From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/draft/glpapi12.c | 2185 ++++++++++++++++++++++++++ 1 file changed, 2185 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/draft/glpapi12.c (limited to 'test/monniaux/glpk-4.65/src/draft/glpapi12.c') diff --git a/test/monniaux/glpk-4.65/src/draft/glpapi12.c b/test/monniaux/glpk-4.65/src/draft/glpapi12.c new file mode 100644 index 00000000..020c8981 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/draft/glpapi12.c @@ -0,0 +1,2185 @@ +/* glpapi12.c (basis factorization and simplex tableau routines) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, +* 2009, 2010, 2011, 2013 Andrew Makhorin, Department for Applied +* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights +* reserved. E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "draft.h" +#include "env.h" +#include "prob.h" + +/*********************************************************************** +* NAME +* +* glp_bf_exists - check if the basis factorization exists +* +* SYNOPSIS +* +* int glp_bf_exists(glp_prob *lp); +* +* RETURNS +* +* If the basis factorization for the current basis associated with +* the specified problem object exists and therefore is available for +* computations, the routine glp_bf_exists returns non-zero. Otherwise +* the routine returns zero. */ + +int glp_bf_exists(glp_prob *lp) +{ int ret; + ret = (lp->m == 0 || lp->valid); + return ret; +} + +/*********************************************************************** +* NAME +* +* glp_factorize - compute the basis factorization +* +* SYNOPSIS +* +* int glp_factorize(glp_prob *lp); +* +* DESCRIPTION +* +* The routine glp_factorize computes the basis factorization for the +* current basis associated with the specified problem object. +* +* RETURNS +* +* 0 The basis factorization has been successfully computed. +* +* GLP_EBADB +* The basis matrix is invalid, i.e. the number of basic (auxiliary +* and structural) variables differs from the number of rows in the +* problem object. +* +* GLP_ESING +* The basis matrix is singular within the working precision. +* +* GLP_ECOND +* The basis matrix is ill-conditioned. */ + +static int b_col(void *info, int j, int ind[], double val[]) +{ glp_prob *lp = info; + int m = lp->m; + GLPAIJ *aij; + int k, len; + xassert(1 <= j && j <= m); + /* determine the ordinal number of basic auxiliary or structural + variable x[k] corresponding to basic variable xB[j] */ + k = lp->head[j]; + /* build j-th column of the basic matrix, which is k-th column of + the scaled augmented matrix (I | -R*A*S) */ + if (k <= m) + { /* x[k] is auxiliary variable */ + len = 1; + ind[1] = k; + val[1] = 1.0; + } + else + { /* x[k] is structural variable */ + len = 0; + for (aij = lp->col[k-m]->ptr; aij != NULL; aij = aij->c_next) + { len++; + ind[len] = aij->row->i; + val[len] = - aij->row->rii * aij->val * aij->col->sjj; + } + } + return len; +} + +int glp_factorize(glp_prob *lp) +{ int m = lp->m; + int n = lp->n; + GLPROW **row = lp->row; + GLPCOL **col = lp->col; + int *head = lp->head; + int j, k, stat, ret; + /* invalidate the basis factorization */ + lp->valid = 0; + /* build the basis header */ + j = 0; + for (k = 1; k <= m+n; k++) + { if (k <= m) + { stat = row[k]->stat; + row[k]->bind = 0; + } + else + { stat = col[k-m]->stat; + col[k-m]->bind = 0; + } + if (stat == GLP_BS) + { j++; + if (j > m) + { /* too many basic variables */ + ret = GLP_EBADB; + goto fini; + } + head[j] = k; + if (k <= m) + row[k]->bind = j; + else + col[k-m]->bind = j; + } + } + if (j < m) + { /* too few basic variables */ + ret = GLP_EBADB; + goto fini; + } + /* try to factorize the basis matrix */ + if (m > 0) + { if (lp->bfd == NULL) + { lp->bfd = bfd_create_it(); +#if 0 /* 08/III-2014 */ + copy_bfcp(lp); +#endif + } + switch (bfd_factorize(lp->bfd, m, /*lp->head,*/ b_col, lp)) + { case 0: + /* ok */ + break; + case BFD_ESING: + /* singular matrix */ + ret = GLP_ESING; + goto fini; + case BFD_ECOND: + /* ill-conditioned matrix */ + ret = GLP_ECOND; + goto fini; + default: + xassert(lp != lp); + } + lp->valid = 1; + } + /* factorization successful */ + ret = 0; +fini: /* bring the return code to the calling program */ + return ret; +} + +/*********************************************************************** +* NAME +* +* glp_bf_updated - check if the basis factorization has been updated +* +* SYNOPSIS +* +* int glp_bf_updated(glp_prob *lp); +* +* RETURNS +* +* If the basis factorization has been just computed from scratch, the +* routine glp_bf_updated returns zero. Otherwise, if the factorization +* has been updated one or more times, the routine returns non-zero. */ + +int glp_bf_updated(glp_prob *lp) +{ int cnt; + if (!(lp->m == 0 || lp->valid)) + xerror("glp_bf_update: basis factorization does not exist\n"); +#if 0 /* 15/XI-2009 */ + cnt = (lp->m == 0 ? 0 : lp->bfd->upd_cnt); +#else + cnt = (lp->m == 0 ? 0 : bfd_get_count(lp->bfd)); +#endif + return cnt; +} + +/*********************************************************************** +* NAME +* +* glp_get_bfcp - retrieve basis factorization control parameters +* +* SYNOPSIS +* +* void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm); +* +* DESCRIPTION +* +* The routine glp_get_bfcp retrieves control parameters, which are +* used on computing and updating the basis factorization associated +* with the specified problem object. +* +* Current values of control parameters are stored by the routine in +* a glp_bfcp structure, which the parameter parm points to. */ + +#if 1 /* 08/III-2014 */ +void glp_get_bfcp(glp_prob *P, glp_bfcp *parm) +{ if (P->bfd == NULL) + P->bfd = bfd_create_it(); + bfd_get_bfcp(P->bfd, parm); + return; +} +#endif + +/*********************************************************************** +* NAME +* +* glp_set_bfcp - change basis factorization control parameters +* +* SYNOPSIS +* +* void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm); +* +* DESCRIPTION +* +* The routine glp_set_bfcp changes control parameters, which are used +* by internal GLPK routines in computing and updating the basis +* factorization associated with the specified problem object. +* +* New values of the control parameters should be passed in a structure +* glp_bfcp, which the parameter parm points to. +* +* The parameter parm can be specified as NULL, in which case all +* control parameters are reset to their default values. */ + +#if 1 /* 08/III-2014 */ +void glp_set_bfcp(glp_prob *P, const glp_bfcp *parm) +{ if (P->bfd == NULL) + P->bfd = bfd_create_it(); + if (parm != NULL) + { if (!(parm->type == GLP_BF_LUF + GLP_BF_FT || + parm->type == GLP_BF_LUF + GLP_BF_BG || + parm->type == GLP_BF_LUF + GLP_BF_GR || + parm->type == GLP_BF_BTF + GLP_BF_BG || + parm->type == GLP_BF_BTF + GLP_BF_GR)) + xerror("glp_set_bfcp: type = 0x%02X; invalid parameter\n", + parm->type); + if (!(0.0 < parm->piv_tol && parm->piv_tol < 1.0)) + xerror("glp_set_bfcp: piv_tol = %g; invalid parameter\n", + parm->piv_tol); + if (parm->piv_lim < 1) + xerror("glp_set_bfcp: piv_lim = %d; invalid parameter\n", + parm->piv_lim); + if (!(parm->suhl == GLP_ON || parm->suhl == GLP_OFF)) + xerror("glp_set_bfcp: suhl = %d; invalid parameter\n", + parm->suhl); + if (!(0.0 <= parm->eps_tol && parm->eps_tol <= 1e-6)) + xerror("glp_set_bfcp: eps_tol = %g; invalid parameter\n", + parm->eps_tol); + if (!(1 <= parm->nfs_max && parm->nfs_max <= 32767)) + xerror("glp_set_bfcp: nfs_max = %d; invalid parameter\n", + parm->nfs_max); + if (!(1 <= parm->nrs_max && parm->nrs_max <= 32767)) + xerror("glp_set_bfcp: nrs_max = %d; invalid parameter\n", + parm->nrs_max); + } + bfd_set_bfcp(P->bfd, parm); + return; +} +#endif + +/*********************************************************************** +* NAME +* +* glp_get_bhead - retrieve the basis header information +* +* SYNOPSIS +* +* int glp_get_bhead(glp_prob *lp, int k); +* +* DESCRIPTION +* +* The routine glp_get_bhead returns the basis header information for +* the current basis associated with the specified problem object. +* +* RETURNS +* +* If xB[k], 1 <= k <= m, is i-th auxiliary variable (1 <= i <= m), the +* routine returns i. Otherwise, if xB[k] is j-th structural variable +* (1 <= j <= n), the routine returns m+j. Here m is the number of rows +* and n is the number of columns in the problem object. */ + +int glp_get_bhead(glp_prob *lp, int k) +{ if (!(lp->m == 0 || lp->valid)) + xerror("glp_get_bhead: basis factorization does not exist\n"); + if (!