From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/misc/relax4.c | 2850 +++++++++++++++++++++++++++++ 1 file changed, 2850 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/misc/relax4.c (limited to 'test/monniaux/glpk-4.65/src/misc/relax4.c') diff --git a/test/monniaux/glpk-4.65/src/misc/relax4.c b/test/monniaux/glpk-4.65/src/misc/relax4.c new file mode 100644 index 00000000..f0a47d6d --- /dev/null +++ b/test/monniaux/glpk-4.65/src/misc/relax4.c @@ -0,0 +1,2850 @@ +/* relax4.c (relaxation method of Bertsekas and Tseng) */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* THIS CODE IS THE RESULT OF TRANSLATION OF THE FORTRAN CODE RELAX4. +* +* THE TRANSLATION HAS BEEN DONE WITH THE PERMISSION OF THE AUTHOR OF +* THE ORIGINAL FORTRAN CODE PROF. DIMITRI P. BERTSEKAS, MASSACHUSETTS +* INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS, USA. +* +* The translation was made by Andrew Makhorin . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "relax4.h" + +/*********************************************************************** +* WARNING +* +* A serious bug was *tentatively* fixed in this code (see #if/#endif +* marked by 'mao'). +* +* This bug is inherited from the original Fortran version of the +* RELAX-IV code. Unfortunately, the code is very intricate, so this +* bug is still under investigation. Thanks to Sylvain Fournier for bug +* report. +* +* RELAX-IV bug details +* -------------------- +* In the original RELAX-IV code there are four similar fragments in +* subroutines ascnt1 and ascnt2 like this: +* +* C +* C DECREASE THE PRICES OF THE SCANNED NODES BY DELPRC. +* C ADJUST FLOW TO MAINTAIN COMPLEMENTARY SLACKNESS WITH +* C THE PRICES. +* C +* NB = 0 +* DO 6 I=1,NSAVE +* . . . +* IF (RC(ARC).EQ.0) THEN +* DELX=DELX+U(ARC) +* NB = NB + 1 +* PRDCSR(NB) = ARC +* END IF +* . . . +* +* On some instances the variable NB becomes greater than N (the number +* of nodes) that leads to indexing error, because the array PRDCSR is +* declared as array of N elements (more precisely, as array of MAXNN +* elements, however, NB becomes even much greater than MAXNN). +***********************************************************************/ + +#define false 0 +#define true 1 + +/*********************************************************************** +* NAME +* +* RELAX-IV (version of October 1994) +* +* PURPOSE +* +* This routine implements the relaxation method of Bertsekas and Tseng +* (see [1], [2]) for linear cost ordinary network flow problems. +* +* [1] Bertsekas, D. P., "A Unified Framework for Primal-Dual Methods" +* Mathematical Programming, Vol. 32, 1985, pp. 125-145. +* [2] Bertsekas, D. P., and Tseng, P., "Relaxation Methods for +* Minimum Cost" Operations Research, Vol. 26, 1988, pp. 93-114. +* +* The relaxation method is also described in the books: +* +* [3] Bertsekas, D. P., "Linear Network Optimization: Algorithms and +* Codes" MIT Press, 1991. +* [4] Bertsekas, D. P. and Tsitsiklis, J. N., "Parallel and Distributed +* Computation: Numerical Methods", Prentice-Hall, 1989. +* [5] Bertsekas, D. P., "Network Optimization: Continuous and Discrete +* Models", Athena Scientific, 1998. +* +* RELEASE NOTE +* +* This version of relaxation code has option for a special crash +* procedure for the initial price-flow pair. This is recommended for +* difficult problems where the default initialization results in long +* running times. crash = 1 corresponds to an auction/shortest path +* method +* +* These initializations are recommended in the absence of any prior +* information on a favorable initial flow-price vector pair that +* satisfies complementary slackness. +* +* The relaxation portion of the code differs from the code RELAXT-III +* and other earlier relaxation codes in that it maintains the set of +* nodes with nonzero deficit in a fifo queue. Like its predecessor +* RELAXT-III, this code maintains a linked list of balanced (i.e., of +* zero reduced cost) arcs so to reduce the work in labeling and +* scanning. Unlike RELAXT-III, it does not use selectively shortest +* path iterations for initialization. +* +* SOURCE +* +* The original Fortran code was written by Dimitri P. Bertsekas and +* Paul Tseng, with a contribution by Jonathan Eckstein in the phase II +* initialization. The original Fortran routine AUCTION was written by +* Dimitri P. Bertsekas and is based on the method described in the +* paper: +* +* [6] Bertsekas, D. P., "An Auction/Sequential Shortest Path Algorithm +* for the Minimum Cost Flow Problem", LIDS Report P-2146, MIT, +* Nov. 1992. +* +* For inquiries about the original Fortran code, please contact: +* +* Dimitri P. Bertsekas +* Laboratory for information and decision systems +* Massachusetts Institute of Technology +* Cambridge, MA 02139 +* (617) 253-7267, dimitrib@mit.edu +* +* This code is the result of translation of the original Fortran code. +* The translation was made by Andrew Makhorin . +* +* USER GUIDELINES +* +* This routine is in the public domain to be used only for research +* purposes. It cannot be used as part of a commercial product, or to +* satisfy in any part commercial delivery requirements to government +* or industry, without prior agreement with the authors. Users are +* requested to acknowledge the authorship of the code, and the +* relaxation method. +* +* No modification should be made to this code other than the minimal +* necessary to make it compatible with specific platforms. +* +* INPUT PARAMETERS (see notes 1, 2, 4) +* +* n = number of nodes +* na = number of arcs +* large = a very large integer to represent infinity +* (see note 3) +* repeat = true if initialization is to be skipped +* (false otherwise) +* crash = 0 if default initialization is used +* 1 if auction initialization is used +* startn[j] = starting node for arc j, j = 1,...,na +* endn[j] = ending node for arc j, j = 1,...,na +* fou[i] = first arc out of node i, i = 1,...,n +* nxtou[j] = next arc out of the starting node of arc j, j = 1,...,na +* fin[i] = first arc into node i, i = 1,...,n +* nxtin[j] = next arc into the ending node of arc j, j = 1,...,na +* +* UPDATED PARAMETERS (see notes 1, 3, 4) +* +* rc[j] = reduced cost of arc j, j = 1,...,na +* u[j] = capacity of arc j on input +* and (capacity of arc j) - x[j] on output, j = 1,...,na +* dfct[i] = demand at node i on input +* and zero on output, i = 1,...,n +* +* OUTPUT PARAMETERS (see notes 1, 3, 4) +* +* x[j] = flow on arc j, j = 1,...,na +* nmultinode = number of multinode relaxation iterations in RELAX4 +* iter = number of relaxation iterations in RELAX4 +* num_augm = number of flow augmentation steps in RELAX4 +* num_ascnt = number of multinode ascent steps in RELAX4 +* nsp = number of auction/shortest path iterations +* +* WORKING PARAMETERS (see notes 1, 4, 5) +* +* label[1+n], prdcsr[1+n], save[1+na], tfstou[1+n], tnxtou[1+na], +* tfstin[1+n], tnxtin[1+na], nxtqueue[1+n], scan[1+n], mark[1+n], +* extend_arc[1+n], sb_level[1+n], sb_arc[1+n] +* +* RETURNS +* +* 0 = normal return +* 1,...,8 = problem is found to be infeasible +* +* NOTE 1 +* +* To run in limited memory systems, declare the arrays startn, endn, +* nxtin, nxtou, fin, fou, label, prdcsr, save, tfstou, tnxtou, tfstin, +* tnxtin, ddpos, ddneg, nxtqueue as short instead. +* +* NOTE 2 +* +* This routine makes no effort to initialize with a favorable x from +* amongst those flow vectors that satisfy complementary slackness with +* the initial reduced cost vector rc. If a favorable x is known, then +* it can be passed, together with the corresponding arrays u and dfct, +* to this routine directly. This, however, requires that the capacity +* tightening portion and the flow initialization portion of this +* routine (up to line labeled 90) be skipped. +* +* NOTE 3 +* +* All problem data should be less than large in magnitude, and large +* should be less than, say, 1/4 the largest int of the machine used. +* This will guard primarily against overflow in uncapacitated problems +* where the arc capacities are taken finite but very large. Note, +* however, that as in all codes operating with integers, overflow may +* occur if some of the problem data takes very large values. +* +* NOTE 4 +* +* [This note being specific to Fortran was removed.