From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/glpk.h | 1175 ++++++++++++++++++++++++++++++++++++ 1 file changed, 1175 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/glpk.h (limited to 'test/monniaux/glpk-4.65/src/glpk.h') diff --git a/test/monniaux/glpk-4.65/src/glpk.h b/test/monniaux/glpk-4.65/src/glpk.h new file mode 100644 index 00000000..f4e250f9 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/glpk.h @@ -0,0 +1,1175 @@ +/* glpk.h */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2000-2018 Andrew Makhorin, Department for Applied +* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights +* reserved. E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#ifndef GLPK_H +#define GLPK_H + +#include +#include + +#ifdef __cplusplus +extern "C" { +#endif + +/* library version numbers: */ +#define GLP_MAJOR_VERSION 4 +#define GLP_MINOR_VERSION 65 + +typedef struct glp_prob glp_prob; +/* LP/MIP problem object */ + +/* optimization direction flag: */ +#define GLP_MIN 1 /* minimization */ +#define GLP_MAX 2 /* maximization */ + +/* kind of structural variable: */ +#define GLP_CV 1 /* continuous variable */ +#define GLP_IV 2 /* integer variable */ +#define GLP_BV 3 /* binary variable */ + +/* type of auxiliary/structural variable: */ +#define GLP_FR 1 /* free (unbounded) variable */ +#define GLP_LO 2 /* variable with lower bound */ +#define GLP_UP 3 /* variable with upper bound */ +#define GLP_DB 4 /* double-bounded variable */ +#define GLP_FX 5 /* fixed variable */ + +/* status of auxiliary/structural variable: */ +#define GLP_BS 1 /* basic variable */ +#define GLP_NL 2 /* non-basic variable on lower bound */ +#define GLP_NU 3 /* non-basic variable on upper bound */ +#define GLP_NF 4 /* non-basic free (unbounded) variable */ +#define GLP_NS 5 /* non-basic fixed variable */ + +/* scaling options: */ +#define GLP_SF_GM 0x01 /* perform geometric mean scaling */ +#define GLP_SF_EQ 0x10 /* perform equilibration scaling */ +#define GLP_SF_2N 0x20 /* round scale factors to power of two */ +#define GLP_SF_SKIP 0x40 /* skip if problem is well scaled */ +#define GLP_SF_AUTO 0x80 /* choose scaling options automatically */ + +/* solution indicator: */ +#define GLP_SOL 1 /* basic solution */ +#define GLP_IPT 2 /* interior-point solution */ +#define GLP_MIP 3 /* mixed integer solution */ + +/* solution status: */ +#define GLP_UNDEF 1 /* solution is undefined */ +#define GLP_FEAS 2 /* solution is feasible */ +#define GLP_INFEAS 3 /* solution is infeasible */ +#define GLP_NOFEAS 4 /* no feasible solution exists */ +#define GLP_OPT 5 /* solution is optimal */ +#define GLP_UNBND 6 /* solution is unbounded */ + +typedef struct +{ /* basis factorization control parameters */ + int msg_lev; /* (not used) */ + int type; /* factorization type: */ +#if 1 /* 05/III-2014 */ +#define GLP_BF_LUF 0x00 /* plain LU-factorization */ +#define GLP_BF_BTF 0x10 /* block triangular LU-factorization */ +#endif +#define GLP_BF_FT 0x01 /* Forrest-Tomlin (LUF only) */ +#define GLP_BF_BG 0x02 /* Schur compl. + Bartels-Golub */ +#define GLP_BF_GR 0x03 /* Schur compl. + Givens rotation */ + int lu_size; /* (not used) */ + double piv_tol; /* sgf_piv_tol */ + int piv_lim; /* sgf_piv_lim */ + int suhl; /* sgf_suhl */ + double eps_tol; /* sgf_eps_tol */ + double max_gro; /* (not used) */ + int nfs_max; /* fhvint.nfs_max */ + double upd_tol; /* (not used) */ + int nrs_max; /* scfint.nn_max */ + int rs_size; /* (not used) */ + double foo_bar[38]; /* (reserved) */ +} glp_bfcp; + +typedef struct +{ /* simplex solver control parameters */ + int msg_lev; /* message level: */ +#define GLP_MSG_OFF 0 /* no output */ +#define GLP_MSG_ERR 1 /* warning and error messages only */ +#define GLP_MSG_ON 2 /* normal output */ +#define GLP_MSG_ALL 3 /* full output */ +#define GLP_MSG_DBG 4 /* debug output */ + int meth; /* simplex method option: */ +#define GLP_PRIMAL 1 /* use primal simplex */ +#define GLP_DUALP 2 /* use dual; if it fails, use primal */ +#define GLP_DUAL 3 /* use dual simplex */ + int pricing; /* pricing technique: */ +#define GLP_PT_STD 0x11 /* standard (Dantzig's rule) */ +#define GLP_PT_PSE 0x22 /* projected steepest edge */ + int r_test; /* ratio test technique: */ +#define GLP_RT_STD 0x11 /* standard (textbook) */ +#define GLP_RT_HAR 0x22 /* Harris' two-pass ratio test */ +#if 1 /* 16/III-2016 */ +#define GLP_RT_FLIP 0x33 /* long-step (flip-flop) ratio test */ +#endif + double tol_bnd; /* primal feasibility tolerance */ + double tol_dj; /* dual feasibility tolerance */ + double tol_piv; /* pivot tolerance */ + double obj_ll; /* lower objective limit */ + double obj_ul; /* upper objective limit */ + int it_lim; /* simplex iteration limit */ + int tm_lim; /* time limit, ms */ + int out_frq; /* display output frequency, ms */ + int out_dly; /* display output delay, ms */ + int presolve; /* enable/disable using LP presolver */ +#if 1 /* 11/VII-2017 (not documented yet) */ + int excl; /* exclude fixed non-basic variables */ + int shift; /* shift bounds of variables to zero */ + int aorn; /* option to use A or N: */ +#define GLP_USE_AT 1 /* use A matrix in row-wise format */ +#define GLP_USE_NT 2 /* use N matrix in row-wise format */ + double foo_bar[33]; /* (reserved) */ +#endif +} glp_smcp; + +typedef struct +{ /* interior-point solver control parameters */ + int msg_lev; /* message level (see glp_smcp) */ + int ord_alg; /* ordering algorithm: */ +#define GLP_ORD_NONE 0 /* natural (original) ordering */ +#define GLP_ORD_QMD 1 /* quotient minimum degree (QMD) */ +#define GLP_ORD_AMD 2 /* approx. minimum degree (AMD) */ +#define GLP_ORD_SYMAMD 3 /* approx. minimum degree (SYMAMD) */ + double foo_bar[48]; /* (reserved) */ +} glp_iptcp; + +typedef struct glp_tree glp_tree; +/* branch-and-bound tree */ + +typedef struct +{ /* integer optimizer control parameters */ + int msg_lev; /* message level (see glp_smcp) */ + int br_tech; /* branching technique: */ +#define GLP_BR_FFV 1 /* first fractional variable */ +#define GLP_BR_LFV 2 /* last fractional variable */ +#define GLP_BR_MFV 3 /* most fractional variable */ +#define GLP_BR_DTH 4 /* heuristic by Driebeck and Tomlin */ +#define GLP_BR_PCH 5 /* hybrid pseudocost heuristic */ + int bt_tech; /* backtracking technique: */ +#define GLP_BT_DFS 1 /* depth first search */ +#define GLP_BT_BFS 2 /* breadth first search */ +#define GLP_BT_BLB 3 /* best local bound */ +#define GLP_BT_BPH 4 /* best projection heuristic */ + double tol_int; /* mip.tol_int */ + double tol_obj; /* mip.tol_obj */ + int tm_lim; /* mip.tm_lim (milliseconds) */ + int out_frq; /* mip.out_frq (milliseconds) */ + int out_dly; /* mip.out_dly (milliseconds) */ + void (*cb_func)(glp_tree *T, void *info); + /* mip.cb_func */ + void *cb_info; /* mip.cb_info */ + int cb_size; /* mip.cb_size */ + int pp_tech; /* preprocessing technique: */ +#define GLP_PP_NONE 0 /* disable preprocessing */ +#define GLP_PP_ROOT 1 /* preprocessing only on root level */ +#define GLP_PP_ALL 2 /* preprocessing on all levels */ + double mip_gap; /* relative MIP gap tolerance */ + int mir_cuts; /* MIR cuts (GLP_ON/GLP_OFF) */ + int gmi_cuts; /* Gomory's cuts (GLP_ON/GLP_OFF) */ + int cov_cuts; /* cover cuts (GLP_ON/GLP_OFF) */ + int clq_cuts; /* clique cuts (GLP_ON/GLP_OFF) */ + int presolve; /* enable/disable using MIP presolver */ + int binarize; /* try to binarize integer variables */ + int fp_heur; /* feasibility pump heuristic */ + int ps_heur; /* proximity search heuristic */ + int ps_tm_lim; /* proxy time limit, milliseconds */ + int sr_heur; /* simple rounding heuristic */ +#if 1 /* 24/X-2015; not documented--should not be used */ + int use_sol; /* use existing solution */ + const char *save_sol; /* filename to save every new solution */ + int alien; /* use alien solver */ +#endif +#if 1 /* 16/III-2016; not documented--should not be used */ + int flip; /* use long-step dual simplex */ +#endif + double foo_bar[23]; /* (reserved) */ +} glp_iocp; + +typedef struct +{ /* additional row attributes */ + int level; + /* subproblem level at which the row was added */ + int origin; + /* row origin flag: */ +#define GLP_RF_REG 0 /* regular constraint */ +#define GLP_RF_LAZY 1 /* "lazy" constraint */ +#define GLP_RF_CUT 2 /* cutting plane constraint */ + int klass; + /* row class descriptor: */ +#define GLP_RF_GMI 1 /* Gomory's mixed integer cut */ +#define GLP_RF_MIR 2 /* mixed integer rounding cut */ +#define GLP_RF_COV 3 /* mixed cover cut */ +#define GLP_RF_CLQ 4 /* clique cut */ + double foo_bar[7]; + /* (reserved) */ +} glp_attr; + +/* enable/disable flag: */ +#define GLP_ON 1 /* enable something */ +#define GLP_OFF 0 /* disable something */ + +/* reason codes: */ +#define GLP_IROWGEN 0x01 /* request for row generation */ +#define GLP_IBINGO 0x02 /* better integer solution found */ +#define GLP_IHEUR 0x03 /* request for heuristic solution */ +#define GLP_ICUTGEN 0x04 /* request for cut generation */ +#define GLP_IBRANCH 0x05 /* request for branching */ +#define GLP_ISELECT 0x06 /* request for subproblem selection */ +#define GLP_IPREPRO 0x07 /* request for preprocessing */ + +/* branch selection indicator: */ +#define GLP_NO_BRNCH 0 /* select no branch */ +#define GLP_DN_BRNCH 1 /* select down-branch */ +#define GLP_UP_BRNCH 2 /* select up-branch */ + +/* return codes: */ +#define GLP_EBADB 0x01 /* invalid basis */ +#define GLP_ESING 0x02 /* singular matrix */ +#define GLP_ECOND 0x03 /* ill-conditioned matrix */ +#define GLP_EBOUND 0x04 /* invalid bounds */ +#define GLP_EFAIL 0x05 /* solver failed */ +#define GLP_EOBJLL 0x06 /* objective lower limit reached */ +#define GLP_EOBJUL 0x07 /* objective upper limit reached */ +#define GLP_EITLIM 0x08 /* iteration limit exceeded */ +#define GLP_ETMLIM 0x09 /* time limit exceeded */ +#define GLP_ENOPFS 0x0A /* no primal feasible solution */ +#define GLP_ENODFS 0x0B /* no dual feasible solution */ +#define GLP_EROOT 0x0C /* root LP optimum not provided */ +#define GLP_ESTOP 0x0D /* search terminated by application */ +#define GLP_EMIPGAP 0x0E /* relative mip gap tolerance reached */ +#define GLP_ENOFEAS 0x0F /* no primal/dual feasible solution */ +#define GLP_ENOCVG 0x10 /* no convergence */ +#define GLP_EINSTAB 0x11 /* numerical instability */ +#define GLP_EDATA 0x12 /* invalid data */ +#define GLP_ERANGE 0x13 /* result out of range */ + +/* condition indicator: */ +#define GLP_KKT_PE 1 /* primal equalities */ +#define GLP_KKT_PB 2 /* primal bounds */ +#define GLP_KKT_DE 3 /* dual equalities */ +#define GLP_KKT_DB 4 /* dual bounds */ +#define GLP_KKT_CS 5 /* complementary slackness */ + +/* MPS file format: */ +#define GLP_MPS_DECK 1 /* fixed (ancient) */ +#define GLP_MPS_FILE 2 /* free (modern) */ + +typedef struct +{ /* MPS format control parameters */ + int blank; + /* character code to replace blanks in symbolic names */ + char *obj_name; + /* objective row name */ + double tol_mps; + /* zero tolerance for MPS data */ + double foo_bar[17]; + /* (reserved for use in the future) */ +} glp_mpscp; + +typedef struct +{ /* CPLEX LP format control parameters */ + double foo_bar[20]; + /* (reserved for use in the future) */ +} glp_cpxcp; + +#if 1 /* 10/XII-2017 */ +typedef struct glp_prep glp_prep; +/* LP/MIP preprocessor workspace */ +#endif + +typedef struct glp_tran glp_tran; +/* MathProg translator workspace */ + +glp_prob *glp_create_prob(void); +/* create problem object */ + +void glp_set_prob_name(glp_prob *P, const char *name); +/* assign (change) problem name */ + +void glp_set_obj_name(glp_prob *P, const char *name); +/* assign (change) objective function name */ + +void glp_set_obj_dir(glp_prob *P, int dir); +/* set (change) optimization direction flag */ + +int glp_add_rows(glp_prob *P, int nrs); +/* add new rows to problem object */ + +int glp_add_cols(glp_prob *P, int ncs); +/* add new columns to problem object */ + +void glp_set_row_name(glp_prob *P, int i, const char *name); +/* assign (change) row name */ + +void glp_set_col_name(glp_prob *P, int j, const char *name); +/* assign (change) column name */ + +void glp_set_row_bnds(glp_prob *P, int i, int type, double lb, + double ub); +/* set (change) row bounds */ + +void glp_set_col_bnds(glp_prob *P, int j, int type, double lb, + double ub); +/* set (change) column bounds */ + +void glp_set_obj_coef(glp_prob *P, int j, double coef); +/* set (change) obj. coefficient or constant term */ + +void glp_set_mat_row(glp_prob *P, int i, int len, const int ind[], + const double val[]); +/* set (replace) row of the constraint matrix */ + +void glp_set_mat_col(glp_prob *P, int j, int len, const int ind[], + const double val[]); +/* set (replace) column of the constraint matrix */ + +void glp_load_matrix(glp_prob *P, int ne, const int ia[], + const int ja[], const double ar[]); +/* load (replace) the whole constraint matrix */ + +int glp_check_dup(int m, int n, int ne, const int ia[], const int ja[]); +/* check for duplicate elements in sparse matrix */ + +void glp_sort_matrix(glp_prob *P); +/* sort elements of the constraint matrix */ + +void glp_del_rows(glp_prob *P, int nrs, const int num[]); +/* delete specified rows from problem object */ + +void glp_del_cols(glp_prob *P, int ncs, const int num[]); +/* delete specified columns from problem object */ + +void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names); +/* copy problem object content */ + +void glp_erase_prob(glp_prob *P); +/* erase problem object content */ + +void glp_delete_prob(glp_prob *P); +/* delete problem object */ + +const char *glp_get_prob_name(glp_prob *P); +/* retrieve problem name */ + +const char *glp_get_obj_name(glp_prob *P); +/* retrieve objective function name */ + +int glp_get_obj_dir(glp_prob *P); +/* retrieve optimization direction flag */ + +int glp_get_num_rows(glp_prob *P); +/* retrieve number of rows */ + +int glp_get_num_cols(glp_prob *P); +/* retrieve number of columns */ + +const char *glp_get_row_name(glp_prob *P, int i); +/* retrieve row name */ + +const char *glp_get_col_name(glp_prob *P, int j); +/* retrieve column name */ + +int glp_get_row_type(glp_prob *P, int i); +/* retrieve row type */ + +double glp_get_row_lb(glp_prob *P, int i); +/* retrieve row lower bound */ + +double glp_get_row_ub(glp_prob *P, int i); +/* retrieve row upper bound */ + +int glp_get_col_type(glp_prob *P, int j); +/* retrieve column type */ + +double