(1 <= k && k <= lp->m)) + xerror("glp_get_bhead: k = %d; index out of range\n", k); + return lp->head[k]; +} + +/*********************************************************************** +* NAME +* +* glp_get_row_bind - retrieve row index in the basis header +* +* SYNOPSIS +* +* int glp_get_row_bind(glp_prob *lp, int i); +* +* RETURNS +* +* The routine glp_get_row_bind returns the index k of basic variable +* xB[k], 1 <= k <= m, which is i-th auxiliary variable, 1 <= i <= m, +* in the current basis associated with the specified problem object, +* where m is the number of rows. However, if i-th auxiliary variable +* is non-basic, the routine returns zero. */ + +int glp_get_row_bind(glp_prob *lp, int i) +{ if (!(lp->m == 0 || lp->valid)) + xerror("glp_get_row_bind: basis factorization does not exist\n" + ); + if (!(1 <= i && i <= lp->m)) + xerror("glp_get_row_bind: i = %d; row number out of range\n", + i); + return lp->row[i]->bind; +} + +/*********************************************************************** +* NAME +* +* glp_get_col_bind - retrieve column index in the basis header +* +* SYNOPSIS +* +* int glp_get_col_bind(glp_prob *lp, int j); +* +* RETURNS +* +* The routine glp_get_col_bind returns the index k of basic variable +* xB[k], 1 <= k <= m, which is j-th structural variable, 1 <= j <= n, +* in the current basis associated with the specified problem object, +* where m is the number of rows, n is the number of columns. However, +* if j-th structural variable is non-basic, the routine returns zero.*/ + +int glp_get_col_bind(glp_prob *lp, int j) +{ if (!(lp->m == 0 || lp->valid)) + xerror("glp_get_col_bind: basis factorization does not exist\n" + ); + if (!(1 <= j && j <= lp->n)) + xerror("glp_get_col_bind: j = %d; column number out of range\n" + , j); + return lp->col[j]->bind; +} + +/*********************************************************************** +* NAME +* +* glp_ftran - perform forward transformation (solve system B*x = b) +* +* SYNOPSIS +* +* void glp_ftran(glp_prob *lp, double x[]); +* +* DESCRIPTION +* +* The routine glp_ftran performs forward transformation, i.e. solves +* the system B*x = b, where B is the basis matrix corresponding to the +* current basis for the specified problem object, x is the vector of +* unknowns to be computed, b is the vector of right-hand sides. +* +* On entry elements of the vector b should be stored in dense format +* in locations x[1], ..., x[m], where m is the number of rows. On exit +* the routine stores elements of the vector x in the same locations. +* +* SCALING/UNSCALING +* +* Let A~ = (I | -A) is the augmented constraint matrix of the original +* (unscaled) problem. In the scaled LP problem instead the matrix A the +* scaled matrix A" = R*A*S is actually used, so +* +* A~" = (I | A") = (I | R*A*S) = (R*I*inv(R) | R*A*S) = +* (1) +* = R*(I | A)*S~ = R*A~*S~, +* +* is the scaled augmented constraint matrix, where R and S are diagonal +* scaling matrices used to scale rows and columns of the matrix A, and +* +* S~ = diag(inv(R) | S) (2) +* +* is an augmented diagonal scaling matrix. +* +* By definition: +* +* A~ = (B | N), (3) +* +* where B is the basic matrix, which consists of basic columns of the +* augmented constraint matrix A~, and N is a matrix, which consists of +* non-basic columns of A~. From (1) it follows that: +* +* A~" = (B" | N") = (R*B*SB | R*N*SN), (4) +* +* where SB and SN are parts of the augmented scaling matrix S~, which +* correspond to basic and non-basic variables, respectively. Therefore +* +* B" = R*B*SB, (5) +* +* which is the scaled basis matrix. */ + +void glp_ftran(glp_prob *lp, double x[]) +{ int m = lp->m; + GLPROW **row = lp->row; + GLPCOL **col = lp->col; + int i, k; + /* B*x = b ===> (R*B*SB)*(inv(SB)*x) = R*b ===> + B"*x" = b", where b" = R*b, x = SB*x" */ + if (!(m == 0 || lp->valid)) + xerror("glp_ftran: basis factorization does not exist\n"); + /* b" := R*b */ + for (i = 1; i <= m; i++) + x[i] *= row[i]->rii; + /* x" := inv(B")*b" */ + if (m > 0) bfd_ftran(lp->bfd, x); + /* x := SB*x" */ + for (i = 1; i <= m; i++) + { k = lp->head[i]; + if (k <= m) + x[i] /= row[k]->rii; + else + x[i] *= col[k-m]->sjj; + } + return; +} + +/*********************************************************************** +* NAME +* +* glp_btran - perform backward transformation (solve system B'*x = b) +* +* SYNOPSIS +* +* void glp_btran(glp_prob *lp, double x[]); +* +* DESCRIPTION +* +* The routine glp_btran performs backward transformation, i.e. solves +* the system B'*x = b, where B' is a matrix transposed to the basis +* matrix corresponding to the current basis for the specified problem +* problem object, x is the vector of unknowns to be computed, b is the +* vector of right-hand sides. +* +* On entry elements of the vector b should be stored in dense format +* in locations x[1], ..., x[m], where m is the number of rows. On exit +* the routine stores elements of the vector x in the same locations. +* +* SCALING/UNSCALING +* +* See comments to the routine glp_ftran. */ + +void glp_btran(glp_prob *lp, double x[]) +{ int m = lp->m; + GLPROW **row = lp->row; + GLPCOL **col = lp->col; + int i, k; + /* B'*x = b ===> (SB*B'*R)*(inv(R)*x) = SB*b ===> + (B")'*x" = b", where b" = SB*b, x = R*x" */ + if (!(m == 0 || lp->valid)) + xerror("glp_btran: basis factorization does not exist\n"); + /* b" := SB*b */ + for (i = 1; i <= m; i++) + { k = lp->head[i]; + if (k <= m) + x[i] /= row[k]->rii; + else + x[i] *= col[k-m]->sjj; + } + /* x" := inv[(B")']*b" */ + if (m > 0) bfd_btran(lp->bfd, x); + /* x := R*x" */ + for (i = 1; i <= m; i++) + x[i] *= row[i]->rii; + return; +} + +/*********************************************************************** +* NAME +* +* glp_warm_up - "warm up" LP basis +* +* SYNOPSIS +* +* int glp_warm_up(glp_prob *P); +* +* DESCRIPTION +* +* The routine glp_warm_up "warms up" the LP basis for the specified +* problem object using current statuses assigned to rows and columns +* (that is, to auxiliary and structural variables). +* +* This operation includes computing factorization of the basis matrix +* (if it does not exist), computing primal and dual components of basic +* solution, and determining the solution status. +* +* RETURNS +* +* 0 The operation has been successfully performed. +* +* GLP_EBADB +* The basis matrix is invalid, i.e. the number of basic (auxiliary +* and structural) variables differs from the number of rows in the +* problem object. +* +* GLP_ESING +* The basis matrix is singular within the working precision. +* +* GLP_ECOND +* The basis matrix is ill-conditioned. */ + +int glp_warm_up(glp_prob *P) +{ GLPROW *row; + GLPCOL *col; + GLPAIJ *aij; + int i, j, type, stat, ret; + double eps, temp, *work; + /* invalidate basic solution */ + P->pbs_stat = P->dbs_stat = GLP_UNDEF; + P->obj_val = 0.0; + P->some = 0; + for (i = 1; i <= P->m; i++) + { row = P->row[i]; + row->prim = row->dual = 0.0; + } + for (j = 1; j <= P->n; j++) + { col = P->col[j]; + col->prim = col->dual = 0.0; + } + /* compute the basis factorization, if necessary */ + if (!glp_bf_exists(P)) + { ret = glp_factorize(P); + if (ret != 0) goto done; + } + /* allocate working array */ + work = xcalloc(1+P->m, sizeof(double)); + /* determine and store values of non-basic variables, compute + vector (- N * xN) */ + for (i = 1; i <= P->m; i++) + work[i] = 0.0; + for (i = 1; i <= P->m; i++) + { row = P->row[i]; + if (row->stat == GLP_BS) + continue; + else if (row->stat == GLP_NL) + row->prim = row->lb; + else if (row->stat == GLP_NU) + row->prim = row->ub; + else if (row->stat == GLP_NF) + row->prim = 0.0; + else if (row->stat == GLP_NS) + row->prim = row->lb; + else + xassert(row != row); + /* N[j] is i-th column of matrix (I|-A) */ + work[i] -= row->prim; + } + for (j = 1; j <= P->n; j++) + { col = P->col[j]; + if (col->stat == GLP_BS) + continue; + else if (col->stat == GLP_NL) + col->prim = col->lb; + else if (col->stat == GLP_NU) + col->prim = col->ub; + else if (col->stat == GLP_NF) + col->prim = 0.0; + else if (col->stat == GLP_NS) + col->prim = col->lb; + else + xassert(col != col); + /* N[j] is (m+j)-th column of matrix (I|-A) */ + if (col->prim != 0.0) + { for (aij = col->ptr; aij != NULL; aij = aij->c_next) + work[aij->row->i] += aij->val * col->prim; + } + } + /* compute vector of basic variables xB = - inv(B) * N * xN */ + glp_ftran(P, work); + /* store values of basic variables, check primal feasibility */ + P->pbs_stat = GLP_FEAS; + for (i = 1; i <= P->m; i++) + { row = P->row[i]; + if (row->stat != GLP_BS) + continue; + row->prim = work[row->bind]; + type = row->type; + if (type == GLP_LO || type == GLP_DB || type == GLP_FX) + { eps = 1e-6 + 1e-9 * fabs(row->lb); + if (row->prim < row->lb - eps) + P->pbs_stat = GLP_INFEAS; + } + if (type == GLP_UP || type == GLP_DB || type == GLP_FX) + { eps = 1e-6 + 1e-9 * fabs(row->ub); + if (row->prim > row->ub + eps) + P->pbs_stat = GLP_INFEAS; + } + } + for (j = 1; j <= P->n; j++) + { col = P->col[j]; + if (col->stat != GLP_BS) + continue; + col->prim = work[col->bind]; + type = col->type; + if (type == GLP_LO || type == GLP_DB || type == GLP_FX) + { eps = 1e-6 + 1e-9 * fabs(col->lb); + if (col->prim < col->lb - eps) + P->pbs_stat = GLP_INFEAS; + } + if (type == GLP_UP || type == GLP_DB || type == GLP_FX) + { eps = 1e-6 + 1e-9 * fabs(col->ub); + if (col->prim > col->ub + eps) + P->pbs_stat = GLP_INFEAS; + } + } + /* compute value of the objective function */ + P->obj_val = P->c0; + for (j = 1; j <= P->n; j++) + { col = P->col[j]; + P->obj_val += col->coef * col->prim; + } + /* build vector cB of objective coefficients at basic variables */ + for (i = 1; i <= P->m; i++) + work[i] = 0.0; + for (j = 1; j <= P->n; j++) + { col = P->col[j]; + if (col->stat == GLP_BS) + work[col->bind] = col->coef; + } + /* compute vector of simplex multipliers pi = inv(B') * cB */ + glp_btran(P, work); + /* compute and store reduced costs of non-basic variables d[j] = + c[j] - N'[j] * pi, check dual feasibility */ + P->dbs_stat = GLP_FEAS; + for (i = 1; i <= P->m; i++) + { row = P->row[i]; + if (row->stat == GLP_BS) + { row->dual = 0.0; + continue; + } + /* N[j] is i-th column of matrix (I|-A) */ + row->dual = - work[i]; +#if 0 /* 07/III-2013 */ + type = row->type; + temp = (P->dir == GLP_MIN ? + row->dual : - row->dual); + if ((type == GLP_FR || type == GLP_LO) && temp < -1e-5 || + (type == GLP_FR || type == GLP_UP) && temp > +1e-5) + P->dbs_stat = GLP_INFEAS; +#else + stat = row->stat; + temp = (P->dir == GLP_MIN ? + row->dual : - row->dual); + if ((stat == GLP_NF || stat == GLP_NL) && temp < -1e-5 || + (stat == GLP_NF || stat == GLP_NU) && temp > +1e-5) + P->dbs_stat = GLP_INFEAS; +#endif + } + for (j = 1; j <= P->n; j++) + { col = P->col[j]; + if (col->stat == GLP_BS) + { col->dual = 0.0; + continue; + } + /* N[j] is (m+j)-th column of matrix (I|-A) */ + col->dual = col->coef; + for (aij = col->ptr; aij != NULL; aij = aij->c_next) + col->dual += aij->val * work[aij->row->i]; +#if 0 /* 07/III-2013 */ + type = col->type; + temp = (P->dir == GLP_MIN ? + col->dual : - col->dual); + if ((type == GLP_FR || type == GLP_LO) && temp < -1e-5 || + (type == GLP_FR || type == GLP_UP) && temp > +1e-5) + P->dbs_stat = GLP_INFEAS; +#else + stat = col->stat; + temp = (P->dir == GLP_MIN ? + col->dual : - col->dual); + if ((stat == GLP_NF || stat == GLP_NL) && temp < -1e-5 || + (stat == GLP_NF || stat == GLP_NU) && temp > +1e-5) + P->dbs_stat = GLP_INFEAS; +#endif + } + /* free working array */ + xfree(work); + ret = 0; +done: return ret; +} + +/*********************************************************************** +* NAME +* +* glp_eval_tab_row - compute row of the simplex tableau +* +* SYNOPSIS +* +* int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[]); +* +* DESCRIPTION +* +* The routine glp_eval_tab_row computes a row of the current simplex +* tableau for the basic variable, which is specified by the number k: +* if 1 <= k <= m, x[k] is k-th auxiliary variable; if m+1 <= k <= m+n, +* x[k] is (k-m)-th structural variable, where m is number of rows, and +* n is number of columns. The current basis must be available. +* +* The routine stores column indices and numerical values of non-zero +* elements of the computed row using sparse format to the locations +* ind[1], ..., ind[len] and val[1], ..., val[len], respectively, where +* 0 <= len <= n is number of non-zeros returned on exit. +* +* Element indices stored in the array ind have the same sense as the +* index k, i.e. indices 1 to m denote auxiliary variables and indices +* m+1 to m+n denote structural ones (all these variables are obviously +* non-basic by definition). +* +* The computed row shows how the specified basic variable x[k] = xB[i] +* depends on non-basic variables: +* +* xB[i] = alfa[i,1]*xN[1] + alfa[i,2]*xN[2] + ... + alfa[i,n]*xN[n], +* +* where alfa[i,j] are elements of the simplex table row, xN[j] are +* non-basic (auxiliary and structural) variables. +* +* RETURNS +* +* The routine returns number of non-zero elements in the simplex table +* row stored in the arrays ind and val. +* +* BACKGROUND +* +* The system of equality constraints of the LP problem is: +* +* xR = A * xS, (1) +* +* where xR is the vector of auxliary variables, xS is the vector of +* structural variables, A is the matrix of constraint coefficients. +* +* The system (1) can be written in homogenous form as follows: +* +* A~ * x = 0, (2) +* +* where A~ = (I | -A) is the augmented constraint matrix (has m rows +* and m+n columns), x = (xR | xS) is the vector of all (auxiliary and +* structural) variables. +* +* By definition for the current basis we have: +* +* A~ = (B | N), (3) +* +* where B is the basis matrix. Thus, the system (2) can be written as: +* +* B * xB + N * xN = 0. (4) +* +* From (4) it follows that: +* +* xB = A^ * xN, (5) +* +* where the matrix +* +* A^ = - inv(B) * N (6) +* +* is called the simplex table. +* +* It is understood that i-th row of the simplex table is: +* +* e * A^ = - e * inv(B) * N, (7) +* +* where e is a unity vector with e[i] = 1. +* +* To compute i-th row of the simplex table the routine first computes +* i-th row of the inverse: +* +* rho = inv(B') * e, (8) +* +* where B' is a matrix transposed to B, and then computes elements of +* i-th row of the simplex table as scalar products: +* +* alfa[i,j] = - rho * N[j] for all j, (9) +* +* where N[j] is a column of the augmented constraint matrix A~, which +* corresponds to some non-basic auxiliary or structural variable. */ + +int glp_eval_tab_row(glp_prob *lp, int k, int ind[], double val[]) +{ int m = lp->m; + int n = lp->n; + int i, t, len, lll, *iii; + double alfa, *rho, *vvv; + if (!(m == 0 || lp->valid)) + xerror("glp_eval_tab_row: basis factorization does not exist\n" + ); + if (!(1 <= k && k <= m+n)) + xerror("glp_eval_tab_row: k = %d; variable number out of range" + , k); + /* determine xB[i] which corresponds to x[k] */ + if (k <= m) + i = glp_get_row_bind(lp, k); + else + i = glp_get_col_bind(lp, k-m); + if (i == 0) + xerror("glp_eval_tab_row: k = %d; variable must be basic", k); + xassert(1 <= i && i <= m); + /* allocate working arrays */ + rho = xcalloc(1+m, sizeof(double)); + iii = xcalloc(1+m, sizeof(int)); + vvv = xcalloc(1+m, sizeof(double)); + /* compute i-th row of the inverse; see (8) */ + for (t = 1; t <= m; t++) rho[t] = 0.0; + rho[i] = 1.0; + glp_btran(lp, rho); + /* compute i-th row of the simplex table */ + len = 0; + for (k = 1; k <= m+n; k++) + { if (k <= m) + { /* x[k] is auxiliary variable, so N[k] is a unity column */ + if (glp_get_row_stat(lp, k) == GLP_BS) continue; + /* compute alfa[i,j]; see (9) */ + alfa = - rho[k]; + } + else + { /* x[k] is structural variable, so N[k] is a column of the + original constraint matrix A with negative sign */ + if (glp_get_col_stat(lp, k-m) == GLP_BS) continue; + /* compute alfa[i,j]; see (9) */ + lll = glp_get_mat_col(lp, k-m, iii, vvv); + alfa = 0.0; + for (t = 1; t <= lll; t++) alfa += rho[iii[t]] * vvv[t]; + } + /* store alfa[i,j] */ + if (alfa != 0.0) len++, ind[len] = k, val[len] = alfa; + } + xassert(len <= n); + /* free working arrays */ + xfree(rho); + xfree(iii); + xfree(vvv); + /* return to the calling program */ + return len; +} + +/*********************************************************************** +* NAME +* +* glp_eval_tab_col - compute column of the simplex tableau +* +* SYNOPSIS +* +* int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[]); +* +* DESCRIPTION +* +* The routine glp_eval_tab_col computes a column of the current simplex +* table for the non-basic variable, which is specified by the number k: +* if 1 <= k <= m, x[k] is k-th auxiliary variable; if m+1 <= k <= m+n, +* x[k] is (k-m)-th structural variable, where m is number of rows, and +* n is number of columns. The current basis must be available. +* +* The routine stores row indices and numerical values of non-zero +* elements of the computed column using sparse format to the locations +* ind[1], ..., ind[len] and val[1], ..., val[len] respectively, where +* 0 <= len <= m is number of non-zeros returned on exit. +* +* Element indices stored in the array ind have the same sense as the +* index k, i.e. indices 1 to m denote auxiliary variables and indices +* m+1 to m+n denote structural ones (all these variables are obviously +* basic by the definition). +* +* The computed column shows how basic variables depend on the specified +* non-basic variable x[k] = xN[j]: +* +* xB[1] = ... + alfa[1,j]*xN[j] + ... +* xB[2] = ... + alfa[2,j]*xN[j] + ... +* . . . . . . +* xB[m] = ... + alfa[m,j]*xN[j] + ... +* +* where alfa[i,j] are elements of the simplex table column, xB[i] are +* basic (auxiliary and structural) variables. +* +* RETURNS +* +* The routine returns number of non-zero elements in the simplex table +* column stored in the arrays ind and val. +* +* BACKGROUND +* +* As it was explained in comments to the routine glp_eval_tab_row (see +* above) the simplex table is the following matrix: +* +* A^ = - inv(B) * N. (1) +* +* Therefore j-th column of the simplex table is: +* +* A^ * e = - inv(B) * N * e = - inv(B) * N[j], (2) +* +* where e is a unity vector with e[j] = 1, B is the basis matrix, N[j] +* is a column of the augmented constraint matrix A~, which corresponds +* to the given non-basic auxiliary or structural variable. */ + +int glp_eval_tab_col(glp_prob *lp, int k, int ind[], double val[]) +{ int m = lp->m; + int n = lp->n; + int t, len, stat; + double *col; + if (!