From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/bflib/luf.c | 713 ++++++++++++++++++++++++++++++++ 1 file changed, 713 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/bflib/luf.c (limited to 'test/monniaux/glpk-4.65/src/bflib/luf.c') diff --git a/test/monniaux/glpk-4.65/src/bflib/luf.c b/test/monniaux/glpk-4.65/src/bflib/luf.c new file mode 100644 index 00000000..2797407d --- /dev/null +++ b/test/monniaux/glpk-4.65/src/bflib/luf.c @@ -0,0 +1,713 @@ +/* luf.c (sparse LU-factorization) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2012-2013 Andrew Makhorin, Department for Applied +* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights +* reserved. E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "env.h" +#include "luf.h" + +/*********************************************************************** +* luf_store_v_cols - store matrix V = A in column-wise format +* +* This routine stores matrix V = A in column-wise format, where A is +* the original matrix to be factorized. +* +* On exit the routine returns the number of non-zeros in matrix V. */ + +int luf_store_v_cols(LUF *luf, int (*col)(void *info, int j, int ind[], + double val[]), void *info, int ind[], double val[]) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int vc_ref = luf->vc_ref; + int *vc_ptr = &sva->ptr[vc_ref-1]; + int *vc_len = &sva->len[vc_ref-1]; + int *vc_cap = &sva->cap[vc_ref-1]; + int j, len, ptr, nnz; + nnz = 0; + for (j = 1; j <= n; j++) + { /* get j-th column */ + len = col(info, j, ind, val); + xassert(0 <= len && len <= n); + /* enlarge j-th column capacity */ + if (vc_cap[j] < len) + { if (sva->r_ptr - sva->m_ptr < len) + { sva_more_space(sva, len); + sv_ind = sva->ind; + sv_val = sva->val; + } + sva_enlarge_cap(sva, vc_ref-1+j, len, 0); + } + /* store j-th column */ + ptr = vc_ptr[j]; + memcpy(&sv_ind[ptr], &ind[1], len * sizeof(int)); + memcpy(&sv_val[ptr], &val[1], len * sizeof(double)); + vc_len[j] = len; + nnz += len; + } + return nnz; +} + +/*********************************************************************** +* luf_check_all - check LU-factorization before k-th elimination step +* +* This routine checks that before performing k-th elimination step, +* 1 <= k <= n+1, all components of the LU-factorization are correct. +* +* In case of k = n+1, i.e. after last elimination step, it is assumed +* that rows of F and columns of V are *not* built yet. +* +* NOTE: For testing/debugging only. */ + +void luf_check_all(LUF *luf, int k) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int fr_ref = luf->fr_ref; + int *fr_len = &sva->len[fr_ref-1]; + int fc_ref = luf->fc_ref; + int *fc_ptr = &sva->ptr[fc_ref-1]; + int *fc_len = &sva->len[fc_ref-1]; + int vr_ref = luf->vr_ref; + int *vr_ptr = &sva->ptr[vr_ref-1]; + int *vr_len = &sva->len[vr_ref-1]; + int vc_ref = luf->vc_ref; + int *vc_ptr = &sva->ptr[vc_ref-1]; + int *vc_len = &sva->len[vc_ref-1]; + int *pp_ind = luf->pp_ind; + int *pp_inv = luf->pp_inv; + int *qq_ind = luf->qq_ind; + int *qq_inv = luf->qq_inv; + int i, ii, i_ptr, i_end, j, jj, j_ptr, j_end; + xassert(n > 0); + xassert(1 <= k && k <= n+1); + /* check permutation matrix P */ + for (i = 1; i <= n; i++) + { ii = pp_ind[i]; + xassert(1 <= ii && ii <= n); + xassert(pp_inv[ii] == i); + } + /* check permutation matrix Q */ + for (j = 1; j <= n; j++) + { jj = qq_inv[j]; + xassert(1 <= jj && jj <= n); + xassert(qq_ind[jj] == j); + } + /* check row-wise representation of matrix F */ + for (i = 1; i <= n; i++) + xassert(fr_len[i] == 0); + /* check column-wise representation of matrix F */ + for (j = 1; j <= n; j++) + { /* j-th column of F = jj-th column of L */ + jj = pp_ind[j]; + if (jj < k) + { j_ptr = fc_ptr[j]; + j_end = j_ptr + fc_len[j]; + for (; j_ptr < j_end; j_ptr++) + { i = sv_ind[j_ptr]; + xassert(1 <= i && i <= n); + ii = pp_ind[i]; /* f[i,j] = l[ii,jj] */ + xassert(ii > jj); + xassert(sv_val[j_ptr] != 0.0); + } + } + else /* jj >= k */ + xassert(fc_len[j] == 0); + } + /* check row-wise representation of matrix V */ + for (i = 1; i <= n; i++) + { /* i-th row of V = ii-th row of U */ + ii = pp_ind[i]; + i_ptr = vr_ptr[i]; + i_end = i_ptr + vr_len[i]; + for (; i_ptr < i_end; i_ptr++) + { j = sv_ind[i_ptr]; + xassert(1 <= j && j <= n); + jj = qq_inv[j]; /* v[i,j] = u[ii,jj] */ + if (ii < k) + xassert(jj > ii); + else /* ii >= k */ + { xassert(jj >= k); + /* find v[i,j] in j-th column */ + j_ptr = vc_ptr[j]; + j_end = j_ptr + vc_len[j]; + for (; sv_ind[j_ptr] != i; j_ptr++) + /* nop */; + xassert(j_ptr < j_end); + } + xassert(sv_val[i_ptr] != 0.0); + } + } + /* check column-wise representation of matrix V */ + for (j = 1; j <= n; j++) + { /* j-th column of V = jj-th column of U */ + jj = qq_inv[j]; + if (jj < k) + xassert(vc_len[j] == 0); + else /* jj >= k */ + { j_ptr = vc_ptr[j]; + j_end = j_ptr + vc_len[j]; + for (; j_ptr < j_end; j_ptr++) + { i = sv_ind[j_ptr]; + ii = pp_ind[i]; /* v[i,j] = u[ii,jj] */ + xassert(ii >= k); + /* find v[i,j] in i-th row */ + i_ptr = vr_ptr[i]; + i_end = i_ptr + vr_len[i]; + for (; sv_ind[i_ptr] != j; i_ptr++) + /* nop */; + xassert(i_ptr < i_end); + } + } + } + return; +} + +/*********************************************************************** +* luf_build_v_rows - build matrix V in row-wise format +* +* This routine builds the row-wise representation of matrix V in the +* left part of SVA using its column-wise representation. +* +* NOTE: On entry to the routine all rows of matrix V should have zero +* capacity. +* +* The working array len should have at least 1+n elements (len[0] is +* not used). */ + +void luf_build_v_rows(LUF *luf, int len[/*1+n*/]) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int vr_ref = luf->vr_ref; + int *vr_ptr = &sva->ptr[vr_ref-1]; + int *vr_len = &sva->len[vr_ref-1]; + int vc_ref = luf->vc_ref; + int *vc_ptr = &sva->ptr[vc_ref-1]; + int *vc_len = &sva->len[vc_ref-1]; + int i, j, end, nnz, ptr, ptr1; + /* calculate the number of non-zeros in each row of matrix V and + * the total number of non-zeros */ + nnz = 0; + for (i = 1; i <= n; i++) + len[i] = 0; + for (j = 1; j <= n; j++) + { nnz += vc_len[j]; + for (end = (ptr = vc_ptr[j]) + vc_len[j]; ptr < end; ptr++) + len[sv_ind[ptr]]++; + } + /* we need at least nnz free locations in SVA */ + if (sva->r_ptr - sva->m_ptr < nnz) + { sva_more_space(sva, nnz); + sv_ind = sva->ind; + sv_val = sva->val; + } + /* reserve locations for rows of matrix V */ + for (i = 1; i <= n; i++) + { if (len[i] > 0) + sva_enlarge_cap(sva, vr_ref-1+i, len[i], 0); + vr_len[i] = len[i]; + } + /* walk thru column of matrix V and build its rows */ + for (j = 1; j <= n; j++) + { for (end = (ptr = vc_ptr[j]) + vc_len[j]; ptr < end; ptr++) + { i = sv_ind[ptr]; + sv_ind[ptr1 = vr_ptr[i] + (--len[i])] = j; + sv_val[ptr1] = sv_val[ptr]; + } + } + return; +} + +/*********************************************************************** +* luf_build_f_rows - build matrix F in row-wise format +* +* This routine builds the row-wise representation of matrix F in the +* right part of SVA using its column-wise representation. +* +* NOTE: On entry to the routine all rows of matrix F should have zero +* capacity. +* +* The working array len should have at least 1+n elements (len[0] is +* not used). */ + +void luf_build_f_rows(LUF *luf, int len[/*1+n*/]) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int fr_ref = luf->fr_ref; + int *fr_ptr = &sva->ptr[fr_ref-1]; + int *fr_len = &sva->len[fr_ref-1]; + int fc_ref = luf->fc_ref; + int *fc_ptr = &sva->ptr[fc_ref-1]; + int *fc_len = &sva->len[fc_ref-1]; + int i, j, end, nnz, ptr, ptr1; + /* calculate the number of non-zeros in each row of matrix F and + * the total number of non-zeros (except diagonal elements) */ + nnz = 0; + for (i = 1; i <= n; i++) + len[i] = 0; + for (j = 1; j <= n; j++) + { nnz += fc_len[j]; + for (end = (ptr = fc_ptr[j]) + fc_len[j]; ptr < end; ptr++) + len[sv_ind[ptr]]++; + } + /* we need at least nnz free locations in SVA */ + if (sva->r_ptr - sva->m_ptr < nnz) + { sva_more_space(sva, nnz); + sv_ind = sva->ind; + sv_val = sva->val; + } + /* reserve locations for rows of matrix F */ + for (i = 1; i <= n; i++) + { if (len[i] > 0) + sva_reserve_cap(sva, fr_ref-1+i, len[i]); + fr_len[i] = len[i]; + } + /* walk through columns of matrix F and build its rows */ + for (j = 1; j <= n; j++) + { for (end = (ptr = fc_ptr[j]) + fc_len[j]; ptr < end; ptr++) + { i = sv_ind[ptr]; + sv_ind[ptr1 = fr_ptr[i] + (--len[i])] = j; + sv_val[ptr1] = sv_val[ptr]; + } + } + return; +} + +/*********************************************************************** +* luf_build_v_cols - build matrix V in column-wise format +* +* This routine builds the column-wise representation of matrix V in +* the left (if the flag updat is set) or right (if the flag updat is +* clear) part of SVA using its row-wise representation. +* +* NOTE: On entry to the routine all columns of matrix V should have +* zero capacity. +* +* The working array len should have at least 1+n elements (len[0] is +* not used). */ + +void luf_build_v_cols(LUF *luf, int updat, int len[/*1+n*/]) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int vr_ref = luf->vr_ref; + int *vr_ptr = &sva->ptr[vr_ref-1]; + int *vr_len = &sva->len[vr_ref-1]; + int vc_ref = luf->vc_ref; + int *vc_ptr = &sva->ptr[vc_ref-1]; + int *vc_len = &sva->len[vc_ref-1]; + int i, j, end, nnz, ptr, ptr1; + /* calculate the number of non-zeros in each column of matrix V + * and the total number of non-zeros (except pivot elements) */ + nnz = 0; + for (j = 1; j <= n; j++) + len[j] = 0; + for (i = 1; i <= n; i++) + { nnz += vr_len[i]; + for (end = (ptr = vr_ptr[i]) + vr_len[i]; ptr < end; ptr++) + len[sv_ind[ptr]]++; + } + /* we need at least nnz free locations in SVA */ + if (sva->r_ptr - sva->m_ptr < nnz) + { sva_more_space(sva, nnz); + sv_ind = sva->ind; + sv_val = sva->val; + } + /* reserve locations for columns of matrix V */ + for (j = 1; j <= n; j++) + { if (len[j] > 0) + { if (updat) + sva_enlarge_cap(sva, vc_ref-1+j, len[j], 0); + else + sva_reserve_cap(sva, vc_ref-1+j, len[j]); + } + vc_len[j] = len[j]; + } + /* walk through rows of matrix V and build its columns */ + for (i = 1; i <= n; i++) + { for (end = (ptr = vr_ptr[i]) + vr_len[i]; ptr < end; ptr++) + { j = sv_ind[ptr]; + sv_ind[ptr1 = vc_ptr[j] + (--len[j])] = i; + sv_val[ptr1] = sv_val[ptr]; + } + } + return; +} + +/*********************************************************************** +* luf_check_f_rc - check rows and columns of matrix F +* +* This routine checks that the row- and column-wise representations +* of matrix F are identical. +* +* NOTE: For testing/debugging only. */ + +void luf_check_f_rc(LUF *luf) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int