-A.M.] +* +* NOTE 5 +* +* ddpos and ddneg are arrays that give the directional derivatives for +* all positive and negative single-node price changes. These are used +* only in phase II of the initialization procedure, before the linked +* list of balanced arcs comes to play. Therefore, to reduce storage, +* they are equivalence to tfstou and tfstin, which are of the same size +* (number of nodes) and are used only after the tree comes into use. */ + +static void ascnt1(struct relax4_csa *csa, int dm, int *delx, + int *nlabel, int *feasbl, int *svitch, int nscan, int curnode, + int *prevnode); + +static void ascnt2(struct relax4_csa *csa, int dm, int *delx, + int *nlabel, int *feasbl, int *svitch, int nscan, int curnode, + int *prevnode); + +static int auction(struct relax4_csa *csa); + +int relax4(struct relax4_csa *csa) +{ /* input parameters */ + int n = csa->n; + int na = csa->na; + int large = csa->large; + int repeat = csa->repeat; + int crash = csa->crash; + int *startn = csa->startn; + int *endn = csa->endn; + int *fou = csa->fou; + int *nxtou = csa->nxtou; + int *fin = csa->fin; + int *nxtin = csa->nxtin; + /* updated parameters */ + int *rc = csa->rc; + int *u = csa->u; + int *dfct = csa->dfct; + /* output parameters */ + int *x = csa->x; +# define nmultinode (csa->nmultinode) +# define iter (csa->iter) +# define num_augm (csa->num_augm) +# define num_ascnt (csa->num_ascnt) +# define nsp (csa->nsp) + /* working parameters */ + int *label = csa->label; + int *prdcsr = csa->prdcsr; + int *save = csa->save; + int *tfstou = csa->tfstou; + int *tnxtou = csa->tnxtou; + int *tfstin = csa->tfstin; + int *tnxtin = csa->tnxtin; + int *nxtqueue = csa->nxtqueue; + char *scan = csa->scan; + char *mark = csa->mark; + int *ddpos = tfstou; + int *ddneg = tfstin; + /* local variables */ + int arc, augnod, capin, capout, defcit, delprc, delx, dm, dp, + dx, feasbl, i, ib, indef, j, lastqueue, maxcap, narc, nb, + nlabel, node, node2, node_def, naugnod, nscan, num_passes, + numnz, numnz_new, numpasses, nxtarc, nxtbrk, nxtnode, passes, + pchange, posit, prevnode, prvarc, quit, rdcost, scapin, + scapou, svitch, t, t1, t2, tmparc, tp, trc, ts; + /*--------------------------------------------------------------*/ + /* Initialization phase I */ + /* In this phase, we reduce the arc capacities by as much as + * possible without changing the problem; then we set the initial + * flow array x, together with the corresponding arrays u and + * dfct. */ + /* This phase and phase II (from here up to line labeled 90) can + * be skipped (by setting repeat to true) if the calling program + * places in common user-chosen values for the arc flows, the + * residual arc capacities, and the nodal deficits. When this is + * done, it is critical that the flow and the reduced cost for + * each arc satisfy complementary slackness and the dfct array + * properly correspond to the initial arc/flows. */ + if (repeat) + goto L90; + for (node = 1; node <= n; node++) + { node_def = dfct[node]; + ddpos[node] = node_def; + ddneg[node] = -node_def; + maxcap = 0; + scapou = 0; + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { if (scapou <= large - u[arc]) + scapou += u[arc]; + else + goto L10; + } + if (scapou <= large - node_def) + capout = scapou + node_def; + else + goto L10; + if (capout < 0) + { /* problem is infeasible */ + /* exogenous flow into node exceeds out capacity */ + return 1; + } + scapin = 0; + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { if (u[arc] > capout) + u[arc] = capout; + if (maxcap < u[arc]) + maxcap = u[arc]; + if (scapin <= large - u[arc]) + scapin += u[arc]; + else + goto L10; + } + if (scapin <= large + node_def) + capin = scapin - node_def; + else + goto L10; + if (capin < 0) + { /* problem is infeasible */ + /* exogenous flow out of node exceeds in capacity */ + return 2; + } + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { if (u[arc] > capin) + u[arc] = capin; + } +L10: ; + } + /*--------------------------------------------------------------*/ + /* Initialization phase II */ + /* In this phase, we initialize the prices and flows by either + * calling the routine auction or by performing only single node + * (coordinate) relaxation iterations. */ + if (crash == 1) + { nsp = 0; + if (auction(csa) != 0) + { /* problem is found to be infeasible */ + return 3; + } + goto L70; + } + /* Initialize the arc flows to satisfy complementary slackness + * with the prices. u[arc] is the residual capacity of arc, and + * x[arc] is the flow. These two always add up to the total + * capacity for arc. Also compute the directional derivatives for + * each coordinate and compute the actual deficits. */ + for (arc = 1; arc <= na; arc++) + { x[arc] = 0; + if (rc[arc] <= 0) + { t = u[arc]; + t1 = startn[arc]; + t2 = endn[arc]; + ddpos[t1] += t; + ddneg[t2] += t; + if (rc[arc] < 0) + { x[arc] = t; + u[arc] = 0; + dfct[t1] += t; + dfct[t2] -= t; + ddneg[t1] -= t; + ddpos[t2] -= t; + } + } + } + /* Make 2 or 3 passes through all nodes, performing only single + * node relaxation iterations. The number of passes depends on the + * density of the network. */ + if (na > n * 10) + numpasses = 2; + else + numpasses = 3; + for (passes = 1; passes <= numpasses; passes++) + for (node = 1; node <= n; node++) + { if (dfct[node] == 0) + continue; + if (ddpos[node] <= 0) + { /* Compute delprc, the stepsize to the next breakpoint in + * the dual cost as the price of node is increased. + * [Since the reduced cost of all outgoing (resp., incoming) + * arcs will decrease (resp., increase) as the price of node + * is increased, the next breakpoint is the minimum of the + * positive reduced cost on outgoing arcs and of the + * negative reduced cost on incoming arcs.] */ + delprc = large; + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { trc = rc[arc]; + if ((trc > 0) && (trc < delprc)) + delprc = trc; + } + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { trc = rc[arc]; + if ((trc < 0) && (trc > -delprc)) + delprc = -trc; + } + /* If no breakpoint is left and dual ascent is still + * possible, the problem is infeasible. */ + if (delprc >= large) + { if (ddpos[node] == 0) + continue; + return 4; + } + /* delprc is the stepsize to next breakpoint. Increase + * price of node by delprc and compute the stepsize to the + * next breakpoint in the dual cost. */ +L53: nxtbrk = large; + /* Look at all arcs out of node. */ + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { trc = rc[arc]; + if (trc == 0) + { t1 = endn[arc]; + t = u[arc]; + if (t > 0) + { dfct[node] += t; + dfct[t1] -= t; + x[arc] = t; + u[arc] = 0; + } + else + t = x[arc]; + ddneg[node] -= t; + ddpos[t1] -= t; + } + /* Decrease the reduced costs on all outgoing arcs. */ + trc -= delprc; + if ((trc > 0) && (trc < nxtbrk)) + nxtbrk = trc; + else if (trc == 0) + { /* Arc goes from inactive to balanced. Update the rate + * of dual ascent at node and at its neighbor. */ + ddpos[node] += u[arc]; + ddneg[endn[arc]] += u[arc]; + } + rc[arc] = trc; + } + /* Look at all arcs into node. */ + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { trc = rc[arc]; + if (trc == 0) + { t1 = startn[arc]; + t = x[arc]; + if (t > 0) + { dfct[node] += t; + dfct[t1] -= t; + u[arc] = t; + x[arc] = 0; + } + else + t = u[arc]; + ddpos[t1] -= t; + ddneg[node] -= t; + } + /* Increase the reduced cost on all incoming arcs. */ + trc += delprc; + if ((trc < 0) && (trc > -nxtbrk)) + nxtbrk = -trc; + else if (trc == 0) + { /* Arc goes from active to balanced. Update the rate + * of dual ascent at node and at its neighbor. */ + ddneg[startn[arc]] += x[arc]; + ddpos[node] += x[arc]; + } + rc[arc] = trc; + } + /* If price of node can be increased further without + * decreasing the dual cost (even the dual cost doesn't + * increase), return to increase the price further. */ + if ((ddpos[node] <= 0) && (nxtbrk < large)) + { delprc = nxtbrk; + goto L53; + } + } + else if (ddneg[node] <= 0) + { /* Compute delprc, the stepsize to the next breakpoint in + * the dual cost as the price of node is decreased. + * [Since the reduced cost of all outgoing (resp., incoming) + * arcs will increase (resp., decrease) as the price of node + * is decreased, the next breakpoint is the minimum of the + * negative reduced cost on outgoing arcs and of the + * positive reduced cost on incoming arcs.] */ + delprc = large; + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { trc = rc[arc]; + if ((trc < 0) && (trc > -delprc)) + delprc = -trc; + } + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { trc = rc[arc]; + if ((trc > 0) && (trc < delprc)) + delprc = trc; + } + /* If no breakpoint is left and dual ascent is still + * possible, the problem is infeasible. */ + if (delprc == large) + { if (ddneg[node] == 0) + continue; + return 5; + } + /* delprc is the stepsize to next breakpoint. Decrease + * price of node by delprc and compute the stepsize to the + * next breakpoint in the dual cost. */ +L63: nxtbrk = large; + /* Look at all arcs out of node. */ + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { trc = rc[arc]; + if (trc == 0) + { t1 = endn[arc]; + t = x[arc]; + if (t > 0) + { dfct[node] -= t; + dfct[t1] += t; + u[arc] = t; + x[arc] = 0; + } + else + t = u[arc]; + ddpos[node] -= t; + ddneg[t1] -= t; + } + /* Increase the reduced cost on all outgoing arcs. */ + trc += delprc; + if ((trc < 0) && (trc > -nxtbrk)) + nxtbrk = -trc; + else if (trc == 0) + { /* Arc goes from active to balanced. Update the rate + * of dual ascent at node and at its neighbor. */ + ddneg[node] += x[arc]; + ddpos[endn[arc]] += x[arc]; + } + rc[arc] = trc; + } + /* Look at all arcs into node. */ + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { trc = rc[arc]; + if (trc == 0) + { t1 = startn[arc]; + t = u[arc]; + if (t > 0) + { dfct[node] -= t; + dfct[t1] += t; + x[arc] = t; + u[arc] = 0; + } + else + t = x[arc]; + ddneg[t1] -= t; + ddpos[node] -= t; + } + /* Decrease the reduced cost on all incoming arcs. */ + trc -= delprc; + if ((trc > 0) && (trc < nxtbrk)) + nxtbrk = trc; + else if (trc == 0) + { /* Arc goes from inactive to balanced. Update the rate + * of dual ascent at node and at its neighbor. */ + ddpos[startn[arc]] += u[arc]; + ddneg[node] += u[arc]; + } + rc[arc] = trc; + } + /* If price of node can be decreased further without + * decreasing the dual cost (even the dual cost doesn't + * increase), return to decrease the price further. */ + if ((ddneg[node] <= 0) && (nxtbrk < large)) + { delprc = nxtbrk; + goto L63; + } + } + } + /*--------------------------------------------------------------*/ +L70: /* Initialize tree data structure. */ + for (i = 1; i <= n; i++) + tfstou[i] = tfstin[i] = 0; + for (i = 1; i <= na; i++) + { tnxtin[i] = tnxtou[i] = -1; + if (rc[i] == 0) + { tnxtou[i] = tfstou[startn[i]]; + tfstou[startn[i]] = i; + tnxtin[i] = tfstin[endn[i]]; + tfstin[endn[i]] = i; + } + } +L90: /* Initialize other variables. */ + feasbl = true; + iter = 0; + nmultinode = 0; + num_augm = 0; + num_ascnt = 0; + num_passes = 0; + numnz = n; + numnz_new = 0; + svitch = false; + for (i = 1; i <= n; i++) + mark[i] = scan[i] = false; + nlabel = 0; + /* RELAX4 uses an adaptive strategy to decide whether to continue + * the scanning process after a multinode price change. + * The threshold parameter tp and ts that control this strategy + * are set in the next two lines. */ + tp = 10; + ts = n / 15; + /* Initialize the queue of nodes with nonzero deficit. */ + for (node = 1; node <= n - 1; node++) + nxtqueue[node] = node + 1; + nxtqueue[n] = 1; + node = lastqueue = n; + /*--------------------------------------------------------------*/ + /* Start the relaxation algorithm. */ +L100: /* Code for advancing the queue of nonzero deficit nodes. */ + prevnode = node; + node = nxtqueue[node]; + defcit = dfct[node]; + if (node == lastqueue) + { numnz = numnz_new; + numnz_new = 0; + lastqueue = prevnode; + num_passes++; + } + /* Code for deleting a node from the queue. */ + if (defcit == 0) + { nxtnode = nxtqueue[node]; + if (node == nxtnode) + return 0; + else + { nxtqueue[prevnode] = nxtnode; + nxtqueue[node] = 0; + node = nxtnode; + goto L100; + } + } + else + posit = (defcit > 0); + iter++; + numnz_new++; + if (posit) + { /* Attempt a single node iteration from node with positive + * deficit. */ + pchange = false; + indef = defcit; + delx = 0; + nb = 0; + /* Check outgoing (probably) balanced arcs from node. */ + for (arc = tfstou[node]; arc > 0; arc = tnxtou[arc]) + { if ((rc[arc] == 0) && (x[arc] > 0)) + { delx += x[arc]; + nb++; + save[nb] = arc; + } + } + /* Check incoming arcs. */ + for (arc = tfstin[node]; arc > 0; arc = tnxtin[arc]) + { if ((rc[arc] == 0) && (u[arc] > 0)) + { delx += u[arc]; + nb++; + save[nb] = -arc; + } + } + /* End of initial node scan. */ +L4018: /* If no price change is possible, exit. */ + if (delx > defcit) + { quit = (defcit < indef); + goto L4016; + } + /* RELAX4 searches along the ascent direction for the best + * price by checking the slope of the dual cost at successive + * break points. First, we compute the distance to the next + * break point. */ + delprc = large; + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { rdcost = rc[arc]; + if ((rdcost < 0) && (rdcost > -delprc)) + delprc = -rdcost; + } + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { rdcost = rc[arc]; + if ((rdcost > 0) && (rdcost < delprc)) + delprc = rdcost; + } + /* Check if problem is infeasible. */ + if ((delx < defcit) && (delprc == large)) + { /* The dual cost can be decreased without bound. */ + return 6; + } + /* Skip flow adjustment if there is no flow to modify. */ + if (delx == 0) + goto L4014; + /* Adjust the flow on the balanced arcs incident to node to + * maintain complementary slackness after the price change. */ + for (j = 1; j <= nb; j++) + { arc = save[j]; + if (arc > 0) + { node2 = endn[arc]; + t1 = x[arc]; + dfct[node2] += t1; + if (nxtqueue[node2] == 0) + { nxtqueue[prevnode] = node2; + nxtqueue[node2] = node; + prevnode = node2; + } + u[arc] += t1; + x[arc] = 0; + } + else + { narc = -arc; + node2 = startn[narc]; + t1 = u[narc]; + dfct[node2] += t1; + if (nxtqueue[node2] == 0) + { nxtqueue[prevnode] = node2; + nxtqueue[node2] = node; + prevnode = node2; + } + x[narc] += t1; + u[narc] = 0; + } + } + defcit -= delx; +L4014: if (delprc == large) + { quit = true; + goto L4019; + } + /* Node corresponds to a dual ascent direction. Decrease the + * price of node by delprc and compute the stepsize to the next + * breakpoint in the dual cost. */ + nb = 0; + pchange = true; + dp = delprc; + delprc = large; + delx = 0; + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { rdcost = rc[arc] + dp; + rc[arc] = rdcost; + if (rdcost == 0) + { nb++; + save[nb] = arc; + delx += x[arc]; + } + if ((rdcost < 0) && (rdcost > -delprc)) + delprc = -rdcost; + } + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { rdcost = rc[arc] - dp; + rc[arc] = rdcost; + if (rdcost == 0) + { nb++; + save[nb] = -arc; + delx += u[arc]; + } + if ((rdcost > 0) && (rdcost < delprc)) + delprc = rdcost; + } + /* Return to check if another price change is possible. */ + goto L4018; +L4016: /* Perform flow augmentation at node. */ + for (j = 1; j <= nb; j++) + { arc = save[j]; + if (arc > 0) + { /* arc is an outgoing arc from node. */ + node2 = endn[arc]; + t1 = dfct[node2]; + if (t1 < 0) + { /* Decrease the total deficit by decreasing flow of + * arc. */ + quit = true; + t2 = x[arc]; + dx = defcit; + if (dx > -t1) dx = -t1; + if (dx > t2) dx = t2; + defcit -= dx; + dfct[node2] = t1 + dx; + if (nxtqueue[node2] == 0) + { nxtqueue[prevnode] = node2; + nxtqueue[node2] = node; + prevnode = node2; + } + x[arc] = t2 - dx; + u[arc] += dx; + if (defcit == 0) + break; + } + } + else + { /* -arc is an incoming arc to node. */ + narc = -arc; + node2 = startn[narc]; + t1 = dfct[node2]; + if (t1 < 0) + { /* Decrease the total deficit by increasing flow of + * -arc. */ + quit = true; + t2 = u[narc]; + dx = defcit; + if (dx > -t1) dx = -t1; + if (dx > t2) dx = t2; + defcit -= dx; + dfct[node2] = t1 + dx; + if (nxtqueue[node2] == 0) + { nxtqueue[prevnode] = node2; + nxtqueue[node2] = node; + prevnode = node2; + } + x[narc] += dx; + u[narc] = t2 - dx; + if (defcit == 0) + break; + } + } + } +L4019: dfct[node] = defcit; + /* Reconstruct the linked list of balance arcs incident to this + * node. For each adjacent node, we add any newly balanced arcs + * to the list, but do not bother removing formerly balanced + * ones (they will be removed the next time each adjacent node + * is scanned). */ + if (pchange) + { arc = tfstou[node]; + tfstou[node] = 0; + while (arc > 0) + { nxtarc = tnxtou[arc]; + tnxtou[arc] = -1; + arc = nxtarc; + } + arc = tfstin[node]; + tfstin[node] = 0; + while (arc > 0) + { nxtarc = tnxtin[arc]; + tnxtin[arc] = -1; + arc = nxtarc; + } + /* Now add the currently balanced arcs to the list for this + * node (which is now empty), and the appropriate adjacent + * ones. */ + for (j = 1; j <= nb; j++) + { arc = save[j]; + if (arc < 0) + arc = -arc; + if (tnxtou[arc] < 0) + { tnxtou[arc] = tfstou[startn[arc]]; + tfstou[startn[arc]] = arc; + } + if (tnxtin[arc] < 0) + { tnxtin[arc] = tfstin[endn[arc]]; + tfstin[endn[arc]] = arc; + } + } + } + /* End of single node iteration for positive deficit node. */ + } + else + { /* Attempt a single node iteration from node with negative + * deficit. */ + pchange = false; + defcit = -defcit; + indef = defcit; + delx = 0; + nb = 0; + for (arc = tfstin[node]; arc > 0; arc = tnxtin[arc]) + { if ((rc[arc] == 0) && (x[arc] > 0)) + { delx += x[arc]; + nb++; + save[nb] = arc; + } + } + for (arc = tfstou[node]; arc > 0; arc = tnxtou[arc]) + { if ((rc[arc] == 0) && (u[arc] > 0)) + { delx += u[arc]; + nb++; + save[nb] = -arc; + } + } +L4028: if (delx >= defcit) + { quit = (defcit < indef); + goto L4026; + } + /* Compute distance to next breakpoint. */ + delprc = large; + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { rdcost = rc[arc]; + if ((rdcost < 0) && (rdcost > -delprc)) + delprc = -rdcost; + } + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { rdcost = rc[arc]; + if ((rdcost > 0) && (rdcost < delprc)) + delprc = rdcost; + } + /* Check if problem is infeasible. */ + if ((delx < defcit) && (delprc == large)) + return 7; + if (delx == 0) + goto L4024; + /* Flow augmentation is possible. */ + for (j = 1; j <= nb; j++) + { arc = save[j]; + if (arc > 0) + { node2 = startn[arc]; + t1 = x[arc]; + dfct[node2] -= t1; + if (nxtqueue[node2] == 0) + { nxtqueue[prevnode] = node2; + nxtqueue[node2] = node; + prevnode = node2; + } + u[arc] += t1; + x[arc] = 0; + } + else + { narc = -arc; + node2 = endn[narc]; + t1 = u[narc]; + dfct[node2] -= t1; + if (nxtqueue[node2] == 0) + { nxtqueue[prevnode] = node2; + nxtqueue[node2] = node; + prevnode = node2; + } + x[narc] += t1; + u[narc] = 0; + } + } + defcit -= delx; +L4024: if (delprc == large) + { quit = true; + goto L4029; + } + /* Price increase at node is possible. */ + nb = 0; + pchange = true; + dp = delprc; + delprc = large; + delx = 0; + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { rdcost = rc[arc] + dp; + rc[arc] = rdcost; + if (rdcost == 0) + { nb++; + save[nb] = arc; + delx += x[arc]; + } + if ((rdcost < 0) && (rdcost > -delprc)) + delprc = -rdcost; + } + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { rdcost = rc[arc] - dp; + rc[arc] = rdcost; + if (rdcost == 0) + { nb++; + save[nb] = -arc; + delx += u[arc]; + } + if ((rdcost > 0) && (rdcost < delprc)) + delprc = rdcost; + } + goto L4028; +L4026: /* Perform flow augmentation at node. */ + for (j = 1; j <= nb; j++) + { arc = save[j]; + if (arc > 0) + { /* arc is an incoming arc to node. */ + node2 = startn[arc]; + t1 = dfct[node2]; + if (t1 > 0) + { quit = true; + t2 = x[arc]; + dx = defcit; + if (dx > t1) dx = t1; + if (dx > t2) dx = t2; + defcit -= dx; + dfct[node2] = t1 - dx; + if (nxtqueue[node2] == 0) + { nxtqueue[prevnode] = node2; + nxtqueue[node2] = node; + prevnode = node2; + } + x[arc] = t2 - dx; + u[arc] += dx; + if (defcit == 0) + break; + } + } + else + { /* -arc is an outgoing arc from node. */ + narc = -arc; + node2 = endn[narc]; + t1 = dfct[node2]; + if (t1 > 0) + { quit = true; + t2 = u[narc]; + dx = defcit; + if (dx > t1) dx = t1; + if (dx > t2) dx = t2; + defcit -= dx; + dfct[node2] = t1 - dx; + if (nxtqueue[node2] == 0) + { nxtqueue[prevnode] = node2; + nxtqueue[node2] = node; + prevnode = node2; + } + x[narc] += dx; + u[narc] = t2 - dx; + if (defcit == 0) + break; + } + } + } +L4029: dfct[node] = -defcit; + /* Reconstruct the list of balanced arcs incident to node. */ + if (pchange) + { arc = tfstou[node]; + tfstou[node] = 0; + while (arc > 0) + { nxtarc = tnxtou[arc]; + tnxtou[arc] = -1; + arc = nxtarc; + } + arc = tfstin[node]; + tfstin[node] = 0; + while (arc > 0) + { nxtarc = tnxtin[arc]; + tnxtin[arc] = -1; + arc = nxtarc; + } + /* Now add the currently balanced arcs to the list for this + * node (which is now empty), and the appropriate adjacent + * ones. */ + for (j = 1; j <= nb; j++) + { arc = save[j]; + if (arc <= 0) + arc = -arc; + if (tnxtou[arc] < 0) + { tnxtou[arc] = tfstou[startn[arc]]; + tfstou[startn[arc]] = arc; + } + if (tnxtin[arc] < 0) + { tnxtin[arc] = tfstin[endn[arc]]; + tfstin[endn[arc]] = arc; + } + } + } + /* End of single node iteration for a negative deficit node. */ + } + if (quit || (num_passes <= 3)) + goto L100; + /* Do a multinode iteration from node. */ + nmultinode++; + /* If number of nonzero deficit nodes is small, continue labeling + * until a flow augmentation is done. */ + svitch = (numnz < tp); + /* Unmark nodes labeled earlier. */ + for (j = 1; j <= nlabel; j++) + { node2 = label[j]; + mark[node2] = scan[node2] = false; + } + /* Initialize labeling. */ + nlabel = 1; + label[1] = node; + mark[node] = true; + prdcsr[node] = 0; + /* Scan starting node. */ + scan[node] = true; + nscan = 1; + dm = dfct[node]; + delx = 0; + for (j = 1; j <= nb; j++) + { arc = save[j]; + if (arc > 0) + { if (posit) + node2 = endn[arc]; + else + node2 = startn[arc]; + if (!mark[node2]) + { nlabel++; + label[nlabel] = node2; + prdcsr[node2] = arc; + mark[node2] = true; + delx += x[arc]; + } + } + else + { narc = -arc; + if (posit) + node2 = startn[narc]; + else + node2 = endn[narc]; + if (!mark[node2]) + { nlabel++; + label[nlabel] = node2; + prdcsr[node2] = arc; + mark[node2] = true; + delx += u[narc]; + } + } + } +L4120:/* Start scanning a labeled but unscanned node. */ + nscan++; + /* Check to see if switch needs to be set to true so to continue + * scanning even after a price change. */ + svitch = svitch || ((nscan > ts) && (numnz < ts)); + /* Scanning will continue until either an overestimate of the + * residual capacity across the cut corresponding to the scanned + * set of nodes (called delx) exceeds the absolute value of the + * total deficit of the scanned nodes (called dm), or else an + * augmenting path is found. Arcs that are in the tree but are not + * balanced are removed as part of the scanning process. */ + i = label[nscan]; + scan[i] = true; + naugnod = 0; + if (posit) + { /* Scanning node i in case of positive deficit. */ + prvarc = 0; + arc = tfstou[i]; + while (arc > 0) + { /* arc is an outgoing arc from node. */ + if (rc[arc] == 0) + { if (x[arc] > 0) + { node2 = endn[arc]; + if (!mark[node2]) + { /* node2 is not labeled, so add node2 to the + labeled set. */ + prdcsr[node2] = arc; + if (dfct[node2] < 0) + { naugnod++; + save[naugnod] = node2; + } + nlabel++; + label[nlabel] = node2; + mark[node2] = true; + delx += x[arc]; + } + } + prvarc = arc; + arc = tnxtou[arc]; + } + else + { tmparc = arc; + arc = tnxtou[arc]; + tnxtou[tmparc] = -1; + if (prvarc == 0) + tfstou[i] = arc; + else + tnxtou[prvarc] = arc; + } + } + prvarc = 0; + arc = tfstin[i]; + while (arc > 0) + { /* arc is an incoming arc into node. */ + if (rc[arc] == 0) + { if (u[arc] > 0) + { node2 = startn[arc]; + if (!mark[node2]) + { /* node2 is not labeled, so add node2 to the + * labeled set. */ + prdcsr[node2] = -arc; + if (dfct[node2] < 0) + { naugnod++; + save[naugnod] = node2; + } + nlabel++; + label[nlabel] = node2; + mark[node2] = true; + delx += u[arc]; + } + } + prvarc = arc; + arc = tnxtin[arc]; + } + else + { tmparc = arc; + arc = tnxtin[arc]; + tnxtin[tmparc] = -1; + if (prvarc == 0) + tfstin[i] = arc; + else + tnxtin[prvarc] = arc; + } + } + /* Correct the residual capacity of the scanned node cut. */ + arc = prdcsr[i]; + if (arc > 0) + delx -= x[arc]; + else + delx -= u[-arc]; + /* End of scanning of node i for positive deficit case. */ + } + else + { /* Scanning node i for negative deficit case. */ + prvarc = 0; + arc = tfstin[i]; + while (arc > 0) + { if (rc[arc] == 0) + { if (x[arc] > 0) + { node2 = startn[arc]; + if (!mark[node2]) + { prdcsr[node2] = arc; + if (dfct[node2] > 0) + { naugnod++; + save[naugnod] = node2; + } + nlabel++; + label[nlabel] = node2; + mark[node2] = true; + delx += x[arc]; + } + } + prvarc = arc; + arc = tnxtin[arc]; + } + else + { tmparc = arc; + arc = tnxtin[arc]; + tnxtin[tmparc] = -1; + if (prvarc == 0) + tfstin[i] = arc; + else + tnxtin[prvarc] = arc; + } + } + prvarc = 0; + arc = tfstou[i]; + while (arc > 0) + { if (rc[arc] == 0) + { if (u[arc] > 0) + { node2 = endn[arc]; + if (!mark[node2]) + { prdcsr[node2] = -arc; + if (dfct[node2] > 0) + { naugnod++; + save[naugnod] = node2; + } + nlabel++; + label[nlabel] = node2; + mark[node2] = true; + delx += u[arc]; + } + } + prvarc = arc; + arc = tnxtou[arc]; + } + else + { tmparc = arc; + arc = tnxtou[arc]; + tnxtou[tmparc] = -1; + if (prvarc == 0) + tfstou[i] = arc; + else + tnxtou[prvarc] = arc; + } + } + arc = prdcsr[i]; + if (arc > 0) + delx -= x[arc]; + else + delx -= u[-arc]; + } + /* Add deficit of node scanned to dm. */ + dm += dfct[i]; + /* Check if the set of scanned nodes correspond to a dual ascent + * direction; if yes, perform a price adjustment step, otherwise + * continue labeling. */ + if (nscan < nlabel) + { if (svitch) + goto L4210; + if ((delx >= dm) && (delx >= -dm)) + goto L4210; + } + /* Try a price change. + * [Note that since delx - abs(dm) is an overestimate of ascent + * slope, we may occasionally try a direction that is not an + * ascent direction. In this case the ascnt routines return with + * quit = false, so we continue labeling nodes.] */ + if (posit) + { ascnt1(csa, dm, &delx, &nlabel, &feasbl, &svitch, nscan, node, + &prevnode); + num_ascnt++; + } + else + { ascnt2(csa, dm, &delx, &nlabel, &feasbl, &svitch, nscan, node, + &prevnode); + num_ascnt++; + } + if (!feasbl) + return 8; + if (!svitch) + goto L100; + /* Store those newly labeled nodes to which flow augmentation is + * possible. */ + naugnod = 0; + for (j = nscan + 1; j <= nlabel; j++) + { node2 = label[j]; + if (posit && (dfct[node2] < 0)) + { naugnod++; + save[naugnod] = node2; + } + else if ((!posit) && (dfct[node2] > 0)) + { naugnod++; + save[naugnod] = node2; + } + } +L4210:/* Check if flow augmentation is possible. If not, return to scan + * another node. */ + if (naugnod == 0) + goto L4120; + for (j = 1; j <= naugnod; j++) + { num_augm++; + augnod = save[j]; + if (posit) + { /* Do the augmentation from node with positive deficit. */ + dx = -dfct[augnod]; + ib = augnod; + while (ib != node) + { arc = prdcsr[ib]; + if (arc > 0) + { if (dx > x[arc]) dx = x[arc]; + ib = startn[arc]; + } + else + { if (dx > u[-arc]) dx = u[-arc]; + ib = endn[-arc]; + } + } + if (dx > dfct[node]) dx = dfct[node]; + if (dx > 0) + { /* Increase (decrease) the flow of all forward (backward) + * arcs in the flow augmenting path. Adjust node deficit + * accordingly. */ + if (nxtqueue[augnod] == 0) + { nxtqueue[prevnode] = augnod; + nxtqueue[augnod] = node; + prevnode = augnod; + } + dfct[augnod] += dx; + dfct[node] -= dx; + ib = augnod; + while (ib != node) + { arc = prdcsr[ib]; + if (arc > 0) + { x[arc] -= dx; + u[arc] += dx; + ib = startn[arc]; + } + else + { narc = -arc; + x[narc] += dx; + u[narc] -= dx; + ib = endn[narc]; + } + } + } + } + else + { /* Do the augmentation from node with negative deficit. */ + dx = dfct[augnod]; + ib = augnod; + while (ib != node) + { arc = prdcsr[ib]; + if (arc > 0) + { if (dx > x[arc]) dx = x[arc]; + ib = endn[arc]; + } + else + { if (dx > u[-arc]) dx = u[-arc]; + ib = startn[-arc]; + } + } + if (dx > -dfct[node]) dx = -dfct[node]; + if (dx > 0) + { /* Update the flow and deficits. */ + if (nxtqueue[augnod] == 0) + { nxtqueue[prevnode] = augnod; + nxtqueue[augnod] = node; + prevnode = augnod; + } + dfct[augnod] -= dx; + dfct[node] += dx; + ib = augnod; + while (ib != node) + { arc = prdcsr[ib]; + if (arc > 0) + { x[arc] -= dx; + u[arc] += dx; + ib = endn[arc]; + } + else + { narc = -arc; + x[narc] += dx; + u[narc] -= dx; + ib = startn[narc]; + } + } + } + } + if (dfct[node] == 0) + goto L100; + if (dfct[augnod] != 0) + svitch = false; + } + /* If node still has nonzero deficit and all newly labeled nodes + * have same sign for their deficit as node, we can continue + * labeling. In this case, continue labeling only when flow + * augmentation is done relatively infrequently. */ + if (svitch && (iter > 8 * num_augm)) + goto L4120; + /* Return to do another relaxation iteration. */ + goto L100; +# undef nmultinode +# undef iter +# undef num_augm +# undef num_ascnt +# undef nsp +} + +/*********************************************************************** +* NAME +* +* relax4_inidat - construct linked lists for network topology +* +* PURPOSE +* +* This routine constructs two linked lists for the network topology: +* one list (given by fou, nxtou) for the outgoing arcs of nodes and +* one list (given by fin, nxtin) for the incoming arcs of nodes. These +* two lists are required by RELAX4. +* +* INPUT PARAMETERS +* +* n = number of nodes +* na = number of arcs +* startn[j] = starting node for arc j, j = 1,...,na +* endn[j] = ending node for arc j, j = 1,...,na +* +* OUTPUT PARAMETERS +* +* fou[i] = first arc out of node i, i = 1,...,n +* nxtou[j] = next arc out of the starting node of arc j, j = 1,...,na +* fin[i] = first arc into node i, i = 1,...,n +* nxtin[j] = next arc into the ending node of arc j, j = 1,...,na +* +* WORKING PARAMETERS +* +* tempin[1+n], tempou[1+n] */ + +void relax4_inidat(struct relax4_csa *csa) +{ /* input parameters */ + int n = csa->n; + int na = csa->na; + int *startn = csa->startn; + int *endn = csa->endn; + /* output parameters */ + int *fou = csa->fou; + int *nxtou = csa->nxtou; + int *fin = csa->fin; + int *nxtin = csa->nxtin; + /* working parameters */ + int *tempin = csa->label; + int *tempou = csa->prdcsr; + /* local variables */ + int i, i1, i2; + for (i = 1; i <= n; i++) + { fin[i] = fou[i] = 0; + tempin[i] = tempou[i] = 0; + } + for (i = 1; i <= na; i++) + { nxtin[i] = nxtou[i] = 0; + i1 = startn[i]; + i2 = endn[i]; + if (fou[i1] != 0) + nxtou[tempou[i1]] = i; + else + fou[i1] = i; + tempou[i1] = i; + if (fin[i2] != 0) + nxtin[tempin[i2]] = i; + else + fin[i2] = i; + tempin[i2] = i; + } + return; +} + +/*********************************************************************** +* NAME +* +* ascnt1 - multi-node price adjustment for positive deficit case +* +* PURPOSE +* +* This subroutine performs the multi-node price adjustment step for +* the case where the scanned nodes have positive deficit. It first +* checks if decreasing the price of the scanned nodes increases the +* dual cost. If yes, then it decreases the price of all scanned nodes. +* There are two possibilities for price decrease: if switch = true, +* then the set of scanned nodes corresponds to an elementary direction +* of maximal rate of ascent, in which case the price of all scanned +* nodes are decreased until the next breakpoint in the dual cost is +* encountered. At this point, some arc becomes balanced and more +* node(s) are added to the labeled set and the subroutine is exited. +* If switch = false, then the price of all scanned nodes are decreased +* until the rate of ascent becomes negative (this corresponds to the +* price adjustment step in which both the line search and the +* degenerate ascent iteration are implemented). +* +* INPUT PARAMETERS +* +* dm = total deficit of scanned nodes +* switch = true if labeling is to continue after price change +* nscan = number of scanned nodes +* curnode = most recently scanned node +* n = number of nodes +* na = number of arcs +* large = a very large integer to represent infinity (see note 3) +* startn[i] = starting node for the i-th arc, i = 1,...,na +* endn[i] = ending node for the i-th arc, i = 1,...,na +* fou[i] = first arc leaving i-th node, i = 1,...,n +* nxtou[i] = next arc leaving the starting node of j-th arc, +* i = 1,...,na +* fin[i] = first arc entering i-th node, i = 1,...,n +* nxtin[i] = next arc entering the ending node of j-th arc, +* i = 1,...,na +* +* UPDATED PARAMETERS +* +* delx = a lower estimate of the total flow on balanced arcs in +* the scanned-nodes cut +* nlabel = number of labeled nodes +* feasbl = false if problem is found to be infeasible +* prevnode = the node before curnode in queue +* rc[j] = reduced cost of arc j, j = 1,...,na +* u[j] = residual capacity of arc j, j = 1,...,na +* x[j] = flow on arc j, j = 1,...,na +* dfct[i] = deficit at node i, i = 1,...,n +* label[k] = k-th node labeled, k = 1,...,nlabel +* prdcsr[i] = predecessor of node i in tree of labeled nodes (0 if i +* is unlabeled), i = 1,...,n +* tfstou[i] = first balanced arc out of node i, i = 1,...,n +* tnxtou[j] = next balanced arc out of the starting node of arc j, +* j = 1,...,na +* tfstin[i] = first balanced arc into node i, i = 1,...,n +* tnxtin[j] = next balanced arc into the ending node of arc j, +* j = 1,...,na +* nxtqueue[i] = node following node i in the fifo queue (0 if node is +* not in the queue), i = 1,...,n +* scan[i] = true if node i is scanned, i = 1,...,n +* mark[i] = true if node i is labeled, i = 1,...,n +* +* WORKING PARAMETERS +* +* save[1+na] */ + +static void ascnt1(struct relax4_csa *csa, int dm, int *delx, + int *nlabel, int *feasbl, int *svitch, int nscan, int curnode, + int *prevnode) +{ /* input parameters */ + int n = csa->n; + /* int na = csa->na; */ + int large = csa->large; + int *startn = csa->startn; + int *endn = csa->endn; + int *fou = csa->fou; + int *nxtou = csa->nxtou; + int *fin = csa->fin; + int *nxtin = csa->nxtin; + /* updated parameters */ +# define delx (*delx) +# define nlabel (*nlabel) +# define feasbl (*feasbl) +# define svitch (*svitch) +# define prevnode (*prevnode) + int *rc = csa->rc; + int *u = csa->u; + int *x = csa->x; + int *dfct = csa->dfct; + int *label = csa->label; + int *prdcsr = csa->prdcsr; + int *tfstou = csa->tfstou; + int *tnxtou = csa->tnxtou; + int *tfstin = csa->tfstin; + int *tnxtin = csa->tnxtin; + int *nxtqueue = csa->nxtqueue; + char *scan = csa->scan; + char *mark = csa->mark; + int *save = csa->save; + /* local variables */ + int arc, delprc, dlx, i, j, nb, node, node2, nsave, rdcost, t1, + t2, t3; + /* Store the arcs between the set of scanned nodes and its + * complement in save and compute delprc, the stepsize to the next + * breakpoint in the dual cost in the direction of decreasing + * prices of the scanned nodes. + * [The arcs are stored into save by looking at the arcs incident + * to either the set of scanned nodes or its complement, depending + * on whether nscan > n/2 or not. This improves the efficiency of + * storing.] */ + delprc = large; + dlx = 0; + nsave = 0; + if (nscan <= n / 2) + { for (i = 1; i <= nscan; i++) + { node = label[i]; + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { /* arc points from scanned node to an unscanned node. */ + node2 = endn[arc]; + if (!scan[node2]) + { nsave++; + save[nsave] = arc; + rdcost = rc[arc]; + if ((rdcost == 0) && (prdcsr[node2] != arc)) + dlx += x[arc]; + if ((rdcost < 0) && (rdcost > -delprc)) + delprc = -rdcost; + } + } + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { /* arc points from unscanned node to scanned node. */ + node2 = startn[arc]; + if (!scan[node2]) + { nsave++; + save[nsave] = -arc; + rdcost = rc[arc]; + if ((rdcost == 0) && (prdcsr[node2] != -arc)) + dlx += u[arc]; + if ((rdcost > 0) && (rdcost < delprc)) + delprc = rdcost; + } + } + } + } + else + { for (node = 1; node <= n; node++) + { if (scan[node]) + continue; + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { node2 = startn[arc]; + if (scan[node2]) + { nsave++; + save[nsave] = arc; + rdcost = rc[arc]; + if ((rdcost == 0) && (prdcsr[node] != arc)) + dlx += x[arc]; + if ((rdcost < 0) && (rdcost > -delprc)) + delprc = -rdcost; + } + } + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { node2 = endn[arc]; + if (scan[node2]) + { nsave++; + save[nsave] = -arc; + rdcost = rc[arc]; + if ((rdcost == 0) && (prdcsr[node] != -arc)) + dlx += u[arc]; + if ((rdcost > 0) && (rdcost < delprc)) + delprc = rdcost; + } + } + } + } + /* Check if the set of scanned nodes truly corresponds to a dual + * ascent direction. [Here delx + dlx is the exact sum of the flow + * on arcs from the scanned set to the unscanned set plus the + * (capacity - flow) on arcs from the unscanned set to the scanned + * set.] If this were not the case, set switch to true and exit + * subroutine. */ + if ((!svitch) && (delx + dlx >= dm)) + { svitch = true; + return; + } + delx += dlx; +L4: /* Check that the problem is feasible. */ + if (delprc == large) + { /* We can increase the dual cost without bound, so the primal + * problem is infeasible. */ + feasbl = false; + return; + } + /* Decrease the prices of the scanned nodes, add more nodes to + * the labeled set and check if a newly labeled node has negative + * deficit. */ + if (svitch) + { for (i = 1; i <= nsave; i++) + { arc = save[i]; + if (arc > 0) + { rc[arc] += delprc; + if (rc[arc] == 0) + { node2 = endn[arc]; + if (tnxtou[arc] < 0) + { tnxtou[arc] = tfstou[startn[arc]]; + tfstou[startn[arc]] = arc; + } + if (tnxtin[arc] < 0) + { tnxtin[arc] = tfstin[node2]; + tfstin[node2] = arc; + } + if (!mark[node2]) + { prdcsr[node2] = arc; + nlabel++; + label[nlabel] = node2; + mark[node2] = true; + } + } + } + else + { arc = -arc; + rc[arc] -= delprc; + if (rc[arc] == 0) + { node2 = startn[arc]; + if (tnxtou[arc] < 0) + { tnxtou[arc] = tfstou[node2]; + tfstou[node2] = arc; + } + if (tnxtin[arc] < 0) + { tnxtin[arc] = tfstin[endn[arc]]; + tfstin[endn[arc]] = arc; + } + if (!mark[node2]) + { prdcsr[node2] = -arc; + nlabel++; + label[nlabel] = node2; + mark[node2] = true; + } + } + } + } + return; + } + else + { /* Decrease the prices of the scanned nodes by delprc. Adjust + * flow to maintain complementary slackness with the prices. */ + nb = 0; + for (i = 1; i <= nsave; i++) + { arc = save[i]; + if (arc > 0) + { t1 = rc[arc]; + if (t1 == 0) + { t2 = x[arc]; + t3 = startn[arc]; + dfct[t3] -= t2; + if (nxtqueue[t3] == 0) + { nxtqueue[prevnode] = t3; + nxtqueue[t3] = curnode; + prevnode = t3; + } + t3 = endn[arc]; + dfct[t3] += t2; + if (nxtqueue[t3] == 0) + { nxtqueue[prevnode] = t3; + nxtqueue[t3] = curnode; + prevnode = t3; + } + u[arc] += t2; + x[arc] = 0; + } + rc[arc] = t1 + delprc; +#if 0 /* by mao; 26/IV-2013 */ + if (rc[arc] == 0) +#else + if (rc[arc] == 0 && nb < n) +#endif + { delx += x[arc]; + nb++; + prdcsr[nb] = arc; + } + } + else + { arc = -arc; + t1 = rc[arc]; + if (t1 == 0) + { t2 = u[arc]; + t3 = startn[arc]; + dfct[t3] += t2; + if (nxtqueue[t3] == 0) + { nxtqueue[prevnode] = t3; + nxtqueue[t3] = curnode; + prevnode = t3; + } + t3 = endn[arc]; + dfct[t3] -= t2; + if (nxtqueue[t3] == 0) + { nxtqueue[prevnode] = t3; + nxtqueue[t3] = curnode; + prevnode = t3; + } + x[arc] += t2; + u[arc] = 0; + } + rc[arc] = t1 - delprc; +#if 0 /* by mao; 26/IV-2013 */ + if (rc[arc] == 0) +#else + if (rc[arc] == 0 && nb < n) +#endif + { delx += u[arc]; + nb++; + prdcsr[nb] = arc; + } + } + } + } + if (delx <= dm) + { /* The set of scanned nodes still corresponds to a dual + * (possibly degenerate) ascent direction. Compute the stepsize + * delprc to the next breakpoint in the dual cost. */ + delprc = large; + for (i = 1; i <= nsave; i++) + { arc = save[i]; + if (arc > 0) + { rdcost = rc[arc]; + if ((rdcost < 0) && (rdcost > -delprc)) + delprc = -rdcost; + } + else + { arc = -arc; + rdcost = rc[arc]; + if ((rdcost > 0) && (rdcost < delprc)) + delprc = rdcost; + } + } + if ((delprc != large) || (delx < dm)) + goto L4; + } + /* Add new balanced arcs to the superset of balanced arcs. */ + for (i = 1; i <= nb; i++) + { arc = prdcsr[i]; + if (tnxtin[arc] == -1) + { j = endn[arc]; + tnxtin[arc] = tfstin[j]; + tfstin[j] = arc; + } + if (tnxtou[arc] == -1) + { j = startn[arc]; + tnxtou[arc] = tfstou[j]; + tfstou[j] = arc; + } + } + return; +# undef delx +# undef nlabel +# undef feasbl +# undef svitch +# undef prevnode +} + +/*********************************************************************** +* NAME +* +* ascnt2 - multi-node price adjustment for negative deficit case +* +* PURPOSE +* +* This routine is analogous to ascnt1 but for the case where the +* scanned nodes have negative deficit. */ + +static void ascnt2(struct relax4_csa *csa, int dm, int *delx, + int *nlabel, int *feasbl, int *svitch, int nscan, int curnode, + int *prevnode) +{ /* input parameters */ + int n = csa->n; + /* int na = csa->na; */ + int large = csa->large; + int *startn = csa->startn; + int *endn = csa->endn; + int *fou = csa->fou; + int *nxtou = csa->nxtou; + int *fin = csa->fin; + int *nxtin = csa->nxtin; + /* updated parameters */ +# define delx (*delx) +# define nlabel (*nlabel) +# define feasbl (*feasbl) +# define svitch (*svitch) +# define prevnode (*prevnode) + int *rc = csa->rc; + int *u = csa->u; + int *x = csa->x; + int *dfct = csa->dfct; + int *label = csa->label; + int *prdcsr = csa->prdcsr; + int *tfstou = csa->tfstou; + int *tnxtou = csa->tnxtou; + int *tfstin = csa->tfstin; + int *tnxtin = csa->tnxtin; + int *nxtqueue = csa->nxtqueue; + char *scan = csa->scan; + char *mark = csa->mark; + int *save = csa->save; + /* local variables */ + int arc, delprc, dlx, i, j, nb, node, node2, nsave, rdcost, t1, + t2, t3; + /* Store the arcs between the set of scanned nodes and its + * complement in save and compute delprc, the stepsize to the next + * breakpoint in the dual cost in the direction of increasing + * prices of the scanned nodes. */ + delprc = large; + dlx = 0; + nsave = 0; + if (nscan <= n / 2) + { for (i = 1; i <= nscan; i++) + { node = label[i]; + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { node2 = startn[arc]; + if (!scan[node2]) + { nsave++; + save[nsave] = arc; + rdcost = rc[arc]; + if ((rdcost == 0) && (prdcsr[node2] != arc)) + dlx += x[arc]; + if ((rdcost < 0) && (rdcost > -delprc)) + delprc = -rdcost; + } + } + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { node2 = endn[arc]; + if (!scan[node2]) + { nsave++; + save[nsave] = -arc; + rdcost = rc[arc]; + if ((rdcost == 0) && (prdcsr[node2] != -arc)) + dlx += u[arc]; + if ((rdcost > 0) && (rdcost < delprc)) + delprc = rdcost; + } + } + } + } + else + { for (node = 1; node <= n; node++) + { if (scan[node]) + continue; + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { node2 = endn[arc]; + if (scan[node2]) + { nsave++; + save[nsave] = arc; + rdcost = rc[arc]; + if ((rdcost == 0) && (prdcsr[node] != arc)) + dlx += x[arc]; + if ((rdcost < 0) && (rdcost > -delprc)) + delprc = -rdcost; + } + } + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { node2 = startn[arc]; + if (scan[node2]) + { nsave++; + save[nsave] = -arc; + rdcost = rc[arc]; + if ((rdcost == 0) && (prdcsr[node] != -arc)) + dlx += u[arc]; + if ((rdcost > 0) && (rdcost < delprc)) + delprc = rdcost; + } + } + } + } + if ((!svitch) && (delx + dlx >= -dm)) + { svitch = true; + return; + } + delx += dlx; + /* Check that the problem is feasible. */ +L4: if (delprc == large) + { feasbl = false; + return; + } + /* Increase the prices of the scanned nodes, add more nodes to + * the labeled set and check if a newly labeled node has positive + * deficit. */ + if (svitch) + { for (i = 1; i <= nsave; i++) + { arc = save[i]; + if (arc > 0) + { rc[arc] += delprc; + if (rc[arc] == 0) + { node2 = startn[arc]; + if (tnxtou[arc] < 0) + { tnxtou[arc] = tfstou[node2]; + tfstou[node2] = arc; + } + if (tnxtin[arc] < 0) + { tnxtin[arc] = tfstin[endn[arc]]; + tfstin[endn[arc]] = arc; + } + if (!mark[node2]) + { prdcsr[node2] = arc; + nlabel++; + label[nlabel] = node2; + mark[node2] = true; + } + } + } + else + { arc = -arc; + rc[arc] -= delprc; + if (rc[arc] == 0) + { node2 = endn[arc]; + if (tnxtou[arc] < 0) + { tnxtou[arc] = tfstou[startn[arc]]; + tfstou[startn[arc]] = arc; + } + if (tnxtin[arc] < 0) + { tnxtin[arc] = tfstin[node2]; + tfstin[node2] = arc; + } + if (!mark[node2]) + { prdcsr[node2] = -arc; + nlabel++; + label[nlabel] = node2; + mark[node2] = true; + } + } + } + } + return; + } + else + { nb = 0; + for (i = 1; i <= nsave; i++) + { arc = save[i]; + if (arc > 0) + { t1 = rc[arc]; + if (t1 == 0) + { t2 = x[arc]; + t3 = startn[arc]; + dfct[t3] -= t2; + if (nxtqueue[t3] == 0) + { nxtqueue[prevnode] = t3; + nxtqueue[t3] = curnode; + prevnode = t3; + } + t3 = endn[arc]; + dfct[t3] += t2; + if (nxtqueue[t3] == 