(m == 0 || lp->valid)) + xerror("glp_eval_tab_col: basis factorization does not exist\n" + ); + if (!(1 <= k && k <= m+n)) + xerror("glp_eval_tab_col: k = %d; variable number out of range" + , k); + if (k <= m) + stat = glp_get_row_stat(lp, k); + else + stat = glp_get_col_stat(lp, k-m); + if (stat == GLP_BS) + xerror("glp_eval_tab_col: k = %d; variable must be non-basic", + k); + /* obtain column N[k] with negative sign */ + col = xcalloc(1+m, sizeof(double)); + for (t = 1; t <= m; t++) col[t] = 0.0; + if (k <= m) + { /* x[k] is auxiliary variable, so N[k] is a unity column */ + col[k] = -1.0; + } + else + { /* x[k] is structural variable, so N[k] is a column of the + original constraint matrix A with negative sign */ + len = glp_get_mat_col(lp, k-m, ind, val); + for (t = 1; t <= len; t++) col[ind[t]] = val[t]; + } + /* compute column of the simplex table, which corresponds to the + specified non-basic variable x[k] */ + glp_ftran(lp, col); + len = 0; + for (t = 1; t <= m; t++) + { if (col[t] != 0.0) + { len++; + ind[len] = glp_get_bhead(lp, t); + val[len] = col[t]; + } + } + xfree(col); + /* return to the calling program */ + return len; +} + +/*********************************************************************** +* NAME +* +* glp_transform_row - transform explicitly specified row +* +* SYNOPSIS +* +* int glp_transform_row(glp_prob *P, int len, int ind[], double val[]); +* +* DESCRIPTION +* +* The routine glp_transform_row performs the same operation as the +* routine glp_eval_tab_row with exception that the row to be +* transformed is specified explicitly as a sparse vector. +* +* The explicitly specified row may be thought as a linear form: +* +* x = a[1]*x[m+1] + a[2]*x[m+2] + ... + a[n]*x[m+n], (1) +* +* where x is an auxiliary variable for this row, a[j] are coefficients +* of the linear form, x[m+j] are structural variables. +* +* On entry column indices and numerical values of non-zero elements of +* the row should be stored in locations ind[1], ..., ind[len] and +* val[1], ..., val[len], where len is the number of non-zero elements. +* +* This routine uses the system of equality constraints and the current +* basis in order to express the auxiliary variable x in (1) through the +* current non-basic variables (as if the transformed row were added to +* the problem object and its auxiliary variable were basic), i.e. the +* resultant row has the form: +* +* x = alfa[1]*xN[1] + alfa[2]*xN[2] + ... + alfa[n]*xN[n], (2) +* +* where xN[j] are non-basic (auxiliary or structural) variables, n is +* the number of columns in the LP problem object. +* +* On exit the routine stores indices and numerical values of non-zero +* elements of the resultant row (2) in locations ind[1], ..., ind[len'] +* and val[1], ..., val[len'], where 0 <= len' <= n is the number of +* non-zero elements in the resultant row returned by the routine. Note +* that indices (numbers) of non-basic variables stored in the array ind +* correspond to original ordinal numbers of variables: indices 1 to m +* mean auxiliary variables and indices m+1 to m+n mean structural ones. +* +* RETURNS +* +* The routine returns len', which is the number of non-zero elements in +* the resultant row stored in the arrays ind and val. +* +* BACKGROUND +* +* The explicitly specified row (1) is transformed in the same way as it +* were the objective function row. +* +* From (1) it follows that: +* +* x = aB * xB + aN * xN, (3) +* +* where xB is the vector of basic variables, xN is the vector of +* non-basic variables. +* +* The simplex table, which corresponds to the current basis, is: +* +* xB = [-inv(B) * N] * xN. (4) +* +* Therefore substituting xB from (4) to (3) we have: +* +* x = aB * [-inv(B) * N] * xN + aN * xN = +* (5) +* = rho * (-N) * xN + aN * xN = alfa * xN, +* +* where: +* +* rho = inv(B') * aB, (6) +* +* and +* +* alfa = aN + rho * (-N) (7) +* +* is the resultant row computed by the routine. */ + +int glp_transform_row(glp_prob *P, int len, int ind[], double val[]) +{ int i, j, k, m, n, t, lll, *iii; + double alfa, *a, *aB, *rho, *vvv; + if (!glp_bf_exists(P)) + xerror("glp_transform_row: basis factorization does not exist " + "\n"); + m = glp_get_num_rows(P); + n = glp_get_num_cols(P); + /* unpack the row to be transformed to the array a */ + a = xcalloc(1+n, sizeof(double)); + for (j = 1; j <= n; j++) a[j] = 0.0; + if (!(0 <= len && len <= n)) + xerror("glp_transform_row: len = %d; invalid row length\n", + len); + for (t = 1; t <= len; t++) + { j = ind[t]; + if (!(1 <= j && j <= n)) + xerror("glp_transform_row: ind[%d] = %d; column index out o" + "f range\n", t, j); + if (val[t] == 0.0) + xerror("glp_transform_row: val[%d] = 0; zero coefficient no" + "t allowed\n", t); + if (a[j] != 0.0) + xerror("glp_transform_row: ind[%d] = %d; duplicate column i" + "ndices not allowed\n", t, j); + a[j] = val[t]; + } + /* construct the vector aB */ + aB = xcalloc(1+m, sizeof(double)); + for (i = 1; i <= m; i++) + { k = glp_get_bhead(P, i); + /* xB[i] is k-th original variable */ + xassert(1 <= k && k <= m+n); + aB[i] = (k <= m ? 0.0 : a[k-m]); + } + /* solve the system B'*rho = aB to compute the vector rho */ + rho = aB, glp_btran(P, rho); + /* compute coefficients at non-basic auxiliary variables */ + len = 0; + for (i = 1; i <= m; i++) + { if (glp_get_row_stat(P, i) != GLP_BS) + { alfa = - rho[i]; + if (alfa != 0.0) + { len++; + ind[len] = i; + val[len] = alfa; + } + } + } + /* compute coefficients at non-basic structural variables */ + iii = xcalloc(1+m, sizeof(int)); + vvv = xcalloc(1+m, sizeof(double)); + for (j = 1; j <= n; j++) + { if (glp_get_col_stat(P, j) != GLP_BS) + { alfa = a[j]; + lll = glp_get_mat_col(P, j, iii, vvv); + for (t = 1; t <= lll; t++) alfa += vvv[t] * rho[iii[t]]; + if (alfa != 0.0) + { len++; + ind[len] = m+j; + val[len] = alfa; + } + } + } + xassert(len <= n); + xfree(iii); + xfree(vvv); + xfree(aB); + xfree(a); + return len; +} + +/*********************************************************************** +* NAME +* +* glp_transform_col - transform explicitly specified column +* +* SYNOPSIS +* +* int glp_transform_col(glp_prob *P, int len, int ind[], double val[]); +* +* DESCRIPTION +* +* The routine glp_transform_col performs the same operation as the +* routine glp_eval_tab_col with exception that the column to be +* transformed is specified explicitly as a sparse vector. +* +* The explicitly specified column may be thought as if it were added +* to the original system of equality constraints: +* +* x[1] = a[1,1]*x[m+1] + ... + a[1,n]*x[m+n] + a[1]*x +* x[2] = a[2,1]*x[m+1] + ... + a[2,n]*x[m+n] + a[2]*x (1) +* . . . . . . . . . . . . . . . +* x[m] = a[m,1]*x[m+1] + ... + a[m,n]*x[m+n] + a[m]*x +* +* where x[i] are auxiliary variables, x[m+j] are structural variables, +* x is a structural variable for the explicitly specified column, a[i] +* are constraint coefficients for x. +* +* On entry row indices and numerical values of non-zero elements of +* the column should be stored in locations ind[1], ..., ind[len] and +* val[1], ..., val[len], where len is the number of non-zero elements. +* +* This routine uses the system of equality constraints and the current +* basis in order to express the current basic variables through the +* structural variable x in (1) (as if the transformed column were added +* to the problem object and the variable x were non-basic), i.e. the +* resultant column has the form: +* +* xB[1] = ... + alfa[1]*x +* xB[2] = ... + alfa[2]*x (2) +* . . . . . . +* xB[m] = ... + alfa[m]*x +* +* where xB are basic (auxiliary and structural) variables, m is the +* number of rows in the problem object. +* +* On exit the routine stores indices and numerical values of non-zero +* elements of the resultant column (2) in locations ind[1], ..., +* ind[len'] and val[1], ..., val[len'], where 0 <= len' <= m is the +* number of non-zero element in the resultant column returned by the +* routine. Note that indices (numbers) of basic variables stored in +* the array ind correspond to original ordinal numbers of variables: +* indices 1 to m mean auxiliary variables and indices m+1 to m+n mean +* structural ones. +* +* RETURNS +* +* The routine returns len', which is the number of non-zero elements +* in the resultant column stored in the arrays ind and val. +* +* BACKGROUND +* +* The explicitly specified column (1) is transformed in the same way +* as any other column of the constraint matrix using the formula: +* +* alfa = inv(B) * a, (3) +* +* where alfa is the resultant column computed by the routine. */ + +int glp_transform_col(glp_prob *P, int len, int ind[], double val[]) +{ int i, m, t; + double *a, *alfa; + if (!glp_bf_exists(P)) + xerror("glp_transform_col: basis factorization does not exist " + "\n"); + m = glp_get_num_rows(P); + /* unpack the column to be transformed to the array a */ + a = xcalloc(1+m, sizeof(double)); + for (i = 1; i <= m; i++) a[i] = 0.0; + if (!