fr_ref = luf->fr_ref; + int *fr_ptr = &sva->ptr[fr_ref-1]; + int *fr_len = &sva->len[fr_ref-1]; + int fc_ref = luf->fc_ref; + int *fc_ptr = &sva->ptr[fc_ref-1]; + int *fc_len = &sva->len[fc_ref-1]; + int i, i_end, i_ptr, j, j_end, j_ptr; + /* walk thru rows of matrix F */ + for (i = 1; i <= n; i++) + { for (i_end = (i_ptr = fr_ptr[i]) + fr_len[i]; + i_ptr < i_end; i_ptr++) + { j = sv_ind[i_ptr]; + /* find element f[i,j] in j-th column of matrix F */ + for (j_end = (j_ptr = fc_ptr[j]) + fc_len[j]; + sv_ind[j_ptr] != i; j_ptr++) + /* nop */; + xassert(j_ptr < j_end); + xassert(sv_val[i_ptr] == sv_val[j_ptr]); + /* mark element f[i,j] */ + sv_ind[j_ptr] = -i; + } + } + /* walk thru column of matix F and check that all elements has + been marked */ + for (j = 1; j <= n; j++) + { for (j_end = (j_ptr = fc_ptr[j]) + fc_len[j]; + j_ptr < j_end; j_ptr++) + { xassert((i = sv_ind[j_ptr]) < 0); + /* unmark element f[i,j] */ + sv_ind[j_ptr] = -i; + } + } + return; +} + +/*********************************************************************** +* luf_check_v_rc - check rows and columns of matrix V +* +* This routine checks that the row- and column-wise representations +* of matrix V are identical. +* +* NOTE: For testing/debugging only. */ + +void luf_check_v_rc(LUF *luf) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int vr_ref = luf->vr_ref; + int *vr_ptr = &sva->ptr[vr_ref-1]; + int *vr_len = &sva->len[vr_ref-1]; + int vc_ref = luf->vc_ref; + int *vc_ptr = &sva->ptr[vc_ref-1]; + int *vc_len = &sva->len[vc_ref-1]; + int i, i_end, i_ptr, j, j_end, j_ptr; + /* walk thru rows of matrix V */ + for (i = 1; i <= n; i++) + { for (i_end = (i_ptr = vr_ptr[i]) + vr_len[i]; + i_ptr < i_end; i_ptr++) + { j = sv_ind[i_ptr]; + /* find element v[i,j] in j-th column of matrix V */ + for (j_end = (j_ptr = vc_ptr[j]) + vc_len[j]; + sv_ind[j_ptr] != i; j_ptr++) + /* nop */; + xassert(j_ptr < j_end); + xassert(sv_val[i_ptr] == sv_val[j_ptr]); + /* mark element v[i,j] */ + sv_ind[j_ptr] = -i; + } + } + /* walk thru column of matix V and check that all elements has + been marked */ + for (j = 1; j <= n; j++) + { for (j_end = (j_ptr = vc_ptr[j]) + vc_len[j]; + j_ptr < j_end; j_ptr++) + { xassert((i = sv_ind[j_ptr]) < 0); + /* unmark element v[i,j] */ + sv_ind[j_ptr] = -i; + } + } + return; +} + +/*********************************************************************** +* luf_f_solve - solve system F * x = b +* +* This routine solves the system F * x = b, where the matrix F is the +* left factor of the sparse LU-factorization. +* +* On entry the array x should contain elements of the right-hand side +* vector b in locations x[1], ..., x[n], where n is the order of the +* matrix F. On exit this array will contain elements of the solution +* vector x in the same locations. */ + +void luf_f_solve(LUF *luf, double x[/*1+n*/]) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int fc_ref = luf->fc_ref; + int *fc_ptr = &sva->ptr[fc_ref-1]; + int *fc_len = &sva->len[fc_ref-1]; + int *pp_inv = luf->pp_inv; + int j, k, ptr, end; + double x_j; + for (k = 1; k <= n; k++) + { /* k-th column of L = j-th column of F */ + j = pp_inv[k]; + /* x[j] is already computed */ + /* walk thru j-th column of matrix F and substitute x[j] into + * other equations */ + if ((x_j = x[j]) != 0.0) + { for (end = (ptr = fc_ptr[j]) + fc_len[j]; ptr < end; ptr++) + x[sv_ind[ptr]] -= sv_val[ptr] * x_j; + } + } + return; +} + +/*********************************************************************** +* luf_ft_solve - solve system F' * x = b +* +* This routine solves