glp_get_col_lb(glp_prob *P, int j); +/* retrieve column lower bound */ + +double glp_get_col_ub(glp_prob *P, int j); +/* retrieve column upper bound */ + +double glp_get_obj_coef(glp_prob *P, int j); +/* retrieve obj. coefficient or constant term */ + +int glp_get_num_nz(glp_prob *P); +/* retrieve number of constraint coefficients */ + +int glp_get_mat_row(glp_prob *P, int i, int ind[], double val[]); +/* retrieve row of the constraint matrix */ + +int glp_get_mat_col(glp_prob *P, int j, int ind[], double val[]); +/* retrieve column of the constraint matrix */ + +void glp_create_index(glp_prob *P); +/* create the name index */ + +int glp_find_row(glp_prob *P, const char *name); +/* find row by its name */ + +int glp_find_col(glp_prob *P, const char *name); +/* find column by its name */ + +void glp_delete_index(glp_prob *P); +/* delete the name index */ + +void glp_set_rii(glp_prob *P, int i, double rii); +/* set (change) row scale factor */ + +void glp_set_sjj(glp_prob *P, int j, double sjj); +/* set (change) column scale factor */ + +double glp_get_rii(glp_prob *P, int i); +/* retrieve row scale factor */ + +double glp_get_sjj(glp_prob *P, int j); +/* retrieve column scale factor */ + +void glp_scale_prob(glp_prob *P, int flags); +/* scale problem data */ + +void glp_unscale_prob(glp_prob *P); +/* unscale problem data */ + +void glp_set_row_stat(glp_prob *P, int i, int stat); +/* set (change) row status */ + +void glp_set_col_stat(glp_prob *P, int j, int stat); +/* set (change) column status */ + +void glp_std_basis(glp_prob *P); +/* construct standard initial LP basis */ + +void glp_adv_basis(glp_prob *P, int flags); +/* construct advanced initial LP basis */ + +void glp_cpx_basis(glp_prob *P); +/* construct Bixby's initial LP basis */ + +int glp_simplex(glp_prob *P, const glp_smcp *parm); +/* solve LP problem with the simplex method */ + +int glp_exact(glp_prob *P, const glp_smcp *parm); +/* solve LP problem in exact arithmetic */ + +void glp_init_smcp(glp_smcp *parm); +/* initialize simplex method control parameters */ + +int glp_get_status(glp_prob *P); +/* retrieve generic status of basic solution */ + +int glp_get_prim_stat(glp_prob *P); +/* retrieve status of primal basic solution */ + +int glp_get_dual_stat(glp_prob *P); +/* retrieve status of dual basic solution */ + +double glp_get_obj_val(glp_prob *P); +/* retrieve objective value (basic solution) */ + +int glp_get_row_stat(glp_prob *P, int i); +/* retrieve row status */ + +double glp_get_row_prim(glp_prob *P, int i); +/* retrieve row primal value (basic solution) */ + +double glp_get_row_dual(glp_prob *P, int i); +/* retrieve row dual value (basic solution) */ + +int glp_get_col_stat(glp_prob *P, int j); +/* retrieve column status */ + +double glp_get_col_prim(glp_prob *P, int j); +/* retrieve column primal value (basic solution) */ + +double glp_get_col_dual(glp_prob *P, int j); +/* retrieve column dual value (basic solution) */ + +int glp_get_unbnd_ray(glp_prob *P); +/* determine variable causing unboundedness */ + +#if 1 /* 08/VIII-2013; not documented yet */ +int glp_get_it_cnt(glp_prob *P); +/* get simplex solver iteration count */ +#endif + +#if 1 /* 08/VIII-2013; not documented yet */ +void glp_set_it_cnt(glp_prob *P, int it_cnt); +/* set simplex solver iteration count */ +#endif + +int glp_interior(glp_prob *P, const glp_iptcp *parm); +/* solve LP problem with the interior-point method */ + +void glp_init_iptcp(glp_iptcp *parm); +/* initialize interior-point solver control parameters */ + +int glp_ipt_status(glp_prob *P); +/* retrieve status of interior-point solution */ + +double glp_ipt_obj_val(glp_prob *P); +/* retrieve objective value (interior point) */ + +double glp_ipt_row_prim(glp_prob *P, int i); +/* retrieve row primal value (interior point) */ + +double glp_ipt_row_dual(glp_prob *P, int i); +/* retrieve row dual value (interior point) */ + +double glp_ipt_col_prim(glp_prob *P, int j); +/* retrieve column primal value (interior point) */ + +double glp_ipt_col_dual(glp_prob *P, int j); +/* retrieve column dual value (interior point) */ + +void glp_set_col_kind(glp_prob *P, int j, int kind); +/* set (change) column kind */ + +int glp_get_col_kind(glp_prob *P, int j); +/* retrieve column kind */ + +int glp_get_num_int(glp_prob *P); +/* retrieve number of integer columns */ + +int glp_get_num_bin(glp_prob *P); +/* retrieve number of binary columns */ + +int glp_intopt(glp_prob *P, const glp_iocp *parm); +/* solve MIP problem with the branch-and-bound method */ + +void glp_init_iocp(glp_iocp *parm); +/* initialize integer optimizer control parameters */ + +int glp_mip_status(glp_prob *P); +/* retrieve status of MIP solution */ + +double glp_mip_obj_val(glp_prob *P); +/* retrieve objective value (MIP solution) */ + +double glp_mip_row_val(glp_prob *P, int i); +/* retrieve row value (MIP solution) */ + +double glp_mip_col_val(glp_prob *P, int j); +/* retrieve column value (MIP solution) */ + +void glp_check_kkt(glp_prob *P, int sol, int cond, double *ae_max, + int *ae_ind, double *re_max, int *re_ind); +/* check feasibility/optimality conditions */ + +int glp_print_sol(glp_prob *P, const char *fname); +/* write basic solution in printable format */ + +int glp_read_sol(glp_prob *P, const char *fname); +/* read basic solution from text file */ + +int glp_write_sol(glp_prob *P, const char *fname); +/* write basic solution to text file */ + +int glp_print_ranges(glp_prob *P, int len, const int list[], + int flags, const char *fname); +/* print sensitivity analysis report */ + +int glp_print_ipt(glp_prob *P, const char *fname); +/* write interior-point solution in printable format */ + +int glp_read_ipt(glp_prob *P, const char *fname); +/* read interior-point solution from text file */ + +int glp_write_ipt(glp_prob *P, const char *fname); +/* write interior-point solution to text file */ + +int glp_print_mip(glp_prob *P, const char *fname); +/* write MIP solution in printable format */ + +int glp_read_mip(glp_prob *P, const char *fname); +/* read MIP solution from text file */ + +int glp_write_mip(glp_prob *P, const char *fname); +/* write MIP solution to text file */ + +int glp_bf_exists(glp_prob *P); +/* check if LP basis factorization exists */ + +int glp_factorize(glp_prob *P); +/* compute LP basis factorization */ + +int glp_bf_updated(glp_prob *P); +/* check if LP basis factorization has been updated */ + +void glp_get_bfcp(glp_prob *P, glp_bfcp *parm); +/* retrieve LP basis factorization control parameters */ + +void glp_set_bfcp(glp_prob *P, const glp_bfcp *parm); +/* change LP basis factorization control parameters */ + +int glp_get_bhead(glp_prob *P, int k); +/* retrieve LP basis header information */ + +int glp_get_row_bind(glp_prob *P, int i); +/* retrieve row index in the basis header */ + +int glp_get_col_bind(glp_prob *P, int j); +/* retrieve column index in the basis header */ + +void glp_ftran(glp_prob *P, double x[]); +/* perform forward transformation (solve system B*x = b) */ + +void glp_btran(glp_prob *P, double x[]); +/* perform backward transformation (solve system B'*x = b) */ + +int glp_warm_up(glp_prob *P); +/* "warm up" LP basis */ + +int glp_eval_tab_row(glp_prob *P, int k, int ind[], double val[]); +/* compute row of the simplex tableau */ + +int glp_eval_tab_col(glp_prob *P, int k, int ind[], double val[]); +/* compute column of the simplex tableau */ + +int glp_transform_row(glp_prob *P, int len, int ind[], double val[]); +/* transform explicitly specified row */ + +int glp_transform_col(glp_prob *P, int len, int ind[], double val[]); +/* transform explicitly specified column */ + +int glp_prim_rtest(glp_prob *P, int len, const int ind[], + const double val[], int dir, double eps); +/* perform primal ratio test */ + +int glp_dual_rtest(glp_prob *P, int len, const int ind[], + const double val[], int dir, double eps); +/* perform dual ratio test */ + +void glp_analyze_bound(glp_prob *P, int k, double *value1, int *var1, + double *value2, int *var2); +/* analyze active bound of non-basic variable */ + +void glp_analyze_coef(glp_prob *P, int k, double *coef1, int *var1, + double *value1, double *coef2, int *var2, double *value2); +/* analyze objective coefficient at basic variable */ + +#if 1 /* 10/XII-2017 */ +glp_prep *glp_npp_alloc_wksp(void); +/* allocate the preprocessor workspace */ + +void glp_npp_load_prob(glp_prep *prep, glp_prob *P, int sol, + int names); +/* load original problem instance */ + +int glp_npp_preprocess1(glp_prep *prep, int hard); +/* perform basic LP/MIP preprocessing */ + +void glp_npp_build_prob(glp_prep *prep, glp_prob *Q); +/* build resultant problem instance */ + +void glp_npp_postprocess(glp_prep *prep, glp_prob *Q); +/* postprocess solution to resultant problem */ + +void glp_npp_obtain_sol(glp_prep *prep, glp_prob *P); +/* obtain solution to original problem */ + +void glp_npp_free_wksp(glp_prep *prep); +/* free the preprocessor workspace */ +#endif + +int glp_ios_reason(glp_tree *T); +/* determine reason for calling the callback routine */ + +glp_prob *glp_ios_get_prob(glp_tree *T); +/* access the problem object */ + +void glp_ios_tree_size(glp_tree *T, int *a_cnt, int *n_cnt, + int *t_cnt); +/* determine size of the branch-and-bound tree */ + +int glp_ios_curr_node(glp_tree *T); +/* determine current active subproblem */ + +int glp_ios_next_node(glp_tree *T, int p); +/* determine next active subproblem */ + +int glp_ios_prev_node(glp_tree *T, int p); +/* determine previous active subproblem */ + +int glp_ios_up_node(glp_tree *T, int p); +/* determine