if (j <= EMPTY) + { + /* degree list is empty, hash head is FLIP (j) */ + Next [i] = FLIP (j) ; + Head [hash] = FLIP (i) ; + } + else + { + /* degree list is not empty, use Last [Head [hash]] as + * hash head. */ + Next [i] = Last [j] ; + Last [j] = i ; + } + + /* if a separate Hhead array is used: * + Next [i] = Hhead [hash] ; + Hhead [hash] = i ; + */ + + Last [i] = hash ; + } + } + + Degree [me] = degme ; + + /* ----------------------------------------------------------------- */ + /* Clear the counter array, W [...], by incrementing wflg. */ + /* ----------------------------------------------------------------- */ + + /* make sure that wflg+n does not cause integer overflow */ + lemax = MAX (lemax, degme) ; + wflg += lemax ; + wflg = clear_flag (wflg, wbig, W, n) ; + /* at this point, W [0..n-1] < wflg holds */ + +/* ========================================================================= */ +/* SUPERVARIABLE DETECTION */ +/* ========================================================================= */ + + AMD_DEBUG1 (("Detecting supervariables:\n")) ; + for (pme = pme1 ; pme <= pme2 ; pme++) + { + i = Iw [pme] ; + ASSERT (i >= 0 && i < n) ; + AMD_DEBUG2 (("Consider i "ID" nv "ID"\n", i, Nv [i])) ; + if (Nv [i] < 0) + { + /* i is a principal variable in Lme */ + + /* --------------------------------------------------------- + * examine all hash buckets with 2 or more variables. We do + * this by examing all unique hash keys for supervariables in + * the pattern Lme of the current element, me + * --------------------------------------------------------- */ + + /* let i = head of hash bucket, and empty the hash bucket */ + ASSERT (Last [i] >= 0 && Last [i] < n) ; + hash = Last [i] ; + + /* if Hhead array is not used: */ + j = Head [hash] ; + if (j == EMPTY) + { + /* hash bucket and degree list are both empty */ + i = EMPTY ; + } + else if (j < EMPTY) + { + /* degree list is empty */ + i = FLIP (j) ; + Head [hash] = EMPTY ; + } + else + { + /* degree list is not empty, restore Last [j] of head j */ + i = Last [j] ; + Last [j] = EMPTY ; + } + + /* if separate Hhead array is used: * + i = Hhead [hash] ; + Hhead [hash] = EMPTY ; + */ + + ASSERT (i >= EMPTY && i < n) ; + AMD_DEBUG2 (("----i "ID" hash "ID"\n", i, hash)) ; + + while (i != EMPTY && Next [i] != EMPTY) + { + + /* ----------------------------------------------------- + * this bucket has one or more variables following i. + * scan all of them to see if i can absorb any entries + * that follow i in hash bucket. Scatter i into w. + * ----------------------------------------------------- */ + + ln = Len [i] ; + eln = Elen [i] ; + ASSERT (ln >= 0 && eln >= 0) ; + ASSERT (Pe [i] >= 0 && Pe [i] < iwlen) ; + /* do not flag the first element in the list (me) */ + for (p = Pe [i] + 1 ; p <= Pe [i] + ln - 1 ; p++) + { + ASSERT (Iw [p] >= 0 && Iw [p] < n) ; + W [Iw [p]] = wflg ; + } + + /* ----------------------------------------------------- */ + /* scan every other entry j following i in bucket */ + /* ----------------------------------------------------- */ + + jlast = i ; + j = Next [i] ; + ASSERT (j >= EMPTY && j < n) ; + + while (j != EMPTY) + { + /* ------------------------------------------------- */ + /* check if j and i have identical nonzero pattern */ + /* ------------------------------------------------- */ + + AMD_DEBUG3 (("compare i "ID" and j "ID"\n", i,j)) ; + + /* check if i and j have the same Len and Elen */ + ASSERT (Len [j] >= 0 && Elen [j] >= 0) ; + ASSERT (Pe [j] >= 0 && Pe [j] < iwlen) ; + ok = (Len [j] == ln) && (Elen [j] == eln) ; + /* skip the first element in the list (me) */ + for (p = Pe [j] + 1 ; ok && p <= Pe [j] + ln - 1 ; p++) + { + ASSERT (Iw [p] >= 0 && Iw [p] < n) ; + if (W [Iw [p]] != wflg) ok = 0 ; + } + if (ok) + { + /* --------------------------------------------- */ + /* found it! j can be absorbed into i */ + /* --------------------------------------------- */ + + AMD_DEBUG1 (("found it! j "ID" => i "ID"\n", j,i)); + Pe [j] = FLIP (i) ; + /* both Nv [i] and Nv [j] are negated since they */ + /* are in Lme, and the absolute values of each */ + /* are the number of variables in i and j: */ + Nv [i] += Nv [j] ; + Nv [j] = 0 ; + Elen [j] = EMPTY ; + /* delete j from hash bucket */ + ASSERT (j != Next [j]) ; + j = Next [j] ; + Next [jlast] = j ; + + } + else + { + /* j cannot be absorbed into i */ + jlast = j ; + ASSERT (j != Next [j]) ; + j = Next [j] ; + } + ASSERT (j >= EMPTY && j < n) ; + } + + /* ----------------------------------------------------- + * no more variables can be absorbed into i + * go to next i in bucket and clear flag array + * ----------------------------------------------------- */ + + wflg++ ; + i = Next [i] ; + ASSERT (i >= EMPTY && i < n) ; + + } + } + } + AMD_DEBUG2 (("detect done\n")) ; + +/* ========================================================================= */ +/* RESTORE DEGREE LISTS AND REMOVE NONPRINCIPAL SUPERVARIABLES FROM ELEMENT */ +/* ========================================================================= */ + + p = pme1 ; + nleft = n - nel ; + for (pme = pme1 ; pme <= pme2 ; pme++) + { + i = Iw [pme] ; + ASSERT (i >= 0 && i < n) ; + nvi = -Nv [i] ; + AMD_DEBUG3 (("Restore i "ID" "ID"\n", i, nvi)) ; + if (nvi > 0) + { + /* i is a principal variable in Lme */ + /* restore Nv [i] to signify that i is principal */ + Nv [i] = nvi ; + + /* --------------------------------------------------------- */ + /* compute the external degree (add size of current element) */ + /* --------------------------------------------------------- */ + + deg = Degree [i] + degme - nvi ; + deg = MIN (deg, nleft - nvi) ; + ASSERT (IMPLIES (aggressive, deg > 0) && deg >= 0 && deg < n) ; + + /* --------------------------------------------------------- */ + /* place the supervariable at the head of the degree list */ + /* --------------------------------------------------------- */ + + inext = Head [deg] ; + ASSERT (inext >= EMPTY && inext < n) ; + if (inext != EMPTY) Last [inext] = i ; + Next [i] = inext ; + Last [i] = EMPTY ; + Head [deg] = i ; + + /* --------------------------------------------------------- */ + /* save the new degree, and find the minimum degree */ + /* --------------------------------------------------------- */ + + mindeg = MIN (mindeg, deg) ; + Degree [i] = deg ; + + /* --------------------------------------------------------- */ + /* place the supervariable in the element pattern */ + /* --------------------------------------------------------- */ + + Iw [p++] = i ; + + } + } + AMD_DEBUG2 (("restore done\n")) ; + +/* ========================================================================= */ +/* FINALIZE THE NEW ELEMENT */ +/* ========================================================================= */ + + AMD_DEBUG2 (("ME = "ID" DONE\n", me)) ; + Nv [me] = nvpiv ; + /* save the length of the list for the new element me */ + Len [me] = p - pme1 ; + if (Len [me] == 0) + { + /* there