From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/bflib/btf.h | 207 ++++++++++++++++++++++++++++++++ 1 file changed, 207 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/bflib/btf.h (limited to 'test/monniaux/glpk-4.65/src/bflib/btf.h') diff --git a/test/monniaux/glpk-4.65/src/bflib/btf.h b/test/monniaux/glpk-4.65/src/bflib/btf.h new file mode 100644 index 00000000..3f1b5926 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/bflib/btf.h @@ -0,0 +1,207 @@ +/* btf.h (sparse block triangular LU-factorization) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2013-2014 Andrew Makhorin, Department for Applied +* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights +* reserved. E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#ifndef BTF_H +#define BTF_H + +#include "sva.h" + +/*********************************************************************** +* The structure BTF describes BT-factorization, which is sparse block +* triangular LU-factorization. +* +* The BT-factorization has the following format: +* +* A = P * A~ * Q, (1) +* +* where A is a given (unsymmetric) square matrix, A~ is an upper block +* triangular matrix (see below), P and Q are permutation matrices. All +* the matrices have the same order n. +* +* The matrix A~, which is a permuted version of the original matrix A, +* has the following structure: +* +* A~[1,1] A~[1,2] ... A~[1,num-1] A~[1,num] +* +* A~[2,2] ... A~[2,num-1] A~[2,num] +* +* . . . . . . . . . (2) +* +* A~[num-1,num-1] A~[num-1,num] +* +* A~[num,num] +* +* where A~[i,j] is a submatrix called a "block," num is the number of +* blocks. Each diagonal block A~[k,k] is a non-singular square matrix, +* and each subdiagonal block A~[i,j], i > j, is a zero submatrix, thus +* A~ is an upper block triangular matrix. +* +* Permutation matrices P and Q are stored in ordinary arrays in both +* row- and column-like formats. +* +* The original matrix A is stored in both row- and column-wise sparse +* formats in the associated sparse vector area (SVA). Should note that +* elements of all diagonal blocks A~[k,k] in matrix A are set to zero +* (i.e. removed), so only elements of non-diagonal blocks are stored. +* +* Each diagonal block A~[k,k], 1 <= k <= num, is stored in the form of +* LU-factorization (see the module LUF). */ + +typedef struct BTF BTF; + +struct BTF +{ /* sparse block triangular LU-factorization */ + int n; + /* order of matrices A, A~, P, Q */ + SVA *sva; + /* associated sparse vector area used to store rows and columns + * of matrix A as well as sparse vectors for LU-factorizations of + * all diagonal blocks A~[k,k] */ + /*--------------------------------------------------------------*/ + /* matrix P */ + int *pp_ind; /* int pp_ind[1+n]; */ + /* pp_ind[i] = j means that P[i,j] = 1 */ + int *pp_inv; /* int pp_inv[1+n]; */ + /* pp_inv[j] = i means that P[i,j] = 1 */ + /* if i-th row of matrix A is i'-th row of matrix A~, then + * pp_ind[i] = i' and pp_inv[i'] = i */ + /*--------------------------------------------------------------*/ + /* matrix Q */ + int *qq_ind; /* int qq_ind[1+n]; */ + /* qq_ind[i] = j means that Q[i,j] = 1 */ + int *qq_inv; /* int qq_inv[1+n]; */ + /* qq_inv[j] = i means that Q[i,j] = 1 */ + /* if j-th column of matrix A is j'-th column of matrix A~, then + * qq_ind[j'] = j and qq_inv[j] = j' */ + /*--------------------------------------------------------------*/ + /* block triangular structure of matrix A~ */ + int num; + /* number of diagonal blocks, 1 <= num <= n */ + int *beg; /* int beg[1+num+1]; */ + /* beg[0] is not used; + * beg[k], 1 <= k <= num, is index of first row/column of k-th + * block of matrix A~; + * beg[num+1] is always n+1; + * note that order (size) of k-th diagonal block can be computed + * as beg[k+1] - beg[k] */ + /*--------------------------------------------------------------*/ + /* original matrix A in row-wise format */ + /* NOTE: elements of all diagonal blocks A~[k,k] are