the system F' * x = b, where F' is a matrix +* transposed to the matrix F, which is the left factor of the sparse +* LU-factorization. +* +* On entry the array x should contain elements of the right-hand side +* vector b in locations x[1], ..., x[n], where n is the order of the +* matrix F. On exit this array will contain elements of the solution +* vector x in the same locations. */ + +void luf_ft_solve(LUF *luf, double x[/*1+n*/]) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + int fr_ref = luf->fr_ref; + int *fr_ptr = &sva->ptr[fr_ref-1]; + int *fr_len = &sva->len[fr_ref-1]; + int *pp_inv = luf->pp_inv; + int i, k, ptr, end; + double x_i; + for (k = n; k >= 1; k--) + { /* k-th column of L' = i-th row of F */ + i = pp_inv[k]; + /* x[i] is already computed */ + /* walk thru i-th row of matrix F and substitute x[i] into + * other equations */ + if ((x_i = x[i]) != 0.0) + { for (end = (ptr = fr_ptr[i]) + fr_len[i]; ptr < end; ptr++) + x[sv_ind[ptr]] -= sv_val[ptr] * x_i; + } + } + return; +} + +/*********************************************************************** +* luf_v_solve - solve system V * x = b +* +* This routine solves the system V * x = b, where the matrix V is the +* right factor of the sparse LU-factorization. +* +* On entry the array b should contain elements of the right-hand side +* vector b in locations b[1], ..., b[n], where n is the order of the +* matrix V. On exit the array x will contain elements of the solution +* vector x in locations x[1], ..., x[n]. Note that the array b will be +* clobbered on exit. */ + +void luf_v_solve(LUF *luf, double b[/*1+n*/], double x[/*1+n*/]) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + double *vr_piv = luf->vr_piv; + int vc_ref = luf->vc_ref; + int *vc_ptr = &sva->ptr[vc_ref-1]; + int *vc_len = &sva->len[vc_ref-1]; + int *pp_inv = luf->pp_inv; + int *qq_ind = luf->qq_ind; + int i, j, k, ptr, end; + double x_j; + for (k = n; k >= 1; k--) + { /* k-th row of U = i-th row of V */ + /* k-th column of U = j-th column of V */ + i = pp_inv[k]; + j = qq_ind[k]; + /* compute x[j] = b[i] / u[k,k], where u[k,k] = v[i,j]; + * walk through j-th column of matrix V and substitute x[j] + * into other equations */ + if ((x_j = x[j] = b[i] / vr_piv[i]) != 0.0) + { for (end = (ptr = vc_ptr[j]) + vc_len[j]; ptr < end; ptr++) + b[sv_ind[ptr]] -= sv_val[ptr] * x_j; + } + } + return; +} + +/*********************************************************************** +* luf_vt_solve - solve system V' * x = b +* +* This routine solves the system V' * x = b, where V' is a matrix +* transposed to the matrix V, which is the right factor of the sparse +* LU-factorization. +* +* On entry the array b should contain elements of the right-hand side +* vector b in locations b[1], ..., b[n], where n is the order of the +* matrix V. On exit the array x will contain elements of the solution +* vector x in locations x[1], ..., x[n]. Note that the array b will be +* clobbered on exit. */ + +void luf_vt_solve(LUF *luf, double b[/*1+n*/], double x[/*1+n*/]) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + double *vr_piv = luf->vr_piv; + int vr_ref = luf->vr_ref; + int *vr_ptr = &sva->ptr[vr_ref-1]; + int *vr_len = &sva->len[vr_ref-1]; + int *pp_inv = luf->pp_inv; + int *qq_ind = luf->qq_ind; + int i, j, k, ptr, end; + double x_i; + for (k = 1; k <= n; k++) + { /* k-th row of U' = j-th column of V */ + /* k-th column of U' = i-th row of V */ + i = pp_inv[k]; + j = qq_ind[k]; + /* compute x[i] = b[j] / u'[k,k], where u'[k,k] = v[i,j]; + * walk through i-th row of matrix V and