is nothing left of the current pivot element */ + /* it is a root of the assembly tree */ + Pe [me] = EMPTY ; + W [me] = 0 ; + } + if (elenme != 0) + { + /* element was not constructed in place: deallocate part of */ + /* it since newly nonprincipal variables may have been removed */ + pfree = p ; + } + + /* The new element has nvpiv pivots and the size of the contribution + * block for a multifrontal method is degme-by-degme, not including + * the "dense" rows/columns. If the "dense" rows/columns are included, + * the frontal matrix is no larger than + * (degme+ndense)-by-(degme+ndense). + */ + + if (Info != (double *) NULL) + { + f = nvpiv ; + r = degme + ndense ; + dmax = MAX (dmax, f + r) ; + + /* number of nonzeros in L (excluding the diagonal) */ + lnzme = f*r + (f-1)*f/2 ; + lnz += lnzme ; + + /* number of divide operations for LDL' and for LU */ + ndiv += lnzme ; + + /* number of multiply-subtract pairs for LU */ + s = f*r*r + r*(f-1)*f + (f-1)*f*(2*f-1)/6 ; + nms_lu += s ; + + /* number of multiply-subtract pairs for LDL' */ + nms_ldl += (s + lnzme)/2 ; + } + +#ifndef NDEBUG + AMD_DEBUG2 (("finalize done nel "ID" n "ID"\n ::::\n", nel, n)) ; + for (pme = Pe [me] ; pme <= Pe [me] + Len [me] - 1 ; pme++) + { + AMD_DEBUG3 ((" "ID"", Iw [pme])) ; + } + AMD_DEBUG3 (("\n")) ; +#endif + + } + +/* ========================================================================= */ +/* DONE SELECTING PIVOTS */ +/* ========================================================================= */ + + if (Info != (double *) NULL) + { + + /* count the work to factorize the ndense-by-ndense submatrix */ + f = ndense ; + dmax = MAX (dmax, (double) ndense) ; + + /* number of nonzeros in L (excluding the diagonal) */ + lnzme = (f-1)*f/2 ; + lnz += lnzme ; + + /* number of divide operations for LDL' and for LU */ + ndiv += lnzme ; + + /* number of multiply-subtract pairs for LU */ + s = (f-1)*f*(2*f-1)/6 ; + nms_lu += s ; + + /* number of multiply-subtract pairs for LDL' */ + nms_ldl += (s + lnzme)/2 ; + + /* number of nz's in L (excl. diagonal) */ + Info [AMD_LNZ] = lnz ; + + /* number of divide ops for LU and LDL' */ + Info [AMD_NDIV] = ndiv ; + + /* number of multiply-subtract pairs for LDL' */ + Info [AMD_NMULTSUBS_LDL] = nms_ldl ; + + /* number of multiply-subtract pairs for LU */ + Info [AMD_NMULTSUBS_LU] = nms_lu ; + + /* number of "dense" rows/columns */ + Info [AMD_NDENSE] = ndense ; + + /* largest front is dmax-by-dmax */ + Info [AMD_DMAX] = dmax ; + + /* number of garbage collections in AMD */ + Info [AMD_NCMPA] = ncmpa ; + + /* successful ordering */ + Info [AMD_STATUS] = AMD_OK ; + } + +/* ========================================================================= */ +/* POST-ORDERING */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- + * Variables at this point: + * + * Pe: holds the elimination tree. The parent of j is FLIP (Pe [j]), + * or EMPTY if j is a root. The tree holds both elements and + * non-principal (unordered) variables absorbed into them. + * Dense variables are non-principal and unordered. + * + * Elen: holds the size of each element, including the diagonal part. + * FLIP (Elen [e]) > 0 if e is an element. For unordered + * variables i, Elen [i] is EMPTY. + * + * Nv: Nv [e] > 0 is the number of pivots represented by the element e. + * For unordered variables i, Nv [i] is zero. + * + * Contents no longer needed: + * W, Iw, Len, Degree, Head, Next, Last. + * + * The matrix itself has been destroyed. + * + * n: the size of the matrix. + * No other scalars needed (pfree, iwlen, etc.) + * ------------------------------------------------------------------------- */ + + /* restore Pe */ + for (i = 0 ; i < n ; i++) + { + Pe [i] = FLIP (Pe [i]) ; + } + + /* restore Elen, for output information, and for postordering */ + for (i = 0 ; i < n ; i++) + { + Elen [i] = FLIP (Elen [i]) ; + } + +/* Now the parent of j is Pe [j], or EMPTY if j is a root. Elen [e] > 0 + * is the size of element e. Elen [i] is EMPTY for unordered variable i. */ + +#ifndef NDEBUG + AMD_DEBUG2 (("\nTree:\n")) ; + for (i = 0 ; i < n ; i++) + { + AMD_DEBUG2 ((" "ID" parent: "ID" ", i, Pe [i])) ; + ASSERT (Pe [i] >= EMPTY && Pe [i] < n) ; + if (Nv [i] > 0) + { + /* this is an element */ + e = i ; + AMD_DEBUG2 ((" element, size is "ID"\n", Elen [i])) ; + ASSERT (Elen [e] > 0) ; + } + AMD_DEBUG2 (("\n")) ; + } + AMD_DEBUG2 (("\nelements:\n")) ; + for (e = 0 ; e < n ; e++) + { + if (Nv [e] > 0) + { + AMD_DEBUG3 (("Element e= "ID" size "ID" nv "ID" \n", e, + Elen [e], Nv [e])) ; + } + } + AMD_DEBUG2 (("\nvariables:\n")) ; + for (i = 0 ; i < n ; i++) + { + Int cnt ; + if (Nv [i] == 0) + { + AMD_DEBUG3 (("i unordered: "ID"\n", i)) ; + j = Pe [i] ; + cnt = 0 ; + AMD_DEBUG3 ((" j: "ID"\n", j)) ; + if (j == EMPTY) + { + AMD_DEBUG3 ((" i is a dense variable\n")) ; + } + else + { + ASSERT (j >= 0 && j < n) ; + while (Nv [j] == 0) + { + AMD_DEBUG3 ((" j : "ID"\n", j)) ; + j = Pe [j] ; + AMD_DEBUG3 ((" j:: "ID"\n", j)) ; + cnt++ ; + if (cnt > n) break ; + } + e = j ; + AMD_DEBUG3 ((" got to e: "ID"\n", e)) ; + } + } + } +#endif + +/* ========================================================================= */ +/* compress the paths of the variables */ +/* ========================================================================= */ + + for (i = 0 ; i < n ; i++) + { + if (Nv [i] == 0) + { + + /* ------------------------------------------------------------- + * i is an un-ordered row. Traverse the tree from i until + * reaching an element, e. The element, e, was the principal + * supervariable of i and all nodes in the path from i to when e + * was selected as pivot. + * ------------------------------------------------------------- */ + + AMD_DEBUG1 (("Path compression, i unordered: "ID"\n", i)) ; + j = Pe [i] ; + ASSERT (j >= EMPTY && j < n) ; + AMD_DEBUG3 ((" j: "ID"\n", j)) ; + if (j == EMPTY) + { + /* Skip a dense variable. It has no parent. */ + AMD_DEBUG3 ((" i is a dense variable\n")) ; + continue ; + } + + /* while (j is a variable) */ + while (Nv [j] == 0) + { + AMD_DEBUG3 ((" j : "ID"\n", j)) ; + j = Pe [j] ; + AMD_DEBUG3 ((" j:: "ID"\n", j)) ; + ASSERT (j >= 0 && j < n) ; + } + /* got to an element e */ + e = j ; + AMD_DEBUG3 (("got to e: "ID"\n", e)) ; + + /* ------------------------------------------------------------- + * traverse the path again from i to e, and compress the path + * (all nodes point to e). Path compression allows this code to + * compute in O(n) time. + * ------------------------------------------------------------- */ + + j = i ; + /* while (j is a variable) */ + while (Nv [j] == 0) + { + jnext = Pe [j] ; + AMD_DEBUG3 (("j "ID" jnext "ID"\n", j, jnext)) ; + Pe [j] = e ; + j = jnext ; + ASSERT (j >= 0 && j < n) ; + } + } + } + +/* ========================================================================= */ +/* postorder the assembly tree */ +/* ========================================================================= */ + + AMD_postorder (n, Pe, Nv, Elen, + W, /* output order */ + Head, Next, Last) ; /* workspace */ + +/* ========================================================================= */ +/* compute output permutation and inverse permutation */ +/* ========================================================================= */ + + /* W [e] = k means that element e is the kth element in the new + * order. e is in the range 0 to n-1, and k is in the range 0 to + * the number of elements. Use Head for inverse order. */ + + for (k = 0 ; k < n ; k++) + { + Head [k] = EMPTY ; + Next [k] = EMPTY ; + } + for (e = 0 ; e < n ; e++) + { + k = W [e] ; + ASSERT ((k == EMPTY) == (Nv [e] == 0)) ; + if (k != EMPTY) + { + ASSERT (k >= 0 && k < n) ; + Head [k] = e ; + } + } + + /* construct output inverse permutation in Next, + * and permutation in Last */ + nel = 0 ; + for (k = 0 ; k < n ; k++) + { + e = Head [k] ; + if (e == EMPTY) break ; + ASSERT (e >= 0 && e < n && Nv [e] > 0) ; + Next [e] = nel ; + nel += Nv [e] ; + } + ASSERT (nel == n - ndense) ; + + /* order non-principal variables (dense, & those merged into supervar's) */ + for (i = 0 ; i < n ; i++) + { + if (Nv [i] == 0) + { + e = Pe [i] ; + ASSERT (e >= EMPTY && e < n) ; + if (e != EMPTY) + { + /* This is an unordered variable that was merged + * into element e via supernode detection or mass + * elimination of i when e became the pivot element. + * Place i in order just before e. */ + ASSERT (Next [i] == EMPTY && Nv [e] > 0) ; + Next [i] = Next [e] ; + Next [e]++ ; + } + else + { + /* This is a dense unordered variable, with no parent. + * Place it last in the output order. */ + Next [i] = nel++ ; + } + } + } + ASSERT (nel == n) ; + + AMD_DEBUG2 (("\n\nPerm:\n")) ; + for (i = 0 ; i < n ; i++) + { + k = Next [i] ; + ASSERT (k >= 0 && k < n) ; + Last [k] = i ; + AMD_DEBUG2 ((" perm ["ID"] = "ID"\n", k, i)) ; + } +} diff --git a/test/monniaux/glpk-4.65/src/amd/amd_aat.c b/test/monniaux/glpk-4.65/src/amd/amd_aat.c new file mode 100644 index 00000000..63bf55f5 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_aat.c @@ -0,0 +1,185 @@ +/* ========================================================================= */ +/* === AMD_aat ============================================================= */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* AMD_aat: compute the symmetry of the pattern of A, and count the number of + * nonzeros each column of A+A' (excluding the diagonal). Assumes the input + * matrix has no errors, with sorted columns and no duplicates + * (AMD_valid (n, n, Ap, Ai) must be AMD_OK, but this condition is not + * checked). + */ + +#include "amd_internal.h" + +GLOBAL size_t AMD_aat /* returns nz in A+A' */ +( + Int n, + const Int Ap [ ], + const Int Ai [ ], + Int Len [ ], /* Len [j]: length of column j of A+A', excl diagonal*/ + Int Tp [ ], /* workspace of size n */ + double Info [ ] +) +{ + Int p1, p2, p, i, j, pj, pj2, k, nzdiag, nzboth, nz ; + double sym ; + size_t nzaat ; + +#ifndef NDEBUG + AMD_debug_init ("AMD AAT") ; + for (k = 0 ; k < n ; k++) Tp [k] = EMPTY ; + ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; +#endif + + if (Info != (double *) NULL) + { + /* clear the Info array, if it exists */ + for (i = 0 ; i < AMD_INFO ; i++) + { + Info [i] = EMPTY ; + } + Info [AMD_STATUS] = AMD_OK ; + } + + for (k = 0 ; k < n ; k++) + { + Len [k] = 0 ; + } + + nzdiag = 0 ; + nzboth = 0 ; + nz = Ap [n] ; + + for (k = 0 ; k < n ; k++) + { + p1 = Ap [k] ; + p2 = Ap [k+1] ; + AMD_DEBUG2 (("\nAAT Column: "ID" p1: "ID" p2: "ID"\n", k, p1, p2)) ; + + /* construct A+A' */ + for (p = p1 ; p < p2 ; ) + { + /* scan the upper triangular part of A */ + j = Ai [p] ; + if (j < k) + { + /* entry A (j,k) is in the strictly upper triangular part, + * add both A (j,k) and A (k,j) to the matrix A+A' */ + Len [j]++ ; + Len [k]++ ; + AMD_DEBUG3 ((" upper ("ID","ID") ("ID","ID")\n", j,k, k,j)); + p++ ; + } + else if (j == k) + { + /* skip the diagonal */ + p++ ; + nzdiag++ ; + break ; + } + else /* j > k */ + { + /* first entry below the diagonal */ + break ; + } + /* scan lower triangular part of A, in column j until reaching + * row k. Start where last scan left off. */ + ASSERT (Tp [j] != EMPTY) ; + ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; + pj2 = Ap [j+1] ; + for (pj = Tp [j] ; pj < pj2 ; ) + { + i = Ai [pj] ; + if (i < k) + { + /* A (i,j) is only in the lower part, not in upper. + * add both A (i,j) and A (j,i) to the matrix A+A' */ + Len [i]++ ; + Len [j]++ ; + AMD_DEBUG3 ((" lower ("ID","ID") ("ID","ID")\n", + i,j, j,i)) ; + pj++ ; + } + else if (i == k) + { + /* entry A (k,j) in lower part and A (j,k) in upper */ + pj++ ; + nzboth++ ; + break ; + } + else /* i > k */ + { + /* consider this entry later, when k advances to i */ + break ; + } + } + Tp [j] = pj ; + } + /* Tp [k] points to the entry just below the diagonal in column k */ + Tp [k] = p ; + } + + /* clean up, for remaining mismatched entries */ + for (j = 0 ; j < n ; j++) + { + for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) + { + i = Ai [pj] ; + /* A (i,j) is only in the lower part, not in upper. + * add both A (i,j) and A (j,i) to the matrix A+A' */ + Len [i]++ ; + Len [j]++ ; + AMD_DEBUG3 ((" lower cleanup ("ID","ID") ("ID","ID")\n", + i,j, j,i)) ; + } + } + + /* --------------------------------------------------------------------- */ + /* compute the symmetry of the nonzero pattern of A */ + /* --------------------------------------------------------------------- */ + + /* Given a matrix A, the symmetry of A is: + * B = tril (spones (A), -1) + triu (spones (A), 1) ; + * sym = nnz (B & B') / nnz (B) ; + * or 1 if nnz (B) is zero. + */ + + if (nz == nzdiag) + { + sym = 1 ; + } + else + { + sym = (2 * (double) nzboth) / ((double) (nz - nzdiag)) ; + } + + nzaat = 0 ; + for (k = 0 ; k < n ; k++) + { + nzaat += Len [k] ; + } + + AMD_DEBUG1 (("AMD nz in A+A', excluding diagonal (nzaat) = %g\n", + (double) nzaat)) ; + AMD_DEBUG1 ((" nzboth: "ID" nz: "ID" nzdiag: "ID" symmetry: %g\n", + nzboth, nz, nzdiag, sym)) ; + + if (Info != (double *) NULL) + { + Info [AMD_STATUS] = AMD_OK ; + Info [AMD_N] = n ; + Info [AMD_NZ] = nz ; + Info [AMD_SYMMETRY] = sym ; /* symmetry of pattern of A */ + Info [AMD_NZDIAG] = nzdiag ; /* nonzeros on diagonal of A */ + Info [AMD_NZ_A_PLUS_AT] = nzaat ; /* nonzeros in A+A' */ + } + + return (nzaat) ; +} diff --git a/test/monniaux/glpk-4.65/src/amd/amd_control.c b/test/monniaux/glpk-4.65/src/amd/amd_control.c new file mode 100644 index 00000000..f4d4f0df --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_control.c @@ -0,0 +1,64 @@ +/* ========================================================================= */ +/* === AMD_control ========================================================= */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* User-callable. Prints the control parameters for AMD. See amd.h + * for details. If the Control array is not present, the defaults are + * printed instead. + */ + +#include "amd_internal.h" + +GLOBAL void AMD_control +( + double Control [ ] +) +{ + double alpha ; + Int aggressive ; + + if (Control != (double *) NULL) + { + alpha = Control [AMD_DENSE] ; + aggressive = Control [AMD_AGGRESSIVE] != 0 ; + } + else + { + alpha = AMD_DEFAULT_DENSE ; + aggressive = AMD_DEFAULT_AGGRESSIVE ; + } + + PRINTF (("\nAMD version %d.