0) + { nxtqueue[prevnode] = t3; + nxtqueue[t3] = curnode; + prevnode = t3; + } + u[arc] += t2; + x[arc] = 0; + } + rc[arc] = t1 + delprc; +#if 0 /* by mao; 26/IV-2013 */ + if (rc[arc] == 0) +#else + if (rc[arc] == 0 && nb < n) +#endif + { delx += x[arc]; + nb++; + prdcsr[nb] = arc; + } + } + else + { arc = -arc; + t1 = rc[arc]; + if (t1 == 0) + { t2 = u[arc]; + t3 = startn[arc]; + dfct[t3] += t2; + if (nxtqueue[t3] == 0) + { nxtqueue[prevnode] = t3; + nxtqueue[t3] = curnode; + prevnode = t3; + } + t3 = endn[arc]; + dfct[t3] -= t2; + if (nxtqueue[t3] == 0) + { nxtqueue[prevnode] = t3; + nxtqueue[t3] = curnode; + prevnode = t3; + } + x[arc] += t2; + u[arc] = 0; + } + rc[arc] = t1 - delprc; +#if 0 /* by mao; 26/IV-2013 */ + if (rc[arc] == 0) +#else + if (rc[arc] == 0 && nb < n) +#endif + { delx += u[arc]; + nb++; + prdcsr[nb] = arc; + } + } + } + } + if (delx <= -dm) + { delprc = large; + for (i = 1; i <= nsave; i++) + { arc = save[i]; + if (arc > 0) + { rdcost = rc[arc]; + if ((rdcost < 0) && (rdcost > -delprc)) + delprc = -rdcost; + } + else + { arc = -arc; + rdcost = rc[arc]; + if ((rdcost > 0) && (rdcost < delprc)) + delprc = rdcost; + } + } + if ((delprc != large) || (delx < -dm)) + goto L4; + } + /* Add new balanced arcs to the superset of balanced arcs. */ + for (i = 1; i <= nb; i++) + { arc = prdcsr[i]; + if (tnxtin[arc] == -1) + { j = endn[arc]; + tnxtin[arc] = tfstin[j]; + tfstin[j] = arc; + } + if (tnxtou[arc] == -1) + { j = startn[arc]; + tnxtou[arc] = tfstou[j]; + tfstou[j] = arc; + } + } + return; +# undef delx +# undef nlabel +# undef feasbl +# undef svitch +# undef prevnode +} + +/*********************************************************************** +* NAME +* +* auction - compute good initial flow and prices +* +* PURPOSE +* +* This subroutine uses a version of the auction algorithm for min +* cost network flow to compute a good initial flow and prices for the +* problem. +* +* INPUT PARAMETERS +* +* n = number of nodes +* na = number of arcs +* large = a very large integer to represent infinity (see note 3) +* startn[i] = starting node for the i-th arc, i = 1,...,na +* endn[i] = ending node for the i-th arc, i = 1,...,na +* fou[i] = first arc leaving i-th node, i = 1,...,n +* nxtou[i] = next arc leaving the starting node of j-th arc, +* i = 1,...,na +* fin[i] = first arc entering i-th node, i = 1,...,n +* nxtin[i] = next arc entering the ending node of j-th arc, +* i = 1,...,na +* +* UPDATED PARAMETERS +* +* rc[j] = reduced cost of arc j, j = 1,...,na +* u[j] = residual capacity of arc j, j = 1,...,na +* x[j] = flow on arc j, j = 1,...,na +* dfct[i] = deficit at node i, i = 1,...,n +* +* OUTPUT PARAMETERS +* +* nsp = number of auction/shortest path iterations +* +* WORKING PARAMETERS +* +* p[1+n], prdcsr[1+n], save[1+na], fpushf[1+n], nxtpushf[1+na], +* fpushb[1+n], nxtpushb[1+na], nxtqueue[1+n], extend_arc[1+n], +* sb_level[1+n], sb_arc[1+n], path_id[1+n] +* +* RETURNS +* +* 0 = normal return +* 1 = problem is found to be infeasible */ + +static int auction(struct relax4_csa *csa) +{ /* input parameters */ + int n = csa->n; + int na = csa->na; + int large = csa->large; + int *startn = csa->startn; + int *endn = csa->endn; + int *fou = csa->fou; + int *nxtou = csa->nxtou; + int *fin = csa->fin; + int *nxtin = csa->nxtin; + /* updated parameters */ +# define crash (csa->crash) + int *rc = csa->rc; + int *u = csa->u; + int *x = csa->x; + int *dfct = csa->dfct; + /* output parameters */ +# define nsp (csa->nsp) + /* working parameters */ + int *p = csa->label; + int *prdcsr = csa->prdcsr; + int *save = csa->save; + int *fpushf = csa->tfstou; + int *nxtpushf = csa->tnxtou; + int *fpushb = csa->tfstin; + int *nxtpushb = csa->tnxtin; + int *nxtqueue = csa->nxtqueue; + int *extend_arc = csa->extend_arc; + int *sb_level = csa->sb_level; + int *sb_arc = csa->sb_arc; + char *path_id = csa->mark; + /* local variables */ + int arc, bstlevel, end, eps, extarc, factor, flow, i, incr, + last, lastqueue, maxcost, mincost, nas, naug, new_level, node, + nolist, num_passes, nxtnode, pass, pend, pr_term, prd, + prevarc, prevlevel, prevnode, pstart, pterm, rdcost, red_cost, + resid, root, secarc, seclevel, start, term, thresh_dfct; + /* start initialization using auction */ + naug = 0; + pass = 0; + thresh_dfct = 0; + /* factor determines by how much epsilon is reduced at each + * minimization */ + factor = 3; + /* num_passes determines how many auction scaling phases are + * performed */ + num_passes = 1; + /* set arc flows to satisfy cs and calculate maxcost and + * mincost */ + maxcost = -large; + mincost = large; + for (arc = 1; arc <= na; arc++) + { start = startn[arc]; + end = endn[arc]; + rdcost = rc[arc]; + if (maxcost < rdcost) + maxcost = rdcost; + if (mincost > rdcost) + mincost = rdcost; + if (rdcost < 0) + { dfct[start] += u[arc]; + dfct[end] -= u[arc]; + x[arc] = u[arc]; + u[arc] = 0; + } + else + x[arc] = 0; + } + /* set initial epsilon */ + if ((maxcost - mincost) >= 8) + eps = (maxcost - mincost) / 8; + else + eps = 1; + /* set initial prices to zero */ + for (node = 1; node <= n; node++) + p[node] = 0; + /* Initialization using auction/shortest paths. */ +L100: /* Start of the first scaling phase. */ + pass++; + if ((pass == num_passes) || (eps == 1)) + crash = 0; + nolist = 0; + /* construct list of positive surplus nodes and queue of negative + * surplus nodes */ + for (node = 1; node <= n; node++) + { prdcsr[node] = 0; + path_id[node] = false; + extend_arc[node] = 0; + sb_level[node] = -large; + nxtqueue[node] = node + 1; + if (dfct[node] > 0) + { nolist++; + save[nolist] = node; + } + } + nxtqueue[n] = 1; + root = 1; + prevnode = lastqueue = n; + /* initialization with down iterations for negative surplus + * nodes */ + for (i = 1; i <= nolist; i++) + { node = save[i]; + nsp++; + /* build the list of arcs w/ room for pushing flow and find + * proper price for down iteration */ + bstlevel = -large; + fpushf[node] = 0; + for (arc = fou[node]; arc > 0; arc = nxtou[arc]) + { if (u[arc] > 0) + { if (fpushf[node] == 0) + { fpushf[node] = arc; + nxtpushf[arc] = 0; + last = arc; + } + else + { nxtpushf[last] = arc; + nxtpushf[arc] = 0; + last = arc; + } + } + if (x[arc] > 0) + { new_level = p[endn[arc]] + rc[arc]; + if (new_level > bstlevel) + { bstlevel = new_level; + extarc = arc; + } + } + } + fpushb[node] = 0; + for (arc = fin[node]; arc > 0; arc = nxtin[arc]) + { if (x[arc] > 0) + { if (fpushb[node] == 0) + { fpushb[node] = arc; + nxtpushb[arc] = 0; + last = arc; + } + else + { nxtpushb[last] = arc; + nxtpushb[arc] = 0; + last = arc; + } + } + if (u[arc] > 0) + { new_level = p[startn[arc]] - rc[arc]; + if (new_level > bstlevel) + { bstlevel = new_level; + extarc = -arc; + } + } + } + extend_arc[node] = extarc; + p[node] = bstlevel - eps; + } +L200: /* Start the augmentation cycles of the new scaling phase. */ + if (dfct[root] >= thresh_dfct) + goto L3000; + term = root; + path_id[root] = true; +L500: /* Main forward algorithm with root as origin. */ + /* start of a new forward iteration */ + pterm = p[term]; + extarc = extend_arc[term]; + if (extarc == 0) + { /* build the list of arcs w/ room for pushing flow */ + fpushf[term] = 0; + for (arc = fou[term]; arc > 0; arc = nxtou[arc]) + { if (u[arc] > 0) + { if (fpushf[term] == 0) + { fpushf[term] = arc; + nxtpushf[arc] = 0; + last = arc; + } + else + { nxtpushf[last] = arc; + nxtpushf[arc] = 0; + last = arc; + } + } + } + fpushb[term] = 0; + for (arc = fin[term]; arc > 0; arc = nxtin[arc]) + { if (x[arc] > 0) + { if (fpushb[term] == 0) + { fpushb[term] = arc; + nxtpushb[arc] = 0; + last = arc; + } + else + { nxtpushb[last] = arc; + nxtpushb[arc] = 0; + last = arc; + } + } + } + goto L600; + } + /* speculative path extension attempt */ + /* note: arc > 0 means that arc is oriented from the root to the + * destinations + * arc < 0 means that arc is oriented from the destinations to the + * root + * extarc = 0 or prdarc = 0, means the extension arc or the + * predecessor arc, respectively, has not been established */ + if (extarc > 0) + { if (u[extarc] == 0) + { seclevel = sb_level[term]; + goto L580; + } + end = endn[extarc]; + bstlevel = p[end] + rc[extarc]; + if (pterm >= bstlevel) + { if (path_id[end]) + goto L1200; + term = end; + prdcsr[term] = extarc; + path_id[term] = true; + /* if negative surplus node is found, do an augmentation */ + if (dfct[term] > 0) + goto L2000; + /* return for another iteration */ + goto L500; + } + } + else + { extarc = -extarc; + if (x[extarc] == 0) + { seclevel = sb_level[term]; + goto L580; + } + start = startn[extarc]; + bstlevel = p[start] - rc[extarc]; + if (pterm >= bstlevel) + { if (path_id[start]) + goto L1200; + term = start; + prdcsr[term] = -extarc; + path_id[term] = true; + /* if negative surplus node is found, do an augmentation */ + if (dfct[term] > 0) + goto L2000; + /* return for another iteration */ + goto L500; + } + } +L550: /* second best