removed */ + int ar_ref; + /* reference number of sparse vector in SVA, which is the first + * row of matrix A */ +#if 0 + 0 + int *ar_ptr = &sva->ptr[ar_ref-1]; + /* ar_ptr[0] is not used; + * ar_ptr[i], 1 <= i <= n, is pointer to i-th row in SVA */ + int *ar_len = &sva->ptr[ar_ref-1]; + /* ar_len[0] is not used; + * ar_len[i], 1 <= i <= n, is length of i-th row */ +#endif + /*--------------------------------------------------------------*/ + /* original matrix A in column-wise format */ + /* NOTE: elements of all diagonal blocks A~[k,k] are removed */ + int ac_ref; + /* reference number of sparse vector in SVA, which is the first + * column of matrix A */ +#if 0 + 0 + int *ac_ptr = &sva->ptr[ac_ref-1]; + /* ac_ptr[0] is not used; + * ac_ptr[j], 1 <= j <= n, is pointer to j-th column in SVA */ + int *ac_len = &sva->ptr[ac_ref-1]; + /* ac_len[0] is not used; + * ac_len[j], 1 <= j <= n, is length of j-th column */ +#endif + /*--------------------------------------------------------------*/ + /* LU-factorizations of diagonal blocks A~[k,k] */ + /* to decrease overhead expenses similar arrays for all LUFs are + * packed into a single array; for example, elements fr_ptr[1], + * ..., fr_ptr[n1], where n1 = beg[2] - beg[1], are related to + * LUF for first diagonal block A~[1,1], elements fr_ptr[n1+1], + * ..., fr_ptr[n1+n2], where n2 = beg[3] - beg[2], are related to + * LUF for second diagonal block A~[2,2], etc.; in other words, + * elements related to LUF for k-th diagonal block A~[k,k] have + * indices beg[k], beg[k]+1, ..., beg[k+1]-1 */ + /* for details about LUF see description of the LUF module */ + int fr_ref; + /* reference number of sparse vector in SVA, which is the first + row of matrix F for first diagonal block A~[1,1] */ + int fc_ref; + /* reference number of sparse vector in SVA, which is the first + column of matrix F for first diagonal block A~[1,1] */ + int vr_ref; + /* reference number of sparse vector in SVA, which is the first + row of matrix V for first diagonal block A~[1,1] */ + double *vr_piv; /* double vr_piv[1+n]; */ + /* vr_piv[0] is not used; + vr_piv[1,...,n] are pivot elements for all diagonal blocks */ + int vc_ref; + /* reference number of sparse vector in SVA, which is the first + column of matrix V for first diagonal block A~[1,1] */ + int *p1_ind; /* int p1_ind[1+n]; */ + int *p1_inv; /* int p1_inv[1+n]; */ + int *q1_ind; /* int q1_ind[1+n]; */ + int *q1_inv; /* int q1_inv[1+n]; */ + /* permutation matrices P and Q for all diagonal blocks */ +}; + +#define btf_store_a_cols _glp_btf_store_a_cols +int btf_store_a_cols(BTF *btf, int (*col)(void *info, int j, int ind[], + double val[]), void *info, int ind[], double val[]); +/* store pattern of matrix A in column-wise format */ + +#define btf_make_blocks _glp_btf_make_blocks +int btf_make_blocks(BTF *btf); +/* permutations to block triangular form */ + +#define btf_check_blocks _glp_btf_check_blocks +void btf_check_blocks(BTF *btf); +/* check structure of matrix A~ */ + +#define btf_build_a_rows _glp_btf_build_a_rows +void btf_build_a_rows(BTF *btf, int len[/*1+n*/]); +/* build matrix A in row-wise format */ + +#define btf_a_solve _glp_btf_a_solve +void btf_a_solve(BTF *btf, double b[/*1+n*/], double x[/*1+n*/], + double w1[/*1+n*/], double w2[/*1+n*/]); +/* solve system A * x = b */ + +#define btf_at_solve _glp_btf_at_solve +void btf_at_solve(BTF *btf, double b[/*1+n*/], double x[/*1+n*/], + double w1[/*1+n*/], double w2[/*1+n*/]); +/* solve system A'* x = b */ + +#define btf_at_solve1 _glp_btf_at_solve1 +void btf_at_solve1(BTF *btf, double e[/*1+n*/], double y[/*1+n*/], + double w1[/*1+n*/], double w2[/*1+n*/]); +/* solve system A'* y = e' to cause growth in y */ + +#define btf_estimate_norm _glp_btf_estimate_norm +double btf_estimate_norm(BTF *btf, double w1[/*1+n*/], double + w2[/*1+n*/], double w3[/*1+n*/], double w4[/*1+n*/]); +/* estimate 1-norm of inv(A) */ + +#endif + +/* eof */ -- cgit