%d.%d, %s: approximate minimum degree ordering\n" + " dense row parameter: %g\n", AMD_MAIN_VERSION, AMD_SUB_VERSION, + AMD_SUBSUB_VERSION, AMD_DATE, alpha)) ; + + if (alpha < 0) + { + PRINTF ((" no rows treated as dense\n")) ; + } + else + { + PRINTF (( + " (rows with more than max (%g * sqrt (n), 16) entries are\n" + " considered \"dense\", and placed last in output permutation)\n", + alpha)) ; + } + + if (aggressive) + { + PRINTF ((" aggressive absorption: yes\n")) ; + } + else + { + PRINTF ((" aggressive absorption: no\n")) ; + } + + PRINTF ((" size of AMD integer: %d\n\n", sizeof (Int))) ; +} diff --git a/test/monniaux/glpk-4.65/src/amd/amd_defaults.c b/test/monniaux/glpk-4.65/src/amd/amd_defaults.c new file mode 100644 index 00000000..820e8942 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_defaults.c @@ -0,0 +1,38 @@ +/* ========================================================================= */ +/* === AMD_defaults ======================================================== */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* User-callable. Sets default control parameters for AMD. See amd.h + * for details. + */ + +#include "amd_internal.h" + +/* ========================================================================= */ +/* === AMD defaults ======================================================== */ +/* ========================================================================= */ + +GLOBAL void AMD_defaults +( + double Control [ ] +) +{ + Int i ; + + if (Control != (double *) NULL) + { + for (i = 0 ; i < AMD_CONTROL ; i++) + { + Control [i] = 0 ; + } + Control [AMD_DENSE] = AMD_DEFAULT_DENSE ; + Control [AMD_AGGRESSIVE] = AMD_DEFAULT_AGGRESSIVE ; + } +} diff --git a/test/monniaux/glpk-4.65/src/amd/amd_dump.c b/test/monniaux/glpk-4.65/src/amd/amd_dump.c new file mode 100644 index 00000000..39bbe1d8 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_dump.c @@ -0,0 +1,180 @@ +/* ========================================================================= */ +/* === AMD_dump ============================================================ */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* Debugging routines for AMD. Not used if NDEBUG is not defined at compile- + * time (the default). See comments in amd_internal.h on how to enable + * debugging. Not user-callable. + */ + +#include "amd_internal.h" + +#ifndef NDEBUG + +/* This global variable is present only when debugging */ +GLOBAL Int AMD_debug = -999 ; /* default is no debug printing */ + +/* ========================================================================= */ +/* === AMD_debug_init ====================================================== */ +/* ========================================================================= */ + +/* Sets the debug print level, by reading the file debug.amd (if it exists) */ + +GLOBAL void AMD_debug_init ( char *s ) +{ + FILE *f ; + f = fopen ("debug.amd", "r") ; + if (f == (FILE *) NULL) + { + AMD_debug = -999 ; + } + else + { + fscanf (f, ID, &AMD_debug) ; + fclose (f) ; + } + if (AMD_debug >= 0) + { + printf ("%s: AMD_debug_init, D= "ID"\n", s, AMD_debug) ; + } +} + +/* ========================================================================= */ +/* === AMD_dump ============================================================ */ +/* ========================================================================= */ + +/* Dump AMD's data structure, except for the hash buckets. This routine + * cannot be called when the hash buckets are non-empty. + */ + +GLOBAL void AMD_dump ( + Int n, /* A is n-by-n */ + Int Pe [ ], /* pe [0..n-1]: index in iw of start of row i */ + Int Iw [ ], /* workspace of size iwlen, iwlen [0..pfree-1] + * holds the matrix on input */ + Int Len [ ], /* len [0..n-1]: length for row i */ + Int iwlen, /* length of iw */ + Int pfree, /* iw [pfree ... iwlen-1] is empty on input */ + Int Nv [ ], /* nv [0..n-1] */ + Int Next [ ], /* next [0..n-1] */ + Int Last [ ], /* last [0..n-1] */ + Int Head [ ], /* head [0..n-1] */ + Int Elen [ ], /* size n */ + Int Degree [ ], /* size n */ + Int W [ ], /* size n */ + Int nel +) +{ + Int i, pe, elen, nv, len, e, p, k, j, deg, w, cnt, ilast ; + + if (AMD_debug < 0) return ; + ASSERT (pfree <= iwlen) ; + AMD_DEBUG3 (("\nAMD dump, pfree: "ID"\n", pfree)) ; + for (i = 0 ; i < n ; i++) + { + pe = Pe [i] ; + elen = Elen [i] ; + nv = Nv [i] ; + len = Len [i] ; + w = W [i] ; + + if (elen >= EMPTY) + { + if (nv == 0) + { + AMD_DEBUG3 (("\nI "ID": nonprincipal: ", i)) ; + ASSERT (elen == EMPTY) ; + if (pe == EMPTY) + { + AMD_DEBUG3 ((" dense node\n")) ; + ASSERT (w == 1) ; + } + else + { + ASSERT (pe < EMPTY) ; + AMD_DEBUG3 ((" i "ID" -> parent "ID"\n", i, FLIP (Pe[i]))); + } + } + else + { + AMD_DEBUG3 (("\nI "ID": active principal supervariable:\n",i)); + AMD_DEBUG3 ((" nv(i): "ID" Flag: %d\n", nv, (nv < 0))) ; + ASSERT (elen >= 0) ; + ASSERT (nv > 0 && pe >= 0) ; + p = pe ; + AMD_DEBUG3 ((" e/s: ")) ; + if (elen == 0) AMD_DEBUG3 ((" : ")) ; + ASSERT (pe + len <= pfree) ; + for (k = 0 ; k < len ; k++) + { + j = Iw [p] ; + AMD_DEBUG3 ((" "ID"", j)) ; + ASSERT (j >= 0 && j < n) ; + if (k == elen-1) AMD_DEBUG3 ((" : ")) ; + p++ ; + } + AMD_DEBUG3 (("\n")) ; + } + } + else + { + e = i ; + if (w == 0) + { + AMD_DEBUG3 (("\nE "ID": absorbed element: w "ID"\n", e, w)) ; + ASSERT (nv > 0 && pe < 0) ; + AMD_DEBUG3 ((" e "ID" -> parent "ID"\n", e, FLIP (Pe [e]))) ; + } + else + { + AMD_DEBUG3 (("\nE "ID": unabsorbed element: w "ID"\n", e, w)) ; + ASSERT (nv > 0 && pe >= 0) ; + p = pe ; + AMD_DEBUG3 ((" : ")) ; + ASSERT (pe + len <= pfree) ; + for (k = 0 ; k < len ; k++) + { + j = Iw [p] ; + AMD_DEBUG3 ((" "ID"", j)) ; + ASSERT (j >= 0 && j < n) ; + p++ ; + } + AMD_DEBUG3 (("\n")) ; + } + } + } + + /* this routine cannot be called when the hash buckets are non-empty */ + AMD_DEBUG3 (("\nDegree lists:\n")) ; + if (nel >= 0) + { + cnt = 0 ; + for (deg = 0 ; deg < n ; deg++) + { + if (Head [deg] == EMPTY) continue ; + ilast = EMPTY ; + AMD_DEBUG3 ((ID": \n", deg)) ; + for (i = Head [deg] ; i != EMPTY ; i = Next [i]) + { + AMD_DEBUG3 ((" "ID" : next "ID" last "ID" deg "ID"\n", + i, Next [i], Last [i], Degree [i])) ; + ASSERT (i >= 0 && i < n && ilast == Last [i] && + deg == Degree [i]) ; + cnt += Nv [i] ; + ilast = i ; + } + AMD_DEBUG3 (("\n")) ; + } + ASSERT (cnt == n - nel) ; + } + +} + +#endif diff --git a/test/monniaux/glpk-4.65/src/amd/amd_info.c b/test/monniaux/glpk-4.65/src/amd/amd_info.c new file mode 100644 index 00000000..e7b806a9 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_info.c @@ -0,0 +1,120 @@ +/* ========================================================================= */ +/* === AMD_info ============================================================ */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* User-callable. Prints the output statistics for AMD. See amd.h + * for details. If the Info array is not present, nothing is printed. + */ + +#include "amd_internal.h" + +#define PRI(format,x) { if (x >= 0) { PRINTF ((format, x)) ; }} + +GLOBAL void AMD_info +( + double Info [ ] +) +{ + double n, ndiv, nmultsubs_ldl, nmultsubs_lu, lnz, lnzd ; + + PRINTF (("\nAMD version %d.