(0 <= len && len <= m)) + xerror("glp_transform_col: len = %d; invalid column length\n", + len); + for (t = 1; t <= len; t++) + { i = ind[t]; + if (!(1 <= i && i <= m)) + xerror("glp_transform_col: ind[%d] = %d; row index out of r" + "ange\n", t, i); + if (val[t] == 0.0) + xerror("glp_transform_col: val[%d] = 0; zero coefficient no" + "t allowed\n", t); + if (a[i] != 0.0) + xerror("glp_transform_col: ind[%d] = %d; duplicate row indi" + "ces not allowed\n", t, i); + a[i] = val[t]; + } + /* solve the system B*a = alfa to compute the vector alfa */ + alfa = a, glp_ftran(P, alfa); + /* store resultant coefficients */ + len = 0; + for (i = 1; i <= m; i++) + { if (alfa[i] != 0.0) + { len++; + ind[len] = glp_get_bhead(P, i); + val[len] = alfa[i]; + } + } + xfree(a); + return len; +} + +/*********************************************************************** +* NAME +* +* glp_prim_rtest - perform primal ratio test +* +* SYNOPSIS +* +* int glp_prim_rtest(glp_prob *P, int len, const int ind[], +* const double val[], int dir, double eps); +* +* DESCRIPTION +* +* The routine glp_prim_rtest performs the primal ratio test using an +* explicitly specified column of the simplex table. +* +* The current basic solution associated with the LP problem object +* must be primal feasible. +* +* The explicitly specified column of the simplex table shows how the +* basic variables xB depend on some non-basic variable x (which is not +* necessarily presented in the problem object): +* +* xB[1] = ... + alfa[1] * x + ... +* xB[2] = ... + alfa[2] * x + ... (*) +* . . . . . . . . +* xB[m] = ... + alfa[m] * x + ... +* +* The column (*) is specifed on entry to the routine using the sparse +* format. Ordinal numbers of basic variables xB[i] should be placed in +* locations ind[1], ..., ind[len], where ordinal number 1 to m denote +* auxiliary variables, and ordinal numbers m+1 to m+n denote structural +* variables. The corresponding non-zero coefficients alfa[i] should be +* placed in locations val[1], ..., val[len]. The arrays ind and val are +* not changed on exit. +* +* The parameter dir specifies direction in which the variable x changes +* on entering the basis: +1 means increasing, -1 means decreasing. +* +* The parameter eps is an absolute tolerance (small positive number) +* used by the routine to skip small alfa[j] of the row (*). +* +* The routine determines which basic variable (among specified in +* ind[1], ..., ind[len]) should leave the basis in order to keep primal +* feasibility. +* +* RETURNS +* +* The routine glp_prim_rtest returns the index piv in the arrays ind +* and val corresponding to the pivot element chosen, 1 <= piv <= len. +* If the adjacent basic solution is primal unbounded and therefore the +* choice cannot be made, the routine returns zero. +* +* COMMENTS +* +* If the non-basic variable x is presented in the LP problem object, +* the column (*) can be computed with the routine glp_eval_tab_col; +* otherwise it can be computed with the routine glp_transform_col. */ + +int glp_prim_rtest(glp_prob *P, int len, const int ind[], + const double val[], int dir, double eps) +{ int k, m, n, piv, t, type, stat; + double alfa, big, beta, lb, ub, temp, teta; + if (glp_get_prim_stat(P) != GLP_FEAS) + xerror("glp_prim_rtest: basic solution is not primal feasible " + "\n"); + if (!(dir == +1 || dir == -1)) + xerror("glp_prim_rtest: dir = %d; invalid parameter\n", dir); + if (!(0.0 < eps && eps < 1.0)) + xerror("glp_prim_rtest: eps = %g; invalid parameter\n", eps); + m = glp_get_num_rows(P); + n = glp_get_num_cols(P); + /* initial settings */ + piv = 0, teta = DBL_MAX, big = 0.0; + /* walk through the entries of the specified column */ + for (t = 1; t <= len; t++) + { /* get the ordinal number of basic variable */ + k = ind[t]; + if (!(1 <= k && k <= m+n)) + xerror("glp_prim_rtest: ind[%d] = %d; variable number out o" + "f range\n", t, k); + /* determine type, bounds, status and primal value of basic + variable xB[i] = x[k] in the current basic solution */ + if (k <= m) + { type = glp_get_row_type(P, k); + lb = glp_get_row_lb(P, k); + ub = glp_get_row_ub(P, k); + stat = glp_get_row_stat(P, k); + beta = glp_get_row_prim(P, k); + } + else + { type = glp_get_col_type(P, k-m); + lb = glp_get_col_lb(P, k-m); + ub = glp_get_col_ub(P, k-m); + stat = glp_get_col_stat(P, k-m); + beta = glp_get_col_prim(P, k-m); + } + if (stat != GLP_BS) + xerror("glp_prim_rtest: ind[%d] = %d; non-basic variable no" + "t allowed\n", t, k); + /* determine influence coefficient at basic variable xB[i] + in the explicitly specified column and turn to the case of + increasing the variable x in order to simplify the program + logic */ + alfa = (dir > 0 ? + val[t] : - val[t]); + /* analyze main cases */ + if (type == GLP_FR) + { /* xB[i] is free variable */ + continue; + } + else if (type == GLP_LO) +lo: { /* xB[i] has an lower bound */ + if (alfa > - eps) continue; + temp = (lb - beta) / alfa; + } + else if (type == GLP_UP) +up: { /* xB[i] has an upper bound */ + if (alfa < + eps) continue; + temp = (ub - beta) / alfa; + } + else if (type == GLP_DB) + { /* xB[i] has both lower and upper bounds */ + if (alfa < 0.0) goto lo; else goto up; + } + else if (type == GLP_FX) + { /* xB[i] is fixed variable */ + if (- eps < alfa && alfa < + eps) continue; + temp = 0.0; + } + else + xassert(type != type); + /* if the value of the variable xB[i] violates its lower or + upper bound (slightly, because the current basis is assumed + to be primal feasible), temp is negative; we can think this + happens due to round-off errors and the value is exactly on + the bound; this allows replacing temp by zero */ + if (temp < 0.0) temp = 0.0; + /* apply the minimal ratio test */ + if (teta > temp || teta == temp && big < fabs(alfa)) + piv = t, teta = temp, big = fabs(alfa); + } + /* return index of the pivot element chosen */ + return piv; +} + +/*********************************************************************** +* NAME +* +* glp_dual_rtest - perform dual ratio test +* +* SYNOPSIS +* +* int glp_dual_rtest(glp_prob *P, int len, const int ind[], +* const double val[], int dir, double eps); +* +* DESCRIPTION +* +* The routine glp_dual_rtest performs the dual ratio test using an +* explicitly specified row of the simplex table. +* +* The current basic solution associated with the LP problem object +* must be dual feasible. +* +* The explicitly specified row of the simplex table is a linear form +* that shows how some basic variable x (which is not necessarily +* presented in the problem object) depends on non-basic variables xN: +* +* x = alfa[1] * xN[1] + alfa[2] * xN[2] + ... + alfa[n] * xN[n]. (*) +* +* The row (*) is specified on entry to the routine using the sparse +* format. Ordinal numbers of non-basic variables xN[j] should be placed +* in locations ind[1], ..., ind[len], where ordinal numbers 1 to m +* denote auxiliary variables, and ordinal numbers m+1 to m+n denote +* structural variables. The corresponding non-zero coefficients alfa[j] +* should be placed in locations val[1], ..., val[len]. The arrays ind +* and val are not changed on exit. +* +* The parameter dir specifies direction in which the variable x changes +* on leaving the basis: +1 means that x goes to its lower bound, and -1 +* means that x goes to its upper bound. +* +* The parameter eps is an absolute tolerance (small positive number) +* used by the routine to skip small alfa[j] of the row (*). +* +* The routine determines which non-basic variable (among specified in +* ind[1], ..., ind[len]) should enter the basis in order to keep dual +* feasibility. +* +* RETURNS +* +* The routine glp_dual_rtest returns the index piv in the arrays ind +* and val corresponding to the pivot element chosen, 1 <= piv <= len. +* If the adjacent basic solution is dual unbounded and therefore the +* choice cannot be made, the routine returns zero. +* +* COMMENTS +* +* If the basic variable x is presented in the LP problem object, the +* row (*) can be computed with the routine glp_eval_tab_row; otherwise +* it can be computed with the routine glp_transform_row. */ + +int glp_dual_rtest(glp_prob *P, int len, const int ind[], + const double val[], int dir, double eps) +{ int k, m, n, piv, t, stat; + double alfa, big, cost, obj, temp, teta; + if (glp_get_dual_stat(P) != GLP_FEAS) + xerror("glp_dual_rtest: basic solution is not dual feasible\n") + ; + if (!