substitute x[i] into + * other equations */ + if ((x_i = x[i] = b[j] / vr_piv[i]) != 0.0) + { for (end = (ptr = vr_ptr[i]) + vr_len[i]; ptr < end; ptr++) + b[sv_ind[ptr]] -= sv_val[ptr] * x_i; + } + } + return; +} + +/*********************************************************************** +* luf_vt_solve1 - solve system V' * y = e' to cause growth in y +* +* This routine is a special version of luf_vt_solve. It solves the +* system V'* y = e' = e + delta e, where V' is a matrix transposed to +* the matrix V, e is the specified right-hand side vector, and delta e +* is a vector of +1 and -1 chosen to cause growth in the solution +* vector y. +* +* On entry the array e should contain elements of the right-hand side +* vector e in locations e[1], ..., e[n], where n is the order of the +* matrix V. On exit the array y will contain elements of the solution +* vector y in locations y[1], ..., y[n]. Note that the array e will be +* clobbered on exit. */ + +void luf_vt_solve1(LUF *luf, double e[/*1+n*/], double y[/*1+n*/]) +{ int n = luf->n; + SVA *sva = luf->sva; + int *sv_ind = sva->ind; + double *sv_val = sva->val; + double *vr_piv = luf->vr_piv; + int vr_ref = luf->vr_ref; + int *vr_ptr = &sva->ptr[vr_ref-1]; + int *vr_len = &sva->len[vr_ref-1]; + int *pp_inv = luf->pp_inv; + int *qq_ind = luf->qq_ind; + int i, j, k, ptr, end; + double e_j, y_i; + for (k = 1; k <= n; k++) + { /* k-th row of U' = j-th column of V */ + /* k-th column of U' = i-th row of V */ + i = pp_inv[k]; + j = qq_ind[k]; + /* determine e'[j] = e[j] + delta e[j] */ + e_j = (e[j] >= 0.0 ? e[j] + 1.0 : e[j] - 1.0); + /* compute y[i] = e'[j] / u'[k,k], where u'[k,k] = v[i,j] */ + y_i = y[i] = e_j / vr_piv[i]; + /* walk through i-th row of matrix V and substitute y[i] into + * other equations */ + for (end = (ptr = vr_ptr[i]) + vr_len[i]; ptr < end; ptr++) + e[sv_ind[ptr]] -= sv_val[ptr] * y_i; + } + return; +} + +/*********************************************************************** +* luf_estimate_norm - estimate 1-norm of inv(A) +* +* This routine estimates 1-norm of inv(A) by one step of inverse +* iteration for the small singular vector as described in [1]. This +* involves solving two systems of equations: +* +* A'* y = e, +* +* A * z = y, +* +* where A' is a matrix transposed to A, and e is a vector of +1 and -1 +* chosen to cause growth in y. Then +* +* estimate 1-norm of inv(A) = (1-norm of z) / (1-norm of y) +* +* REFERENCES +* +* 1. G.E.Forsythe, M.A.Malcolm, C.B.Moler. Computer Methods for +* Mathematical Computations. Prentice-Hall, Englewood Cliffs, N.J., +* pp. 30-62 (subroutines DECOMP and SOLVE). */ + +double luf_estimate_norm(LUF *luf, double w1[/*1+n*/], double + w2[/*1+n*/]) +{ int n = luf->n; + double *e = w1; + double *y = w2; + double *z = w1; + int i; + double y_norm, z_norm; + /* y = inv(A') * e = inv(F') * inv(V') * e */ + /* compute y' = inv(V') * e to cause growth in y' */ + for (i = 1; i <= n; i++) + e[i] = 0.0; + luf_vt_solve1(luf, e, y); + /* compute y = inv(F') * y' */ + luf_ft_solve(luf, y); + /* compute 1-norm of y = sum |y[i]| */ + y_norm = 0.0; + for (i = 1; i <= n; i++) + y_norm += (y[i] >= 0.0 ? +y[i] : -y[i]); + /* z = inv(A) * y = inv(V) * inv(F) * y */ + /* compute z' = inv(F) * y */ + luf_f_solve(luf, y); + /* compute z = inv(V) * z' */ + luf_v_solve(luf, y, z); + /* compute 1-norm of z = sum |z[i]| */ + z_norm = 0.0; + for (i = 1; i <= n; i++) + z_norm += (z[i] >= 0.0 ? +z[i] : -z[i]); + /* estimate 1-norm of inv(A) = (1-norm of z) / (1-norm of y) */ + return z_norm / y_norm; +} + +/* eof */ -- cgit