parent subproblem */ + +int glp_ios_node_level(glp_tree *T, int p); +/* determine subproblem level */ + +double glp_ios_node_bound(glp_tree *T, int p); +/* determine subproblem local bound */ + +int glp_ios_best_node(glp_tree *T); +/* find active subproblem with best local bound */ + +double glp_ios_mip_gap(glp_tree *T); +/* compute relative MIP gap */ + +void *glp_ios_node_data(glp_tree *T, int p); +/* access subproblem application-specific data */ + +void glp_ios_row_attr(glp_tree *T, int i, glp_attr *attr); +/* retrieve additional row attributes */ + +int glp_ios_pool_size(glp_tree *T); +/* determine current size of the cut pool */ + +int glp_ios_add_row(glp_tree *T, + const char *name, int klass, int flags, int len, const int ind[], + const double val[], int type, double rhs); +/* add row (constraint) to the cut pool */ + +void glp_ios_del_row(glp_tree *T, int i); +/* remove row (constraint) from the cut pool */ + +void glp_ios_clear_pool(glp_tree *T); +/* remove all rows (constraints) from the cut pool */ + +int glp_ios_can_branch(glp_tree *T, int j); +/* check if can branch upon specified variable */ + +void glp_ios_branch_upon(glp_tree *T, int j, int sel); +/* choose variable to branch upon */ + +void glp_ios_select_node(glp_tree *T, int p); +/* select subproblem to continue the search */ + +int glp_ios_heur_sol(glp_tree *T, const double x[]); +/* provide solution found by heuristic */ + +void glp_ios_terminate(glp_tree *T); +/* terminate the solution process */ + +#ifdef GLP_UNDOC +int glp_gmi_cut(glp_prob *P, int j, int ind[], double val[], double + phi[]); +/* generate Gomory's mixed integer cut (core routine) */ + +int glp_gmi_gen(glp_prob *P, glp_prob *pool, int max_cuts); +/* generate Gomory's mixed integer cuts */ + +typedef struct glp_cov glp_cov; +/* cover cur generator workspace */ + +glp_cov *glp_cov_init(glp_prob *P); +/* create and initialize cover cut generator */ + +void glp_cov_gen1(glp_prob *P, glp_cov *cov, glp_prob *pool); +/* generate locally valid simple cover cuts */ + +void glp_cov_free(glp_cov *cov); +/* delete cover cut generator workspace */ + +typedef struct glp_mir glp_mir; +/* MIR cut generator workspace */ + +glp_mir *glp_mir_init(glp_prob *P); +/* create and initialize MIR cut generator */ + +int glp_mir_gen(glp_prob *P, glp_mir *mir, glp_prob *pool); +/* generate mixed integer rounding (MIR) cuts */ + +void glp_mir_free(glp_mir *mir); +/* delete MIR cut generator workspace */ + +typedef struct glp_cfg glp_cfg; +/* conflict graph descriptor */ + +glp_cfg *glp_cfg_init(glp_prob *P); +/* create and initialize conflict graph */ + +void glp_cfg_free(glp_cfg *G); +/* delete conflict graph descriptor */ + +int glp_clq_cut(glp_prob *P, glp_cfg *G, int ind[], double val[]); +/* generate clique cut from conflict graph */ +#endif /* GLP_UNDOC */ + +void glp_init_mpscp(glp_mpscp *parm); +/* initialize MPS format control parameters */ + +int glp_read_mps(glp_prob *P, int fmt, const glp_mpscp *parm, + const char *fname); +/* read problem data in MPS format */ + +int glp_write_mps(glp_prob *P, int fmt, const glp_mpscp *parm, + const char *fname); +/* write problem data in MPS format */ + +void glp_init_cpxcp(glp_cpxcp *parm); +/* initialize CPLEX LP format control parameters */ + +int glp_read_lp(glp_prob *P, const glp_cpxcp *parm, const char *fname); +/* read problem data in CPLEX LP format */ + +int glp_write_lp(glp_prob *P, const glp_cpxcp *parm, const char *fname); +/* write problem data in CPLEX LP format */ + +int glp_read_prob(glp_prob *P, int flags, const char *fname); +/* read problem data in GLPK format */ + +int glp_write_prob(glp_prob *P, int flags, const char *fname); +/* write problem data in GLPK format */ + +glp_tran *glp_mpl_alloc_wksp(void); +/* allocate the MathProg translator workspace */ + +void glp_mpl_init_rand(glp_tran *tran, int seed); +/* initialize pseudo-random number generator */ + +int glp_mpl_read_model(glp_tran *tran, const char *fname, int skip); +/* read and translate model section */ + +int glp_mpl_read_data(glp_tran *tran, const char *fname); +/* read and translate data section */ + +int glp_mpl_generate(glp_tran *tran, const char *fname); +/* generate the model */ + +void glp_mpl_build_prob(glp_tran *tran, glp_prob *prob); +/* build LP/MIP problem instance from the model */ + +int glp_mpl_postsolve(glp_tran *tran, glp_prob *prob, int sol); +/* postsolve the model */ + +void glp_mpl_free_wksp(glp_tran *tran); +/* free the MathProg translator workspace */ + +int glp_read_cnfsat(glp_prob *P, const char *fname); +/* read CNF-SAT problem data in DIMACS format */ + +int glp_check_cnfsat(glp_prob *P); +/* check for CNF-SAT problem instance */ + +int glp_write_cnfsat(glp_prob *P, const char *fname); +/* write CNF-SAT problem data in DIMACS