(dir == +1 || dir == -1)) + xerror("glp_dual_rtest: dir = %d; invalid parameter\n", dir); + if (!(0.0 < eps && eps < 1.0)) + xerror("glp_dual_rtest: eps = %g; invalid parameter\n", eps); + m = glp_get_num_rows(P); + n = glp_get_num_cols(P); + /* take into account optimization direction */ + obj = (glp_get_obj_dir(P) == GLP_MIN ? +1.0 : -1.0); + /* initial settings */ + piv = 0, teta = DBL_MAX, big = 0.0; + /* walk through the entries of the specified row */ + for (t = 1; t <= len; t++) + { /* get ordinal number of non-basic variable */ + k = ind[t]; + if (!(1 <= k && k <= m+n)) + xerror("glp_dual_rtest: ind[%d] = %d; variable number out o" + "f range\n", t, k); + /* determine status and reduced cost of non-basic variable + x[k] = xN[j] in the current basic solution */ + if (k <= m) + { stat = glp_get_row_stat(P, k); + cost = glp_get_row_dual(P, k); + } + else + { stat = glp_get_col_stat(P, k-m); + cost = glp_get_col_dual(P, k-m); + } + if (stat == GLP_BS) + xerror("glp_dual_rtest: ind[%d] = %d; basic variable not al" + "lowed\n", t, k); + /* determine influence coefficient at non-basic variable xN[j] + in the explicitly specified row and turn to the case of + increasing the variable x in order to simplify the program + logic */ + alfa = (dir > 0 ? + val[t] : - val[t]); + /* analyze main cases */ + if (stat == GLP_NL) + { /* xN[j] is on its lower bound */ + if (alfa < + eps) continue; + temp = (obj * cost) / alfa; + } + else if (stat == GLP_NU) + { /* xN[j] is on its upper bound */ + if (alfa > - eps) continue; + temp = (obj * cost) / alfa; + } + else if (stat == GLP_NF) + { /* xN[j] is non-basic free variable */ + if (- eps < alfa && alfa < + eps) continue; + temp = 0.0; + } + else if (stat == GLP_NS) + { /* xN[j] is non-basic fixed variable */ + continue; + } + else + xassert(stat != stat); + /* if the reduced cost of the variable xN[j] violates its zero + bound (slightly, because the current basis is assumed to be + dual feasible), temp is negative; we can think this happens + due to round-off errors and the reduced cost is exact zero; + this allows replacing temp by zero */ + if (temp < 0.0) temp = 0.0; + /* apply the minimal ratio test */ + if (teta > temp || teta == temp && big < fabs(alfa)) + piv = t, teta = temp, big = fabs(alfa); + } + /* return index of the pivot element chosen */ + return piv; +} + +/*********************************************************************** +* NAME +* +* glp_analyze_row - simulate one iteration of dual simplex method +* +* SYNOPSIS +* +* int glp_analyze_row(glp_prob *P, int len, const int ind[], +* const double val[], int type, double rhs, double eps, int *piv, +* double *x, double *dx, double *y, double *dy, double *dz); +* +* DESCRIPTION +* +* Let the current basis be optimal or dual feasible, and there be +* specified a row (constraint), which is violated by the current basic +* solution. The routine glp_analyze_row simulates one iteration of the +* dual simplex method to determine some information on the adjacent +* basis (see below), where the specified row becomes active constraint +* (i.e. its auxiliary variable becomes non-basic). +* +* The current basic solution associated with the problem object passed +* to the routine must be dual feasible, and its primal components must +* be defined. +* +* The row to be analyzed must be previously transformed either with +* the routine glp_eval_tab_row (if the row is in the problem object) +* or with the routine glp_transform_row (if the row is external, i.e. +* not in the problem object). This is needed to express the row only +* through (auxiliary and structural) variables, which are non-basic in +* the current basis: +* +* y = alfa[1] * xN[1] + alfa[2] * xN[2] + ... + alfa[n] * xN[n], +* +* where y is an auxiliary variable of the row, alfa[j] is an influence +* coefficient, xN[j] is a non-basic variable. +* +* The row is passed to the routine in sparse format. Ordinal numbers +* of non-basic variables are stored in locations ind[1], ..., ind[len], +* where numbers 1 to m denote auxiliary variables while numbers m+1 to +* m+n denote structural variables. Corresponding non-zero coefficients +* alfa[j] are stored in locations val[1], ..., val[len]. The arrays +* ind and val are ot changed on exit. +* +* The parameters type and rhs specify the row type and its right-hand +* side as follows: +* +* type = GLP_LO: y = sum alfa[j] * xN[j] >= rhs +* +* type = GLP_UP: y = sum alfa[j] * xN[j] <= rhs +* +* The parameter eps is an absolute tolerance (small positive number) +* used by the routine to skip small coefficients alfa[j] on performing +* the dual ratio test. +* +* If the operation was successful, the routine stores the following +* information to corresponding location (if some parameter is NULL, +* its value is not stored): +* +* piv index in the array ind and val, 1 <= piv <= len, determining +* the non-basic variable, which would enter the adjacent basis; +* +* x value of the non-basic variable in the current basis; +* +* dx difference between values of the non-basic variable in the +* adjacent and current bases, dx = x.new - x.old; +* +* y value of the row (i.e. of its auxiliary variable) in the +* current basis; +* +* dy difference between values of the row in the adjacent and +* current bases, dy = y.new - y.old; +* +* dz difference between values of the objective function in the +* adjacent and current bases, dz = z.new - z.old. Note that in +* case of minimization dz >= 0, and in case of maximization +* dz <= 0, i.e. in the adjacent basis the objective function +* always gets worse (degrades). */ + +int _glp_analyze_row(glp_prob *P, int len, const int ind[], + const double val[], int type, double rhs, double eps, int *_piv, + double *_x, double *_dx, double *_y, double *_dy, double *_dz) +{ int t, k, dir, piv, ret = 0; + double x, dx, y, dy, dz; + if (P->pbs_stat == GLP_UNDEF) + xerror("glp_analyze_row: primal basic solution components are " + "undefined\n"); + if (P->dbs_stat != GLP_FEAS) + xerror("glp_analyze_row: basic solution is not dual feasible\n" + ); + /* compute the row value y = sum alfa[j] * xN[j] in the current + basis */ + if (!(0 <= len && len <= P->n)) + xerror("glp_analyze_row: len = %d; invalid row length\n", len); + y = 0.0; + for (t = 1; t <= len; t++) + { /* determine value of x[k] = xN[j] in the current basis */ + k = ind[t]; + if (!(1 <= k && k <= P->m+P->n)) + xerror("glp_analyze_row: ind[%d] = %d; row/column index out" + " of range\n", t, k); + if (k <= P->m) + { /* x[k] is auxiliary variable */ + if (P->row[k]->stat == GLP_BS) + xerror("glp_analyze_row: ind[%d] = %d; basic auxiliary v" + "ariable is not allowed\n", t, k); + x = P->row[k]->prim; + } + else + { /* x[k] is structural variable */ + if (P->col[k-P->m]->stat == GLP_BS) + xerror("glp_analyze_row: ind[%d] = %d; basic structural " + "variable is not allowed\n", t, k); + x = P->col[k-P->m]->prim; + } + y += val[t] * x; + } + /* check if the row is primal infeasible in the current basis, + i.e. the constraint is violated at the current point */ + if (type == GLP_LO) + { if (y >= rhs) + { /* the constraint is not violated */ + ret = 1; + goto done; + } + /* in the adjacent basis y goes to its lower bound */ + dir = +1; + } + else if (type == GLP_UP) + { if (y <= rhs) + { /* the constraint is not violated */ + ret = 1; + goto done; + } + /* in the adjacent basis y goes to its upper bound */ + dir = -1; + } + else + xerror("glp_analyze_row: type = %d; invalid parameter\n", + type); + /* compute dy = y.new - y.old */ + dy = rhs - y; + /* perform dual ratio test to determine which non-basic variable + should enter the adjacent basis to keep it dual feasible */ + piv = glp_dual_rtest(P, len, ind, val, dir, eps); + if (piv == 0) + { /* no dual feasible adjacent basis exists */ + ret = 2; + goto done; + } + /* non-basic variable x[k] = xN[j] should enter the basis */ + k = ind[piv]; + xassert(1 <= k && k <= P->m+P->n); + /* determine its value in the current basis */ + if (k <= P->m) + x = P->row[k]->prim; + else + x = P->col[k-P->m]->prim; + /* compute dx = x.new - x.old = dy / alfa[j] */ + xassert(val[piv] != 0.0); + dx = dy / val[piv]; + /* compute dz = z.new - z.old = d[j] * dx, where d[j] is reduced + cost of xN[j] in the current basis */ + if (k <= P->m) + dz = P->row[k]->dual * dx; + else + dz = P->col[k-P->m]->dual * dx; + /* store the analysis results */ + if (_piv != NULL) *_piv = piv; + if (_x != NULL) *_x = x; + if (_dx != NULL) *_dx = dx; + if (_y != NULL) *_y = y; + if (_dy != NULL) *_dy = dy; + if (_dz != NULL) *_dz = dz; +done: return ret; +} + +#if 0 +int main(void) +{ /* example program for the routine glp_analyze_row */ + glp_prob *P; + glp_smcp parm; + int i, k, len, piv, ret, ind[1+100]; + double rhs, x, dx, y, dy, dz, val[1+100]; + P = glp_create_prob(); + /* read plan.mps (see glpk/examples) */ + ret = glp_read_mps(P, GLP_MPS_DECK, NULL, "plan.mps"); + glp_assert(ret == 0); + /* and solve it to optimality */ + ret = glp_simplex(P, NULL); + glp_assert(ret == 0); + glp_assert(glp_get_status(P) == GLP_OPT); + /* the optimal objective value is 296.217 */ + /* we would like to know what happens if we would add a new row + (constraint) to plan.mps: + .01 * bin1 + .01 * bin2 + .02 * bin4 + .02 * bin5 <= 12 */ + /* first, we specify this new row */ + glp_create_index(P); + len = 0; + ind[++len] = glp_find_col(P, "BIN1"), val[len] = .01; + ind[++len] = glp_find_col(P, "BIN2"), val[len] = .01; + ind[++len] = glp_find_col(P, "BIN4"), val[len] = .02; + ind[++len] = glp_find_col(P, "BIN5"), val[len] = .02; + rhs = 12; + /* then we can compute value of the row (i.e. of its auxiliary + variable) in the current basis to see if the constraint is + violated */ + y = 0.0; + for (k = 1; k <= len; k++) + y += val[k] * glp_get_col_prim(P, ind[k]); + glp_printf("y = %g\n", y); + /* this prints y = 15.1372, so the constraint is violated, since + we require that y <= rhs = 12 */ + /* now we transform the row to express it only through non-basic + (auxiliary and artificial) variables */ + len = glp_transform_row(P, len, ind, val); + /* finally, we simulate one step of the dual simplex method to + obtain necessary information for the adjacent basis */ + ret = _glp_analyze_row(P, len, ind, val, GLP_UP, rhs, 1e-9, &piv, + &x, &dx, &y, &dy, &dz); + glp_assert(ret == 0); + glp_printf("k = %d, x = %g; dx = %g; y = %g; dy = %g; dz = %g\n", + ind[piv], x, dx, y, dy, dz); + /* this prints dz = 5.64418 and means that in the adjacent basis + the objective function would be 296.217 + 5.64418 = 301.861 */ + /* now we actually include the row into the problem object; note + that the arrays ind and val are clobbered, so we need to build + them once again */ + len = 0; + ind[++len] = glp_find_col(P, "BIN1"), val[len] = .01; + ind[++len] = glp_find_col(P, "BIN2"), val[len] = .01; + ind[++len] = glp_find_col(P, "BIN4"), val[len] = .02; + ind[++len] = glp_find_col(P, "BIN5"), val[len] = .02; + rhs = 12; + i = glp_add_rows(P, 1); + glp_set_row_bnds(P, i, GLP_UP, 0, rhs); + glp_set_mat_row(P, i, len, ind, val); + /* and perform one dual simplex iteration */ + glp_init_smcp(&parm); + parm.meth = GLP_DUAL; + parm.it_lim = 1; + glp_simplex(P, &parm); + /* the current objective value is 301.861 */ + return 0; +} +#endif + +/*********************************************************************** +* NAME +* +* glp_analyze_bound - analyze active bound of non-basic variable +* +* SYNOPSIS +* +* void glp_analyze_bound(glp_prob *P, int k, double *limit1, int *var1, +* double *limit2, int *var2); +* +* DESCRIPTION +* +* The routine glp_analyze_bound analyzes the effect of varying the +* active bound of specified non-basic variable. +* +* The non-basic variable is specified by the parameter k, where +* 1 <= k <= m means auxiliary variable of corresponding row while +* m+1 <= k <= m+n means structural variable (column). +* +* Note that the current basic solution must be optimal, and the basis +* factorization must exist. +* +* Results of the analysis have the following meaning. +* +* value1 is the minimal value of the active bound, at which the basis +* still remains primal feasible and thus optimal. -DBL_MAX means that +* the active bound has no lower limit. +* +* var1 is the ordinal number of an auxiliary (1 to m) or structural +* (m+1 to n) basic variable, which reaches its bound first and thereby +* limits further decreasing the active bound being analyzed. +* if value1 = -DBL_MAX, var1 is set to 0. +* +* value2 is the maximal value of the active bound, at which the basis +* still remains primal feasible and thus optimal. +DBL_MAX means that +* the active bound has no upper limit. +* +* var2 is the ordinal number of an auxiliary (1 to m) or structural +* (m+1 to n) basic variable, which reaches its bound first and thereby +* limits further increasing the active bound being analyzed. +* if value2 = +DBL_MAX, var2 is set to 0. */ + +void glp_analyze_bound(glp_prob *P, int k, double *value1, int *var1, + double *value2, int *var2) +{ GLPROW *row; + GLPCOL *col; + int m, n, stat, kase, p, len, piv, *ind; + double x, new_x, ll, uu, xx, delta, *val; +#if 0 /* 04/IV-2016 */ + /* sanity checks */ + if (P == NULL || P->magic != GLP_PROB_MAGIC) + xerror("glp_analyze_bound: P = %p; invalid problem object\n", + P); +#endif + m = P->m, n = P->n; + if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS)) + xerror("glp_analyze_bound: optimal basic solution required\n"); + if (!(m == 0 || P->valid)) + xerror("glp_analyze_bound: basis factorization required\n"); + if (!(1 <= k && k <= m+n)) + xerror("glp_analyze_bound: k = %d; variable number out of rang" + "e\n", k); + /* retrieve information about the specified non-basic variable + x[k] whose active bound is to be analyzed */ + if (k <= m) + { row = P->row[k]; + stat = row->stat; + x = row->prim; + } + else + { col = P->col[k-m]; + stat = col->stat; + x = col->prim; + } + if (stat == GLP_BS) + xerror("glp_analyze_bound: k = %d; basic variable not allowed " + "\n", k); + /* allocate working arrays */ + ind = xcalloc(1+m, sizeof(int)); + val = xcalloc(1+m, sizeof(double)); + /* compute column of the simplex table corresponding to the + non-basic variable x[k] */ + len = glp_eval_tab_col(P, k, ind, val); + xassert(0 <= len && len <= m); + /* perform analysis */ + for (kase = -1; kase <= +1; kase += 2) + { /* kase < 0 means active bound of x[k] is decreasing; + kase > 0 means active bound of x[k] is increasing */ + /* use the primal ratio test to determine some basic variable + x[p] which reaches its bound first */ + piv = glp_prim_rtest(P, len, ind, val, kase, 1e-9); + if (piv == 0) + { /* nothing limits changing the active bound of x[k] */ + p = 0; + new_x = (kase < 0 ? -DBL_MAX : +DBL_MAX); + goto store; + } + /* basic variable x[p] limits changing the active bound of + x[k]; determine its value in the current basis */ + xassert(1 <= piv && piv <= len); + p = ind[piv]; + if (p <= m) + { row = P->row[p]; + ll = glp_get_row_lb(P, row->i); + uu = glp_get_row_ub(P, row->i); + stat = row->stat; + xx = row->prim; + } + else + { col = P->col[p-m]; + ll = glp_get_col_lb(P, col->j); + uu = glp_get_col_ub(P, col->j); + stat = col->stat; + xx = col->prim; + } + xassert(stat == GLP_BS); + /* determine delta x[p] = bound of x[p] - value of x[p] */ + if (kase < 0 && val[piv] > 0.0 || + kase > 0 && val[piv] < 0.0) + { /* delta x[p] < 0, so x[p] goes toward its lower bound */ + xassert(ll != -DBL_MAX); + delta = ll - xx; + } + else + { /* delta x[p] > 0, so x[p] goes toward its upper bound */ + xassert(uu != +DBL_MAX); + delta = uu - xx; + } + /* delta x[p] = alfa[p,k] * delta x[k], so new x[k] = x[k] + + delta x[k] = x[k] + delta x[p] / alfa[p,k] is the value of + x[k] in the adjacent basis */ + xassert(val[piv] != 0.0); + new_x = x + delta / val[piv]; +store: /* store analysis results */ + if (kase < 0) + { if (value1 != NULL) *value1 = new_x; + if (var1 != NULL) *var1 = p; + } + else + { if (value2 != NULL) *value2 = new_x; + if (var2 != NULL) *var2 = p; + } + } + /* free working arrays */ + xfree(ind); + xfree(val); + return; +} + +/*********************************************************************** +* NAME +* +* glp_analyze_coef - analyze objective coefficient at basic variable +* +* SYNOPSIS +* +* void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1, +* double *value1, double *coef2, int *var2, double *value2); +* +* DESCRIPTION +* +* The routine glp_analyze_coef analyzes the effect of varying the +* objective coefficient at specified basic variable. +* +* The basic variable is specified by the parameter k, where +* 1 <= k <= m means auxiliary variable of corresponding row while +* m+1 <= k <= m+n means structural variable (column). +* +* Note that the current basic solution must be optimal, and the basis +* factorization must exist. +* +* Results of the analysis have the following