%d.%d, %s, results:\n", + AMD_MAIN_VERSION, AMD_SUB_VERSION, AMD_SUBSUB_VERSION, AMD_DATE)) ; + + if (!Info) + { + return ; + } + + n = Info [AMD_N] ; + ndiv = Info [AMD_NDIV] ; + nmultsubs_ldl = Info [AMD_NMULTSUBS_LDL] ; + nmultsubs_lu = Info [AMD_NMULTSUBS_LU] ; + lnz = Info [AMD_LNZ] ; + lnzd = (n >= 0 && lnz >= 0) ? (n + lnz) : (-1) ; + + /* AMD return status */ + PRINTF ((" status: ")) ; + if (Info [AMD_STATUS] == AMD_OK) + { + PRINTF (("OK\n")) ; + } + else if (Info [AMD_STATUS] == AMD_OUT_OF_MEMORY) + { + PRINTF (("out of memory\n")) ; + } + else if (Info [AMD_STATUS] == AMD_INVALID) + { + PRINTF (("invalid matrix\n")) ; + } + else if (Info [AMD_STATUS] == AMD_OK_BUT_JUMBLED) + { + PRINTF (("OK, but jumbled\n")) ; + } + else + { + PRINTF (("unknown\n")) ; + } + + /* statistics about the input matrix */ + PRI (" n, dimension of A: %.20g\n", n); + PRI (" nz, number of nonzeros in A: %.20g\n", + Info [AMD_NZ]) ; + PRI (" symmetry of A: %.4f\n", + Info [AMD_SYMMETRY]) ; + PRI (" number of nonzeros on diagonal: %.20g\n", + Info [AMD_NZDIAG]) ; + PRI (" nonzeros in pattern of A+A' (excl. diagonal): %.20g\n", + Info [AMD_NZ_A_PLUS_AT]) ; + PRI (" # dense rows/columns of A+A': %.20g\n", + Info [AMD_NDENSE]) ; + + /* statistics about AMD's behavior */ + PRI (" memory used, in bytes: %.20g\n", + Info [AMD_MEMORY]) ; + PRI (" # of memory compactions: %.20g\n", + Info [AMD_NCMPA]) ; + + /* statistics about the ordering quality */ + PRINTF (("\n" + " The following approximate statistics are for a subsequent\n" + " factorization of A(P,P) + A(P,P)'. They are slight upper\n" + " bounds if there are no dense rows/columns in A+A', and become\n" + " looser if dense rows/columns exist.\n\n")) ; + + PRI (" nonzeros in L (excluding diagonal): %.20g\n", + lnz) ; + PRI (" nonzeros in L (including diagonal): %.20g\n", + lnzd) ; + PRI (" # divide operations for LDL' or LU: %.20g\n", + ndiv) ; + PRI (" # multiply-subtract operations for LDL': %.20g\n", + nmultsubs_ldl) ; + PRI (" # multiply-subtract operations for LU: %.20g\n", + nmultsubs_lu) ; + PRI (" max nz. in any column of L (incl. diagonal): %.20g\n", + Info [AMD_DMAX]) ; + + /* total flop counts for various factorizations */ + + if (n >= 0 && ndiv >= 0 && nmultsubs_ldl >= 0 && nmultsubs_lu >= 0) + { + PRINTF (("\n" + " chol flop count for real A, sqrt counted as 1 flop: %.20g\n" + " LDL' flop count for real A: %.20g\n" + " LDL' flop count for complex A: %.20g\n" + " LU flop count for real A (with no pivoting): %.20g\n" + " LU flop count for complex A (with no pivoting): %.20g\n\n", + n + ndiv + 2*nmultsubs_ldl, + ndiv + 2*nmultsubs_ldl, + 9*ndiv + 8*nmultsubs_ldl, + ndiv + 2*nmultsubs_lu, + 9*ndiv + 8*nmultsubs_lu)) ; + } +} diff --git a/test/monniaux/glpk-4.65/src/amd/amd_internal.h b/test/monniaux/glpk-4.65/src/amd/amd_internal.h new file mode 100644 index 00000000..b08f8436 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_internal.h @@ -0,0 +1,117 @@ +/* amd_internal.h */ + +/* Written by Andrew Makhorin . */ + +#ifndef AMD_INTERNAL_H +#define AMD_INTERNAL_H + +/* AMD will be exceedingly slow when running in debug mode. */ +#if 1 +#define NDEBUG +#endif + +#include "amd.h" +#define _GLPSTD_STDIO +#include "env.h" + +#define Int int +#define ID "%d" +#define Int_MAX INT_MAX + +#if 0 /* 15/II-2012 */ +/* now this macro is defined in glpenv.h; besides, the definiton below + depends on implementation, because size_t is an unsigned type */ +#define SIZE_T_MAX ((size_t)(-1)) +#endif + +#define EMPTY (-1) +#define FLIP(i) (-(i)-2) +#define UNFLIP(i) ((i < EMPTY) ? FLIP (i) : (i)) + +#define MAX(a,b) (((a) > (b)) ? (a) : (b)) +#define MIN(a,b) (((a) < (b)) ? (a) : (b)) + +#define IMPLIES(p, q) (!(p) || (q)) + +#define GLOBAL + +#define AMD_order amd_order +#define AMD_defaults amd_defaults +#define AMD_control amd_control +#define AMD_info amd_info +#define AMD_1 amd_1 +#define AMD_2 amd_2 +#define AMD_valid amd_valid +#define AMD_aat amd_aat +#define AMD_postorder amd_postorder +#define AMD_post_tree amd_post_tree +#define AMD_dump amd_dump +#define AMD_debug amd_debug +#define AMD_debug_init amd_debug_init +#define AMD_preprocess amd_preprocess + +#define amd_malloc xmalloc +#if 0 /* 24/V-2009 */ +#define amd_free xfree +#else +#define amd_free(ptr) { if ((ptr) != NULL) xfree(ptr); } +#endif +#define amd_printf xprintf + +#define PRINTF(params) { amd_printf params; } + +#ifndef NDEBUG +#define ASSERT(expr) xassert(expr) +#define AMD_DEBUG0(params) { PRINTF(params); } +#define AMD_DEBUG1(params) { if (AMD_debug >= 1) PRINTF(params); } +#define AMD_DEBUG2(params) { if (AMD_debug >= 2) PRINTF(params); } +#define AMD_DEBUG3(params) { if (AMD_debug >= 3) PRINTF(params); } +#define AMD_DEBUG4(params) { if (AMD_debug >= 4) PRINTF(params); } +#else +#define ASSERT(expression) +#define AMD_DEBUG0(params) +#define AMD_DEBUG1(params) +#define AMD_DEBUG2(params) +#define AMD_DEBUG3(params) +#define AMD_DEBUG4(params) +#endif + +#define amd_aat _glp_amd_aat +size_t AMD_aat(Int n, const Int Ap[], const Int Ai[], Int Len[], + Int Tp[], double Info[]); + +#define amd_1 _glp_amd_1 +void AMD_1(Int n, const Int Ap[], const Int Ai[], Int P[], Int Pinv[], + Int Len[], Int slen, Int S[], double Control[], double Info[]); + +#define amd_postorder _glp_amd_postorder +void AMD_postorder(Int nn, Int Parent[], Int Npiv[], Int Fsize[], + Int Order[], Int Child[], Int Sibling[], Int Stack[]); + +#define amd_post_tree _glp_amd_post_tree +#ifndef NDEBUG +Int AMD_post_tree(Int root, Int k, Int Child[], const Int Sibling[], + Int Order[], Int Stack[], Int nn); +#else +Int AMD_post_tree(Int root, Int k, Int Child[], const Int Sibling[], + Int Order[], Int Stack[]); +#endif + +#define amd_preprocess _glp_amd_preprocess +void AMD_preprocess(Int n, const Int Ap[], const Int Ai[], Int Rp[], + Int Ri[], Int W[], Int Flag[]); + +#define amd_debug _glp_amd_debug +extern Int AMD_debug; + +#define amd_debug_init _glp_amd_debug_init +void AMD_debug_init(char *s); + +#define amd_dump _glp_amd_dump +void AMD_dump(Int n, Int Pe[], Int Iw[], Int Len[], Int iwlen, + Int pfree, Int Nv[], Int Next[], Int Last[], Int Head[], + Int Elen[], Int Degree[], Int W[], Int nel); + +#endif + +/* eof */ diff --git a/test/monniaux/glpk-4.65/src/amd/amd_order.c b/test/monniaux/glpk-4.65/src/amd/amd_order.c