format */ + +int glp_minisat1(glp_prob *P); +/* solve CNF-SAT problem with MiniSat solver */ + +int glp_intfeas1(glp_prob *P, int use_bound, int obj_bound); +/* solve integer feasibility problem */ + +int glp_init_env(void); +/* initialize GLPK environment */ + +const char *glp_version(void); +/* determine library version */ + +const char *glp_config(const char *option); +/* determine library configuration */ + +int glp_free_env(void); +/* free GLPK environment */ + +void glp_puts(const char *s); +/* write string on terminal */ + +void glp_printf(const char *fmt, ...); +/* write formatted output on terminal */ + +void glp_vprintf(const char *fmt, va_list arg); +/* write formatted output on terminal */ + +int glp_term_out(int flag); +/* enable/disable terminal output */ + +void glp_term_hook(int (*func)(void *info, const char *s), void *info); +/* install hook to intercept terminal output */ + +int glp_open_tee(const char *name); +/* start copying terminal output to text file */ + +int glp_close_tee(void); +/* stop copying terminal output to text file */ + +#ifndef GLP_ERRFUNC_DEFINED +#define GLP_ERRFUNC_DEFINED +typedef void (*glp_errfunc)(const char *fmt, ...); +#endif + +#define glp_error glp_error_(__FILE__, __LINE__) +glp_errfunc glp_error_(const char *file, int line); +/* display fatal error message and terminate execution */ + +#if 1 /* 07/XI-2015 */ +int glp_at_error(void); +/* check for error state */ +#endif + +#define glp_assert(expr) \ + ((void)((expr) || (glp_assert_(#expr, __FILE__, __LINE__), 1))) +void glp_assert_(const char *expr, const char *file, int line); +/* check for logical condition */ + +void glp_error_hook(void (*func)(void *info), void *info); +/* install hook to intercept abnormal termination */ + +#define glp_malloc(size) glp_alloc(1, size) +/* allocate memory block (obsolete) */ + +#define glp_calloc(n, size) glp_alloc(n, size) +/* allocate memory block (obsolete) */ + +void *glp_alloc(int n, int size); +/* allocate memory block */ + +void *glp_realloc(void *ptr, int n, int size); +/* reallocate memory block */ + +void glp_free(void *ptr); +/* free (deallocate) memory block */ + +void glp_mem_limit(int limit); +/* set memory usage limit */ + +void glp_mem_usage(int *count, int *cpeak, size_t *total, + size_t *tpeak); +/* get memory usage information */ + +double glp_time(void); +/* determine current universal time */ + +double glp_difftime(double t1, double t0); +/* compute difference between two time values */ + +typedef struct glp_graph glp_graph; +typedef struct glp_vertex glp_vertex; +typedef struct glp_arc glp_arc; + +struct glp_graph +{ /* graph descriptor */ + void *pool; /* DMP *pool; */ + /* memory pool to store graph components */ + char *name; + /* graph name (1 to 255 chars); NULL means no name is assigned + to the graph */ + int nv_max; + /* length of the vertex list (enlarged automatically) */ + int nv; + /* number of vertices in the graph, 0 <= nv <= nv_max */ + int na; + /* number of arcs in the graph, na >= 0 */ + glp_vertex **v; /* glp_vertex *v[1+nv_max]; */ + /* v[i], 1 <= i <= nv, is a pointer to i-th vertex */ + void *index; /* AVL *index; */ + /* vertex index to find vertices by their names; NULL means the + index does not exist */ + int v_size; + /* size of data associated with each vertex (0 to 256 bytes) */ + int a_size; + /* size of data associated with each arc (0 to 256 bytes) */ +}; + +struct glp_vertex +{ /* vertex descriptor */ + int i; + /* vertex ordinal number, 1 <= i <= nv */ + char *name; + /* vertex name (1 to 255 chars); NULL means no name is assigned + to the vertex */ + void *entry; /* AVLNODE *entry; */ + /* pointer to corresponding entry in the vertex index; NULL means + that either the index does not exist or the vertex has no name + assigned */ + void *data; + /* pointer to data associated with the vertex */ + void *temp; + /* working pointer */ + glp_arc *in; + /* pointer to the (unordered) list of incoming arcs */ + glp_arc *out; + /* pointer to the (unordered) list of outgoing arcs */ +}; + +struct glp_arc +{ /* arc descriptor */ + glp_vertex *tail; + /* pointer to the tail endpoint */ + glp_vertex *head; + /* pointer to the head endpoint */ + void *data; + /* pointer to data associated with the arc */ + void *temp; + /* working pointer */ + glp_arc *t_prev; + /* pointer to previous arc having the same tail endpoint */ + glp_arc *t_next; + /* pointer to next arc having the same tail endpoint */ + glp_arc *h_prev; + /* pointer to previous arc having the same head endpoint */ + glp_arc *h_next; + /* pointer to next arc having the same head endpoint */ +}; + +glp_graph *glp_create_graph(int v_size, int a_size); +/* create graph */ + +void glp_set_graph_name(glp_graph *G, const char *name); +/* assign (change) graph name */ + +int glp_add_vertices(glp_graph *G, int nadd); +/* add new vertices to graph */ + +void glp_set_vertex_name(glp_graph *G, int i, const char *name); +/* assign (change) vertex name */ + +glp_arc *glp_add_arc(glp_graph *G, int i, int j); +/* add new arc to graph */ + +void glp_del_vertices(glp_graph *G, int ndel, const int num[]); +/* delete vertices from graph */ + +void glp_del_arc(glp_graph *G, glp_arc *a); +/* delete arc from graph */ + +void glp_erase_graph(glp_graph *G, int v_size, int a_size); +/* erase graph content */ + +void glp_delete_graph(glp_graph *G); +/* delete graph */ + +void glp_create_v_index(glp_graph *G); +/* create vertex name index */ + +int glp_find_vertex(glp_graph *G, const char *name); +/* find vertex by its name */ + +void glp_delete_v_index(glp_graph *G); +/* delete vertex name index */ + +int glp_read_graph(glp_graph *G, const char *fname); +/* read graph from plain text file */ + +int glp_write_graph(glp_graph *G, const char *fname); +/* write graph to plain text file */ + +void glp_mincost_lp(glp_prob *P, glp_graph *G, int names, int v_rhs, + int a_low, int a_cap, int a_cost); +/* convert minimum cost flow problem to LP */ + +int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, int a_cap, + int a_cost, double *sol, int a_x, int v_pi); +/* find minimum-cost flow with out-of-kilter algorithm */ + +int glp_mincost_relax4(glp_graph *G, int v_rhs, int a_low, int a_cap, + int a_cost, int crash, double *sol, int a_x, int a_rc); +/* find minimum-cost flow with Bertsekas-Tseng relaxation method */ + +void glp_maxflow_lp(glp_prob *P, glp_graph *G, int names, int s, + int t, int a_cap); +/* convert maximum flow problem to LP */ + +int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap, + double *sol, int a_x, int v_cut); +/* find maximal flow with Ford-Fulkerson algorithm */ + +int glp_check_asnprob(glp_graph *G, int v_set); +/* check correctness of assignment problem data */ + +/* assignment problem formulation: */ +#define GLP_ASN_MIN 1 /* perfect matching (minimization) */ +#define GLP_ASN_MAX 2 /* perfect matching (maximization) */ +#define GLP_ASN_MMP 3 /* maximum matching */ + +int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G, int names, + int v_set, int a_cost); +/* convert assignment problem to LP */ + +int glp_asnprob_okalg(int form, glp_graph *G, int v_set, int a_cost, + double *sol, int a_x); +/* solve assignment problem with out-of-kilter algorithm */ + +int glp_asnprob_hall(glp_graph *G, int v_set, int a_x); +/* find bipartite matching of maximum cardinality */ + +double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls); +/* solve critical path problem */ + +int glp_read_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap, + int a_cost, const char *fname); +/* read min-cost flow problem data in DIMACS format */ + +int glp_write_mincost(glp_graph *G, int v_rhs, int a_low, int a_cap, + int a_cost, const char *fname); +/* write min-cost flow problem data in DIMACS format */ + +int glp_read_maxflow(glp_graph *G, int *s, int *t, int a_cap, + const char *fname); +/* read maximum flow problem data in DIMACS format */ + +int glp_write_maxflow(glp_graph *G, int s, int t, int a_cap, + const char *fname); +/* write maximum flow problem data in DIMACS format */ + +int glp_read_asnprob(glp_graph *G, int v_set, int a_cost, const char + *fname); +/* read assignment problem data in DIMACS format */ + +int glp_write_asnprob(glp_graph *G, int v_set, int a_cost, const char + *fname); +/* write assignment problem data in DIMACS format */ + +int glp_read_ccdata(glp_graph *G, int v_wgt, const char *fname); +/* read graph in DIMACS clique/coloring format */ + +int glp_write_ccdata(glp_graph *G, int v_wgt, const char *fname); +/* write graph in DIMACS clique/coloring format */ + +int glp_netgen(glp_graph *G, int v_rhs, int a_cap, int a_cost, + const int parm[1+15]); +/* Klingman's network problem generator */ + +void glp_netgen_prob(int nprob, int parm[1+15]); +/* Klingman's standard network problem instance */ + +int glp_gridgen(glp_graph *G, int v_rhs, int a_cap, int a_cost, + const int parm[1+14]); +/* grid-like network problem generator */ + +int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap, + const int parm[1+5]); +/* Goldfarb's maximum flow problem generator */ + +int glp_weak_comp(glp_graph *G, int v_num); +/* find all weakly connected components of graph */ + +int glp_strong_comp(glp_graph *G, int v_num); +/* find all strongly connected components of graph */ + +int glp_top_sort(glp_graph *G, int v_num); +/* topological sorting of acyclic digraph */ + +int glp_wclique_exact(glp_graph *G, int v_wgt, double *sol, int v_set); +/* find maximum weight clique with exact algorithm */ + +#ifdef __cplusplus +} +#endif + +#endif + +/* eof */ -- cgit