meaning. +* +* coef1 is the minimal value of the objective coefficient, at which +* the basis still remains dual feasible and thus optimal. -DBL_MAX +* means that the objective coefficient has no lower limit. +* +* var1 is the ordinal number of an auxiliary (1 to m) or structural +* (m+1 to n) non-basic variable, whose reduced cost reaches its zero +* bound first and thereby limits further decreasing the objective +* coefficient being analyzed. If coef1 = -DBL_MAX, var1 is set to 0. +* +* value1 is value of the basic variable being analyzed in an adjacent +* basis, which is defined as follows. Let the objective coefficient +* reaches its minimal value (coef1) and continues decreasing. Then the +* reduced cost of the limiting non-basic variable (var1) becomes dual +* infeasible and the current basis becomes non-optimal that forces the +* limiting non-basic variable to enter the basis replacing there some +* basic variable that leaves the basis to keep primal feasibility. +* Should note that on determining the adjacent basis current bounds +* of the basic variable being analyzed are ignored as if it were free +* (unbounded) variable, so it cannot leave the basis. It may happen +* that no dual feasible adjacent basis exists, in which case value1 is +* set to -DBL_MAX or +DBL_MAX. +* +* coef2 is the maximal value of the objective coefficient, at which +* the basis still remains dual feasible and thus optimal. +DBL_MAX +* means that the objective coefficient has no upper limit. +* +* var2 is the ordinal number of an auxiliary (1 to m) or structural +* (m+1 to n) non-basic variable, whose reduced cost reaches its zero +* bound first and thereby limits further increasing the objective +* coefficient being analyzed. If coef2 = +DBL_MAX, var2 is set to 0. +* +* value2 is value of the basic variable being analyzed in an adjacent +* basis, which is defined exactly in the same way as value1 above with +* exception that now the objective coefficient is increasing. */ + +void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1, + double *value1, double *coef2, int *var2, double *value2) +{ GLPROW *row; GLPCOL *col; + int m, n, type, stat, kase, p, q, dir, clen, cpiv, rlen, rpiv, + *cind, *rind; + double lb, ub, coef, x, lim_coef, new_x, d, delta, ll, uu, xx, + *rval, *cval; +#if 0 /* 04/IV-2016 */ + /* sanity checks */ + if (P == NULL || P->magic != GLP_PROB_MAGIC) + xerror("glp_analyze_coef: P = %p; invalid problem object\n", + P); +#endif + m = P->m, n = P->n; + if (!(P->pbs_stat == GLP_FEAS && P->dbs_stat == GLP_FEAS)) + xerror("glp_analyze_coef: optimal basic solution required\n"); + if (!(m == 0 || P->valid)) + xerror("glp_analyze_coef: basis factorization required\n"); + if (!(1 <= k && k <= m+n)) + xerror("glp_analyze_coef: k = %d; variable number out of range" + "\n", k); + /* retrieve information about the specified basic variable x[k] + whose objective coefficient c[k] is to be analyzed */ + if (k <= m) + { row = P->row[k]; + type = row->type; + lb = row->lb; + ub = row->ub; + coef = 0.0; + stat = row->stat; + x = row->prim; + } + else + { col = P->col[k-m]; + type = col->type; + lb = col->lb; + ub = col->ub; + coef = col->coef; + stat = col->stat; + x = col->prim; + } + if (stat != GLP_BS) + xerror("glp_analyze_coef: k = %d; non-basic variable not allow" + "ed\n", k); + /* allocate working arrays */ + cind = xcalloc(1+m, sizeof(int)); + cval = xcalloc(1+m, sizeof(double)); + rind = xcalloc(1+n, sizeof(int)); + rval = xcalloc(1+n, sizeof(double)); + /* compute row of the simplex table corresponding to the basic + variable x[k] */ + rlen = glp_eval_tab_row(P, k, rind, rval); + xassert(0 <= rlen && rlen <= n); + /* perform analysis */ + for (kase = -1; kase <= +1; kase += 2) + { /* kase < 0 means objective coefficient c[k] is decreasing; + kase > 0 means objective coefficient c[k] is increasing */ + /* note that decreasing c[k] is equivalent to increasing dual + variable lambda[k] and vice versa; we need to correctly set + the dir flag as required by the routine glp_dual_rtest */ + if (P->dir == GLP_MIN) + dir = - kase; + else if (P->dir == GLP_MAX) + dir = + kase; + else + xassert(P != P); + /* use the dual ratio test to determine non-basic variable + x[q] whose reduced cost d[q] reaches zero bound first */ + rpiv = glp_dual_rtest(P, rlen, rind, rval, dir, 1e-9); + if (rpiv == 0) + { /* nothing limits changing c[k] */ + lim_coef = (kase < 0 ? -DBL_MAX : +DBL_MAX); + q = 0; + /* x[k] keeps its current value */ + new_x = x; + goto store; + } + /* non-basic variable x[q] limits changing coefficient c[k]; + determine its status and reduced cost d[k] in the current + basis */ + xassert(1 <= rpiv && rpiv <= rlen); + q = rind[rpiv]; + xassert(1 <= q && q <= m+n); + if (q <= m) + { row = P->row[q]; + stat = row->stat; + d = row->dual; + } + else + { col = P->col[q-m]; + stat = col->stat; + d = col->dual; + } + /* note that delta d[q] = new d[q] - d[q] = - d[q], because + new d[q] = 0; delta d[q] = alfa[k,q] * delta c[k], so + delta c[k] = delta d[q] / alfa[k,q] = - d[q] / alfa[k,q] */ + xassert(rval[rpiv] != 0.0); + delta = - d / rval[rpiv]; + /* compute new c[k] = c[k] + delta c[k], which is the limiting + value of the objective coefficient c[k] */ + lim_coef = coef + delta; + /* let c[k] continue decreasing/increasing that makes d[q] + dual infeasible and forces x[q] to enter the basis; + to perform the primal ratio test we need to know in which + direction x[q] changes on entering the basis; we determine + that analyzing the sign of delta d[q] (see above), since + d[q] may be close to zero having wrong sign */ + /* let, for simplicity, the problem is minimization */ + if (kase < 0 && rval[rpiv] > 0.0 || + kase > 0 && rval[rpiv] < 0.0) + { /* delta d[q] < 0, so d[q] being non-negative will become + negative, so x[q] will increase */ + dir = +1; + } + else + { /* delta d[q] > 0, so d[q] being non-positive will become + positive, so x[q] will decrease */ + dir = -1; + } + /* if the problem is maximization, correct the direction */ + if (P->dir == GLP_MAX) dir = - dir; + /* check that we didn't make a silly mistake */ + if (dir > 0) + xassert(stat == GLP_NL || stat == GLP_NF); + else + xassert(stat == GLP_NU || stat == GLP_NF); + /* compute column of the simplex table corresponding to the + non-basic variable x[q] */ + clen = glp_eval_tab_col(P, q, cind, cval); + /* make x[k] temporarily free (unbounded) */ + if (k <= m) + { row = P->row[k]; + row->type = GLP_FR; + row->lb = row->ub = 0.0; + } + else + { col = P->col[k-m]; + col->type = GLP_FR; + col->lb = col->ub = 0.0; + } + /* use the primal ratio test to determine some basic variable + which leaves the basis */ + cpiv = glp_prim_rtest(P, clen, cind, cval, dir, 1e-9); + /* restore original bounds of the basic variable x[k] */ + if (k <= m) + { row = P->row[k]; + row->type = type; + row->lb = lb, row->ub = ub; + } + else + { col = P->col[k-m]; + col->type = type; + col->lb = lb, col->ub = ub; + } + if (cpiv == 0) + { /* non-basic variable x[q] can change unlimitedly */ + if (dir < 0 && rval[rpiv] > 0.0 || + dir > 0 && rval[rpiv] < 0.0) + { /* delta x[k] = alfa[k,q] * delta x[q] < 0 */ + new_x = -DBL_MAX; + } + else + { /* delta x[k] = alfa[k,q] * delta x[q] > 0 */ + new_x = +DBL_MAX; + } + goto store; + } + /* some basic variable x[p] limits changing non-basic variable + x[q] in the adjacent basis */ + xassert(1 <= cpiv && cpiv <= clen); + p = cind[cpiv]; + xassert(1 <= p && p <= m+n); + xassert(p != k); + if (p <= m) + { row = P->row[p]; + xassert(row->stat == GLP_BS); + ll = glp_get_row_lb(P, row->i); + uu = glp_get_row_ub(P, row->i); + xx = row->prim; + } + else + { col = P->col[p-m]; + xassert(col->stat == GLP_BS); + ll = glp_get_col_lb(P, col->j); + uu = glp_get_col_ub(P, col->j); + xx = col->prim; + } + /* determine delta x[p] = new x[p] - x[p] */ + if (dir < 0 && cval[cpiv] > 0.0 || + dir > 0 && cval[cpiv] < 0.0) + { /* delta x[p] < 0, so x[p] goes toward its lower bound */ + xassert(ll != -DBL_MAX); + delta = ll - xx; + } + else + { /* delta x[p] > 0, so x[p] goes toward its upper bound */ + xassert(uu != +DBL_MAX); + delta = uu - xx; + } + /* compute new x[k] = x[k] + alfa[k,q] * delta x[q], where + delta x[q] = delta x[p] / alfa[p,q] */ + xassert(cval[cpiv] != 0.0); + new_x = x + (rval[rpiv] / cval[cpiv]) * delta; +store: /* store analysis results */ + if (kase < 0) + { if (coef1 != NULL) *coef1 = lim_coef; + if (var1 != NULL) *var1 = q; + if (value1 != NULL) *value1 = new_x; + } + else + { if (coef2 != NULL) *coef2 = lim_coef; + if (var2 != NULL) *var2 = q; + if (value2 != NULL) *value2 = new_x; + } + } + /* free working arrays */ + xfree(cind); + xfree(cval); + xfree(rind); + xfree(rval); + return; +} + +/* eof */ -- cgit