new file mode 100644 index 00000000..332d5663 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_order.c @@ -0,0 +1,200 @@ +/* ========================================================================= */ +/* === AMD_order =========================================================== */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* User-callable AMD minimum degree ordering routine. See amd.h for + * documentation. + */ + +#include "amd_internal.h" + +/* ========================================================================= */ +/* === AMD_order =========================================================== */ +/* ========================================================================= */ + +GLOBAL Int AMD_order +( + Int n, + const Int Ap [ ], + const Int Ai [ ], + Int P [ ], + double Control [ ], + double Info [ ] +) +{ + Int *Len, *S, nz, i, *Pinv, info, status, *Rp, *Ri, *Cp, *Ci, ok ; + size_t nzaat, slen ; + double mem = 0 ; + +#ifndef NDEBUG + AMD_debug_init ("amd") ; +#endif + + /* clear the Info array, if it exists */ + info = Info != (double *) NULL ; + if (info) + { + for (i = 0 ; i < AMD_INFO ; i++) + { + Info [i] = EMPTY ; + } + Info [AMD_N] = n ; + Info [AMD_STATUS] = AMD_OK ; + } + + /* make sure inputs exist and n is >= 0 */ + if (Ai == (Int *) NULL || Ap == (Int *) NULL || P == (Int *) NULL || n < 0) + { + if (info) Info [AMD_STATUS] = AMD_INVALID ; + return (AMD_INVALID) ; /* arguments are invalid */ + } + + if (n == 0) + { + return (AMD_OK) ; /* n is 0 so there's nothing to do */ + } + + nz = Ap [n] ; + if (info) + { + Info [AMD_NZ] = nz ; + } + if (nz < 0) + { + if (info) Info [AMD_STATUS] = AMD_INVALID ; + return (AMD_INVALID) ; + } + + /* check if n or nz will cause size_t overflow */ + if (((size_t) n) >= SIZE_T_MAX / sizeof (Int) + || ((size_t) nz) >= SIZE_T_MAX / sizeof (Int)) + { + if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; + return (AMD_OUT_OF_MEMORY) ; /* problem too large */ + } + + /* check the input matrix: AMD_OK, AMD_INVALID, or AMD_OK_BUT_JUMBLED */ + status = AMD_valid (n, n, Ap, Ai) ; + + if (status == AMD_INVALID) + { + if (info) Info [AMD_STATUS] = AMD_INVALID ; + return (AMD_INVALID) ; /* matrix is invalid */ + } + + /* allocate two size-n integer workspaces */ + Len = amd_malloc (n * sizeof (Int)) ; + Pinv = amd_malloc (n * sizeof (Int)) ; + mem += n ; + mem += n ; + if (!Len || !Pinv) + { + /* :: out of memory :: */ + amd_free (Len) ; + amd_free (Pinv) ; + if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; + return (AMD_OUT_OF_MEMORY) ; + } + + if (status == AMD_OK_BUT_JUMBLED) + { + /* sort the input matrix and remove duplicate entries */ + AMD_DEBUG1 (("Matrix is jumbled\n")) ; + Rp = amd_malloc ((n+1) * sizeof (Int)) ; + Ri = amd_malloc (MAX (nz,1) * sizeof (Int)) ; + mem += (n+1) ; + mem += MAX (nz,1) ; + if (!Rp || !Ri) + { + /* :: out of memory :: */ + amd_free (Rp) ; + amd_free (Ri) ; + amd_free (Len) ; + amd_free (Pinv) ; + if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; + return (AMD_OUT_OF_MEMORY) ; + } + /* use Len and Pinv as workspace to create R = A' */ + AMD_preprocess (n, Ap, Ai, Rp, Ri, Len, Pinv) ; + Cp = Rp ; + Ci = Ri ; + } + else + { + /* order the input matrix as-is. No need to compute R = A' first */ + Rp = NULL ; + Ri = NULL ; + Cp = (Int *) Ap ; + Ci = (Int *) Ai ; + } + + /* --------------------------------------------------------------------- */ + /* determine the symmetry and count off-diagonal nonzeros in A+A' */ + /* --------------------------------------------------------------------- */ + + nzaat = AMD_aat (n, Cp, Ci, Len, P, Info) ; + AMD_DEBUG1 (("nzaat: %g\n", (double) nzaat)) ; + ASSERT ((MAX (nz-n, 0) <= nzaat) && (nzaat <= 2 * (size_t) nz)) ; + + /* --------------------------------------------------------------------- */ + /* allocate workspace for matrix, elbow room, and 6 size-n vectors */ + /* --------------------------------------------------------------------- */ + + S = NULL ; + slen = nzaat ; /* space for matrix */ + ok = ((slen + nzaat/5) >= slen) ; /* check for size_t overflow */ + slen += nzaat/5 ; /* add elbow room */ + for (i = 0 ; ok && i < 7 ; i++) + { + ok = ((slen + n) > slen) ; /* check for size_t overflow */ + slen += n ; /* size-n elbow room, 6 size-n work */ + } + mem += slen ; + ok = ok && (slen < SIZE_T_MAX / sizeof (Int)) ; /* check for overflow */ + ok = ok && (slen < Int_MAX) ; /* S[i] for Int i must be OK */ + if (ok) + { + S = amd_malloc (slen * sizeof (Int)) ; + } + AMD_DEBUG1 (("slen %g\n", (double) slen)) ; + if (!S) + { + /* :: out of memory :: (or problem too large) */ + amd_free (Rp) ; + amd_free (Ri) ; + amd_free (Len) ; + amd_free (Pinv) ; + if (info) Info [AMD_STATUS] = AMD_OUT_OF_MEMORY ; + return (AMD_OUT_OF_MEMORY) ; + } + if (info) + { + /* memory usage, in bytes. */ + Info [AMD_MEMORY] = mem * sizeof (Int) ; + } + + /* --------------------------------------------------------------------- */ + /* order the matrix */ + /* --------------------------------------------------------------------- */ + + AMD_1 (n, Cp, Ci, P, Pinv, Len, slen, S, Control, Info) ; + + /* --------------------------------------------------------------------- */ + /* free the workspace */ + /* --------------------------------------------------------------------- */ + + amd_free (Rp) ; + amd_free (Ri) ; + amd_free (Len) ; + amd_free (Pinv) ; + amd_free (S) ; + if (info) Info [AMD_STATUS] = status ; + return (status) ; /* successful ordering */ +} diff --git a/test/monniaux/glpk-4.65/src/amd/amd_post_tree.c b/test/monniaux/glpk-4.65/src/amd/amd_post_tree.c new file mode 100644 index 00000000..bff0e263 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_post_tree.c @@ -0,0 +1,121 @@ +/* ========================================================================= */ +/* === AMD_post_tree ======================================================= */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* Post-ordering of a supernodal elimination tree. */ + +#include "amd_internal.h" + +GLOBAL Int AMD_post_tree +( + Int root, /* root of the tree */ + Int k, /* start numbering at k */ + Int Child [ ], /* input argument of size nn, undefined on + * output. Child [i] is the head of a link + * list of all nodes that are children of node + * i in the tree. */ + const Int Sibling [ ], /* input argument of size nn, not modified. + * If f is a node in the link list of the + * children of node i, then Sibling [f] is the + * next child of node i. + */ + Int Order [ ], /* output order, of size nn. Order [i] = k + * if node i is the kth node of the reordered + * tree. */ + Int Stack [ ] /* workspace of size nn */ +#ifndef NDEBUG + , Int nn /* nodes are in the range 0..nn-1. */ +#endif +) +{ + Int f, head, h, i ; + +#if 0 + /* --------------------------------------------------------------------- */ + /* recursive version (Stack [ ] is not used): */ + /* --------------------------------------------------------------------- */ + + /* this is simple, but can caouse stack overflow if nn is large */ + i = root ; + for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) + { + k = AMD_post_tree (f, k, Child, Sibling, Order, Stack, nn) ; + } + Order [i] = k++ ; + return (k) ; +#endif + + /* --------------------------------------------------------------------- */ + /* non-recursive version, using an explicit stack */ + /* --------------------------------------------------------------------- */ + + /* push root on the stack */ + head = 0 ; + Stack [0] = root ; + + while (head >= 0) + { + /* get head of stack */ + ASSERT (head < nn) ; + i = Stack [head] ; + AMD_DEBUG1 (("head of stack "ID" \n", i)) ; + ASSERT (i >= 0 && i < nn) ; + + if (Child [i] != EMPTY) + { + /* the children of i are not yet ordered */ + /* push each child onto the stack in reverse order */ + /* so that small ones at the head of the list get popped first */ + /* and the biggest one at the end of the list gets popped last */ + for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) + { + head++ ; + ASSERT (head < nn) ; + ASSERT (f >= 0 && f < nn) ; + } + h = head ; + ASSERT (head < nn) ; + for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) + { + ASSERT (h > 0) ; + Stack [h--] = f ; + AMD_DEBUG1 (("push "ID" on stack\n", f)) ; + ASSERT (f >= 0 && f < nn) ; + } + ASSERT (Stack [h] == i) ; + + /* delete child list so that i gets ordered next time we see it */ + Child [i] = EMPTY ; + } + else + { + /* the children of i (if there were any) are already ordered */ + /* remove i from the stack and order it. Front i is kth front */ + head-- ; + AMD_DEBUG1 (("pop "ID" order "ID"\n", i, k)) ; + Order [i] = k++ ; + ASSERT (k <= nn) ; + } + +#ifndef NDEBUG + AMD_DEBUG1 (("\nStack:")) ; + for (h = head ; h >= 0 ; h--) + { + Int j = Stack [h] ; + AMD_DEBUG1 ((" "ID, j)) ; + ASSERT (j >= 0 && j < nn) ; + } + AMD_DEBUG1 (("\n\n")) ; + ASSERT (head < nn) ; +#endif + + } + return (k) ; +} diff --git a/test/monniaux/glpk-4.65/src/amd/amd_postorder.c b/test/monniaux/glpk-4.65/src/amd/amd_postorder.c new file mode 100644 index 00000000..a3ece915 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_postorder.c @@ -0,0 +1,207 @@ +/* ========================================================================= */ +/* === AMD_postorder ======================================================= */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* Perform a postordering (via depth-first search) of an assembly tree. */ + +#include "amd_internal.h" + +GLOBAL void AMD_postorder +( + /* inputs, not modified on output: */ + Int nn, /* nodes are in the range 0..nn-1 */ + Int Parent [ ], /* Parent [j] is the parent of j, or EMPTY if root */ + Int Nv [ ], /* Nv [j] > 0 number of pivots represented by node j, + * or zero if j is not a node. */ + Int Fsize [ ], /* Fsize [j]: size of node j */ + + /* output, not defined on input: */ + Int Order [ ], /* output post-order */ + + /* workspaces of size nn: */ + Int Child [ ], + Int Sibling [ ], + Int Stack [ ] +) +{ + Int i, j, k, parent, frsize, f, fprev, maxfrsize, bigfprev, bigf, fnext ; + + for (j = 0 ; j < nn ; j++) + { + Child [j] = EMPTY ; + Sibling [j] = EMPTY ; + } + + /* --------------------------------------------------------------------- */ + /* place the children in link lists - bigger elements tend to be last */ + /* --------------------------------------------------------------------- */ + + for (j = nn-1 ; j >= 0 ; j--) + { + if (Nv [j] > 0) + { + /* this is an element */ + parent = Parent [j] ; + if (parent != EMPTY) + { + /* place the element in link list of the children its parent */ + /* bigger elements will tend to be at the end of the list */ + Sibling [j] = Child [parent] ; + Child [parent] = j ; + } + } + } + +#ifndef NDEBUG + { + Int nels, ff, nchild ; + AMD_DEBUG1 (("\n\n================================ AMD_postorder:\n")); + nels = 0 ; + for (j = 0 ; j < nn ; j++) + { + if (Nv [j] > 0) + { + AMD_DEBUG1 (( ""ID" : nels "ID" npiv "ID" size "ID + " parent "ID" maxfr "ID"\n", j, nels, + Nv [j], Fsize [j], Parent [j], Fsize [j])) ; + /* this is an element */ + /* dump the link list of children */ + nchild = 0 ; + AMD_DEBUG1 ((" Children: ")) ; + for (ff = Child [j] ; ff != EMPTY ; ff = Sibling [ff]) + { + AMD_DEBUG1 ((ID" ", ff)) ; + ASSERT (Parent [ff] == j) ; + nchild++ ; + ASSERT (nchild < nn) ; + } + AMD_DEBUG1 (("\n")) ; + parent = Parent [j] ; + if (parent != EMPTY) + { + ASSERT (Nv [parent] > 0) ; + } + nels++ ; + } + } + } + AMD_DEBUG1 (("\n\nGo through the children of each node, and put\n" + "the biggest child last in each list:\n")) ; +#endif + + /* --------------------------------------------------------------------- */ + /* place the largest child last in the list of children for each node */ + /* --------------------------------------------------------------------- */ + + for (i = 0 ; i < nn ; i++) + { + if (Nv [i] > 0 && Child [i] != EMPTY) + { + +#ifndef NDEBUG + Int nchild ; + AMD_DEBUG1 (("Before partial sort, element "ID"\n", i)) ; + nchild = 0 ; + for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) + { + ASSERT (f >= 0 && f < nn) ; + AMD_DEBUG1 ((" f: "ID" size: "ID"\n", f, Fsize [f])) ; + nchild++ ; + ASSERT (nchild <= nn) ; + } +#endif + + /* find the biggest element in the child list */ + fprev = EMPTY ; + maxfrsize = EMPTY ; + bigfprev = EMPTY ; + bigf = EMPTY ; + for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) + { + ASSERT (f >= 0 && f < nn) ; + frsize = Fsize [f] ; + if (frsize >= maxfrsize) + { + /* this is the biggest seen so far */ + maxfrsize = frsize ; + bigfprev = fprev ; + bigf = f ; + } + fprev = f ; + } + ASSERT (bigf != EMPTY) ; + + fnext = Sibling [bigf] ; + + AMD_DEBUG1 (("bigf "ID" maxfrsize "ID" bigfprev "ID" fnext "ID + " fprev " ID"\n", bigf, maxfrsize, bigfprev, fnext, fprev)) ; + + if (fnext != EMPTY) + { + /* if fnext is EMPTY then bigf is already at the end of list */ + + if (bigfprev == EMPTY) + { + /* delete bigf from the element of the list */ + Child [i] = fnext ; + } + else + { + /* delete bigf from the middle of the list */ + Sibling [bigfprev] = fnext ; + } + + /* put bigf at the end of the list */ + Sibling [bigf] = EMPTY ; + ASSERT (Child [i] != EMPTY) ; + ASSERT (fprev != bigf) ; + ASSERT (fprev != EMPTY) ; + Sibling [fprev] = bigf ; + } + +#ifndef NDEBUG + AMD_DEBUG1 (("After partial sort, element "ID"\n", i)) ; + for (f = Child [i] ; f != EMPTY ; f = Sibling [f]) + { + ASSERT (f >= 0 && f < nn) ; + AMD_DEBUG1 ((" "ID" "ID"\n", f, Fsize [f])) ; + ASSERT (Nv [f] > 0) ; + nchild-- ; + } + ASSERT (nchild == 0) ; +#endif + + } + } + + /* --------------------------------------------------------------------- */ + /* postorder the assembly tree */ + /* --------------------------------------------------------------------- */ + + for (i = 0 ; i < nn ; i++) + { + Order [i] = EMPTY ; + } + + k = 0 ; + + for (i = 0 ; i < nn ; i++) + { + if (Parent [i] == EMPTY && Nv [i] > 0) + { + AMD_DEBUG1 (("Root of assembly tree "ID"\n", i)) ; + k = AMD_post_tree (i, k, Child, Sibling, Order, Stack +#ifndef NDEBUG + , nn +#endif + ) ; + } + } +} diff --git a/test/monniaux/glpk-4.65/src/amd/amd_preprocess.c b/test/monniaux/glpk-4.65/src/amd/amd_preprocess.c new file mode 100644 index 00000000..fc223fb5 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_preprocess.c @@ -0,0 +1,119 @@ +/* ========================================================================= */ +/* === AMD_preprocess ====================================================== */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* Sorts, removes duplicate entries, and transposes from the nonzero pattern of + * a column-form matrix A, to obtain the matrix R. The input matrix can have + * duplicate entries and/or unsorted columns (AMD_valid (n,Ap,Ai) must not be + * AMD_INVALID). + * + * This input condition is NOT checked. This routine is not user-callable. + */ + +#include "amd_internal.h" + +/* ========================================================================= */ +/* === AMD_preprocess ====================================================== */ +/* ========================================================================= */ + +/* AMD_preprocess does not check its input for errors or allocate workspace. + * On input, the condition (AMD_valid (n,n,Ap,Ai) != AMD_INVALID) must hold. + */ + +GLOBAL void AMD_preprocess +( + Int n, /* input matrix: A is n-by-n */ + const Int Ap [ ], /* size n+1 */ + const Int Ai [ ], /* size nz = Ap [n] */ + + /* output matrix R: */ + Int Rp [ ], /* size n+1 */ + Int Ri [ ], /* size nz (or less, if duplicates present) */ + + Int W [ ], /* workspace of size n */ + Int Flag [ ] /* workspace of size n */ +) +{ + + /* --------------------------------------------------------------------- */ + /* local variables */ + /* --------------------------------------------------------------------- */ + + Int i, j, p, p2 ; + + ASSERT (AMD_valid (n, n, Ap, Ai) != AMD_INVALID) ; + + /* --------------------------------------------------------------------- */ + /* count the entries in each row of A (excluding duplicates) */ + /* --------------------------------------------------------------------- */ + + for (i = 0 ; i < n ; i++) + { + W [i] = 0 ; /* # of nonzeros in row i (excl duplicates) */ + Flag [i] = EMPTY ; /* Flag [i] = j if i appears in column j */ + } + for (j = 0 ; j < n ; j++) + { + p2 = Ap [j+1] ; + for (p = Ap [j] ; p < p2 ; p++) + { + i = Ai [p] ; + if (Flag [i] != j) + { + /* row index i has not yet appeared in column j */ + W [i]++ ; /* one more entry in row i */ + Flag [i] = j ; /* flag row index i as appearing in col j*/ + } + } + } + + /* --------------------------------------------------------------------- */ + /* compute the row pointers for R */ + /* --------------------------------------------------------------------- */ + + Rp [0] = 0 ; + for (i = 0 ; i < n ; i++) + { + Rp [i+1] = Rp [i] + W [i] ; + } + for (i = 0 ; i < n ; i++) + { + W [i] = Rp [i] ; + Flag [i] = EMPTY ; + } + + /* --------------------------------------------------------------------- */ + /* construct the row form matrix R */ + /* --------------------------------------------------------------------- */ + + /* R = row form of pattern of A */ + for (j = 0 ; j < n ; j++) + { + p2 = Ap [j+1] ; + for (p = Ap [j] ; p < p2 ; p++) + { + i = Ai [p] ; + if (Flag [i] != j) + { + /* row index i has not yet appeared in column j */ + Ri [W [i]++] = j ; /* put col j in row i */ + Flag [i] = j ; /* flag row index i as appearing in col j*/ + } + } + } + +#ifndef NDEBUG + ASSERT (AMD_valid (n, n, Rp, Ri) == AMD_OK) ; + for (j = 0 ; j < n ; j++) + { + ASSERT (W [j] == Rp [j+1]) ; + } +#endif +} diff --git a/test/monniaux/glpk-4.65/src/amd/amd_valid.c b/test/monniaux/glpk-4.65/src/amd/amd_valid.c new file mode 100644 index 00000000..e9e2e5ab --- /dev/null +++ b/test/monniaux/glpk-4.65/src/amd/amd_valid.c @@ -0,0 +1,93 @@ +/* ========================================================================= */ +/* === AMD_valid =========================================================== */ +/* ========================================================================= */ + +/* ------------------------------------------------------------------------- */ +/* AMD, Copyright (c) Timothy A. Davis, */ +/* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ +/* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ +/* web: http://www.cise.ufl.edu/research/sparse/amd */ +/* ------------------------------------------------------------------------- */ + +/* Check if a column-form matrix is valid or not. The matrix A is + * n_row-by-n_col. The row indices of entries in column j are in + * Ai [Ap [j] ... Ap [j+1]-1]. Required conditions are: + * + * n_row >= 0 + * n_col >= 0 + * nz = Ap [n_col] >= 0 number of entries in the matrix + * Ap [0] == 0 + * Ap [j] <= Ap [j+1] for all j in the range 0 to n_col. + * Ai [0 ... nz-1] must be in the range 0 to n_row-1. + * + * If any of the above conditions hold, AMD_INVALID is returned. If the + * following condition holds, AMD_OK_BUT_JUMBLED is returned (a warning, + * not an error): + * + * row indices in Ai [Ap [j] ... Ap [j+1]-1] are not sorted in ascending + * order, and/or duplicate entries exist. + * + * Otherwise, AMD_OK is returned. + * + * In v1.2 and earlier, this function returned TRUE if the matrix was valid + * (now returns AMD_OK), or FALSE otherwise (now returns AMD_INVALID or + * AMD_OK_BUT_JUMBLED). + */ + +#include "amd_internal.h" + +GLOBAL Int AMD_valid +( + /* inputs, not modified on output: */ + Int n_row, /* A is n_row-by-n_col */ + Int n_col, + const Int Ap [ ], /* column pointers of A, of size n_col+1 */ + const Int Ai [ ] /* row indices of A, of size nz = Ap [n_col] */ +) +{ + Int nz, j, p1, p2, ilast, i, p, result = AMD_OK ; + + if (n_row < 0 || n_col < 0 || Ap == NULL || Ai == NULL) + { + return (AMD_INVALID) ; + } + nz = Ap [n_col] ; + if (Ap [0] != 0 || nz < 0) + { + /* column pointers must start at Ap [0] = 0, and Ap [n] must be >= 0 */ + AMD_DEBUG0 (("column 0 pointer bad or nz < 0\n")) ; + return (AMD_INVALID) ; + } + for (j = 0 ; j < n_col ; j++) + { + p1 = Ap [j] ; + p2 = Ap [j+1] ; + AMD_DEBUG2 (("\nColumn: "ID" p1: "ID" p2: "ID"\n", j, p1, p2)) ; + if (p1 > p2) + { + /* column pointers must be ascending */ + AMD_DEBUG0 (("column "ID" pointer bad\n", j)) ; + return (AMD_INVALID) ; + } + ilast = EMPTY ; + for (p = p1 ; p < p2 ; p++) + { + i = Ai [p] ; + AMD_DEBUG3 (("row: "ID"\n", i)) ; + if (i < 0 || i >= n_row) + { + /* row index out of range */ + AMD_DEBUG0 (("index out of range, col "ID" row "ID"\n", j, i)); + return (AMD_INVALID) ; + } + if (i <= ilast) + { + /* row index unsorted, or duplicate entry present */ + AMD_DEBUG1 (("index unsorted/dupl col "ID" row "ID"\n", j, i)); + result = AMD_OK_BUT_JUMBLED ; + } + ilast = i ; + } + } + return (result) ; +} -- cgit