logic test applied to save a full node scan + * if old best level continues to be best go for another + * contraction */ + seclevel = sb_level[term]; + if (bstlevel <= seclevel) + goto L800; +L580: /* if second best can be used do either a contraction or start + * over with a speculative extension */ + if (seclevel > -large) + { extarc = sb_arc[term]; + if (extarc > 0) + { if (u[extarc] == 0) + goto L600; + bstlevel = p[endn[extarc]] + rc[extarc]; + } + else + { if (x[-extarc] == 0) + goto L600; + bstlevel = p[startn[-extarc]] - rc[-extarc]; + } + if (bstlevel == seclevel) + { sb_level[term] = -large; + extend_arc[term] = extarc; + goto L800; + } + } +L600: /* extension/contraction attempt was unsuccessful, so scan + * terminal node */ + nsp++; + bstlevel = seclevel = large; + for (arc = fpushf[term]; arc > 0; arc = nxtpushf[arc]) + { new_level = p[endn[arc]] + rc[arc]; + if (new_level < seclevel) + { if (new_level < bstlevel) + { seclevel = bstlevel; + bstlevel = new_level; + secarc = extarc; + extarc = arc; + } + else + { seclevel = new_level; + secarc = arc; + } + } + } + for (arc = fpushb[term]; arc > 0; arc = nxtpushb[arc]) + { new_level = p[startn[arc]] - rc[arc]; + if (new_level < seclevel) + { if (new_level < bstlevel) + { seclevel = bstlevel; + bstlevel = new_level; + secarc = extarc; + extarc = -arc; + } + else + { seclevel = new_level; + secarc = -arc; + } + } + } + sb_level[term] = seclevel; + sb_arc[term] = secarc; + extend_arc[term] = extarc; +L800: /* End of node scan. */ + /* if the terminal node is the root, adjust its price and change + * root */ + if (term == root) + { p[term] = bstlevel + eps; + if (p[term] >= large) + { /* no path to the destination */ + /* problem is found to be infeasible */ + return 1; + } + path_id[root] = false; + prevnode = root; + root = nxtqueue[root]; + goto L200; + } + /* check whether extension or contraction */ + prd = prdcsr[term]; + if (prd > 0) + { pr_term = startn[prd]; + prevlevel = p[pr_term] - rc[prd]; + } + else + { pr_term = endn[-prd]; + prevlevel = p[pr_term] + rc[-prd]; + } + if (prevlevel > bstlevel) + { /* path extension */ + if (prevlevel >= bstlevel + eps) + p[term] = bstlevel + eps; + else + p[term] = prevlevel; + if (extarc > 0) + { end = endn[extarc]; + if (path_id[end]) + goto L1200; + term = end; + } + else + { start = startn[-extarc]; + if (path_id[start]) + goto L1200; + term = start; + } + prdcsr[term] = extarc; + path_id[term] = true; + /* if negative surplus node is found, do an augmentation */ + if (dfct[term] > 0) + goto L2000; + /* return for another iteration */ + goto L500; + } + else + { /* path contraction */ + p[term] = bstlevel + eps; + path_id[term] = false; + term = pr_term; + if (pr_term != root) + { if (bstlevel <= pterm + eps) + goto L2000; + } + pterm = p[term]; + extarc = prd; + if (prd > 0) + bstlevel += eps + rc[prd]; + else + bstlevel += eps - rc[-prd]; + /* do a second best test and if that fails, do a full node + * scan */ + goto L550; + } +L1200:/* A cycle is about to form; do a retreat sequence. */ + node = term; +L1600:if (node != root) + { path_id[node] = false; + prd = prdcsr[node]; + if (prd > 0) + { pr_term = startn[prd]; + if (p[pr_term] == p[node] + rc[prd] + eps) + { node = pr_term; + goto L1600; + } + } + else + { pr_term = endn[-prd]; + if (p[pr_term] == p[node] - rc[-prd] + eps) + { node = pr_term; + goto L1600; + } + } + /* do a full scan and price rise at pr_term */ + nsp++; + bstlevel = seclevel = large; + for (arc = fpushf[pr_term]; arc > 0; arc = nxtpushf[arc]) + { new_level = p[endn[arc]] + rc[arc]; + if (new_level < seclevel) + { if (new_level < bstlevel) + { seclevel = bstlevel; + bstlevel = new_level; + secarc = extarc; + extarc = arc; + } + else + { seclevel = new_level; + secarc = arc; + } + } + } + for (arc = fpushb[pr_term]; arc > 0; arc = nxtpushb[arc]) + { new_level = p[startn[arc]] - rc[arc]; + if (new_level < seclevel) + { if (new_level < bstlevel) + { seclevel = bstlevel; + bstlevel = new_level; + secarc = extarc; + extarc = -arc; + } + else + { seclevel = new_level; + secarc = -arc; + } + } + } + sb_level[pr_term] = seclevel; + sb_arc[pr_term] = secarc; + extend_arc[pr_term] = extarc; + p[pr_term] = bstlevel + eps; + if (pr_term == root) + { prevnode = root; + path_id[root] = false; + root = nxtqueue[root]; + goto L200; + } + path_id[pr_term] = false; + prd = prdcsr[pr_term]; + if (prd > 0) + term = startn[prd]; + else + term = endn[-prd]; + if (term == root) + { prevnode = root; + path_id[root] = false; + root = nxtqueue[root]; + goto L200; + } + else + goto L2000; + } +L2000:/* End of auction/shortest path routine. */ + /* do augmentation from root and correct the push lists */ + incr = -dfct[root]; + for (node = root;;) + { extarc = extend_arc[node]; + path_id[node] = false; + if (extarc > 0) + { node = endn[extarc]; + if (incr > u[extarc]) + incr = u[extarc]; + } + else + { node = startn[-extarc]; + if (incr > x[-extarc]) + incr = x[-extarc]; + } + if (node == term) + break; + } + path_id[term] = false; + if (dfct[term] > 0) + { if (incr > dfct[term]) + incr = dfct[term]; + } + for (node = root;;) + { extarc = extend_arc[node]; + if (extarc > 0) + { end = endn[extarc]; + /* add arc to the reduced graph */ + if (x[extarc] == 0) + { nxtpushb[extarc] = fpushb[end]; + fpushb[end] = extarc; + new_level = p[node] - rc[extarc]; + if (sb_level[end] > new_level) + { sb_level[end] = new_level; + sb_arc[end] = -extarc; + } + } + x[extarc] += incr; + u[extarc] -= incr; + /* remove arc from the reduced graph */ + if (u[extarc] == 0) + { nas++; + arc = fpushf[node]; + if (arc == extarc) + fpushf[node] = nxtpushf[arc]; + else + { prevarc = arc; + arc = nxtpushf[arc]; + while (arc > 0) + { if (arc == extarc) + { nxtpushf[prevarc] = nxtpushf[arc]; + break; + } + prevarc = arc; + arc = nxtpushf[arc]; + } + } + } + node = end; + } + else + { extarc = -extarc; + start = startn[extarc]; + /* add arc to the reduced graph */ + if (u[extarc] == 0) + { nxtpushf[extarc] = fpushf[start]; + fpushf[start] = extarc; + new_level = p[node] + rc[extarc]; + if (sb_level[start] > new_level) + { sb_level[start] = new_level; + sb_arc[start] = extarc; + } + } + u[extarc] += incr; + x[extarc] -= incr; + /* remove arc from the reduced graph */ + if (x[extarc] == 0) + { nas++; + arc = fpushb[node]; + if (arc == extarc) + fpushb[node] = nxtpushb[arc]; + else + { prevarc = arc; + arc = nxtpushb[arc]; + while (arc > 0) + { if (arc == extarc) + { nxtpushb[prevarc] = nxtpushb[arc]; + break; + } + prevarc = arc; + arc = nxtpushb[arc]; + } + } + } + node = start; + } + if (node == term) + break; + } + dfct[term] -= incr; + dfct[root] += incr; + /* insert term in the queue if it has a large enough surplus */ + if (dfct[term] < thresh_dfct) + { if (nxtqueue[term] == 0) + { nxtnode = nxtqueue[root]; + if ((p[term] >= p[nxtnode]) && (root != nxtnode)) + { nxtqueue[root] = term; + nxtqueue[term] = nxtnode; + } + else + { nxtqueue[prevnode] = term; + nxtqueue[term] = root; + prevnode = term; + } + } + } + /* if root has a large enough surplus, keep it in the queue and + * return for another iteration */ + if (dfct[root] < thresh_dfct) + { prevnode = root; + root = nxtqueue[root]; + goto L200; + } +L3000:/* end of augmentation cycle */ + /* Check for termination of scaling phase. If scaling phase is not + * finished, advance the queue and return to take another node. */ + nxtnode = nxtqueue[root]; + if (root != nxtnode) + { nxtqueue[root] = 0; + nxtqueue[prevnode] = nxtnode; + root = nxtnode; + goto L200; + } + /* End of subproblem (scaling phase). */ + /* Reduce epsilon. */ + eps /= factor; + if (eps < 1) eps = 1; + thresh_dfct /= factor; + if (eps == 1) thresh_dfct = 0; + /* if another auction scaling phase remains, reset the flows & + * the push lists; else reset arc flows to satisfy cs and compute + * reduced costs */ + if (crash == 1) + { for (arc = 1; arc <= na; arc++) + { start = startn[arc]; + end = endn[arc]; + pstart = p[start]; + pend = p[end]; + if (pstart > pend + eps + rc[arc]) + { resid = u[arc]; + if (resid > 0) + { dfct[start] += resid; + dfct[end] -= resid; + x[arc] += resid; + u[arc] = 0; + } + } + else if (pstart < pend - eps + rc[arc]) + { flow = x[arc]; + if (flow > 0) + { dfct[start] -= flow; + dfct[end] += flow; + x[arc] = 0; + u[arc] += flow; + } + } + } + /* return for another phase */ + goto L100; + } + else + { crash = 1; + for (arc = 1; arc <= na; arc++) + { start = startn[arc]; + end = endn[arc]; + red_cost = rc[arc] + p[end] - p[start]; + if (red_cost < 0) + { resid = u[arc]; + if (resid > 0) + { dfct[start] += resid; + dfct[end] -= resid; + x[arc] += resid; + u[arc] = 0; + } + } + else if (red_cost > 0) + { flow = x[arc]; + if (flow > 0) + { dfct[start] -= flow; + dfct[end] += flow; + x[arc] = 0; + u[arc] += flow; + } + } + rc[arc] = red_cost; + } + } + return 0; +# undef crash +# undef nsp +} + +/* eof */ -- cgit