From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/simplex/spxat.c | 265 ++++++++++++++++++++++++++++ 1 file changed, 265 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/simplex/spxat.c (limited to 'test/monniaux/glpk-4.65/src/simplex/spxat.c') diff --git a/test/monniaux/glpk-4.65/src/simplex/spxat.c b/test/monniaux/glpk-4.65/src/simplex/spxat.c new file mode 100644 index 00000000..3570a18c --- /dev/null +++ b/test/monniaux/glpk-4.65/src/simplex/spxat.c @@ -0,0 +1,265 @@ +/* spxat.c */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2015 Andrew Makhorin, Department for Applied +* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights +* reserved. E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "env.h" +#include "spxat.h" + +/*********************************************************************** +* spx_alloc_at - allocate constraint matrix in sparse row-wise format +* +* This routine allocates the memory for arrays needed to represent the +* constraint matrix in sparse row-wise format. */ + +void spx_alloc_at(SPXLP *lp, SPXAT *at) +{ int m = lp->m; + int n = lp->n; + int nnz = lp->nnz; + at->ptr = talloc(1+m+1, int); + at->ind = talloc(1+nnz, int); + at->val = talloc(1+nnz, double); + at->work = talloc(1+n, double); + return; +} + +/*********************************************************************** +* spx_build_at - build constraint matrix in sparse row-wise format +* +* This routine builds sparse row-wise representation of the constraint +* matrix A using its sparse column-wise representation stored in the +* lp object, and stores the result in the at object. */ + +void spx_build_at(SPXLP *lp, SPXAT *at) +{ int m = lp->m; + int n = lp->n; + int nnz = lp->nnz; + int *A_ptr = lp->A_ptr; + int *A_ind = lp->A_ind; + double *A_val = lp->A_val; + int *AT_ptr = at->ptr; + int *AT_ind = at->ind; + double *AT_val = at->val; + int i, k, ptr, end, pos; + /* calculate AT_ptr[i] = number of non-zeros in i-th row */ + memset(&AT_ptr[1], 0, m * sizeof(int)); + for (k = 1; k <= n; k++) + { ptr = A_ptr[k]; + end = A_ptr[k+1]; + for (; ptr < end; ptr++) + AT_ptr[A_ind[ptr]]++; + } + /* set AT_ptr[i] to position after last element in i-th row */ + AT_ptr[1]++; + for (i = 2; i <= m; i++) + AT_ptr[i] += AT_ptr[i-1]; + xassert(AT_ptr[m] == nnz+1); + AT_ptr[m+1] = nnz+1; + /* build row-wise representation and re-arrange AT_ptr[i] */ + for (k = n; k >= 1; k--) + { /* copy elements from k-th column to corresponding rows */ + ptr = A_ptr[k]; + end = A_ptr[k+1]; + for (; ptr < end; ptr++) + { pos = --AT_ptr[A_ind[ptr]]; + AT_ind[pos] = k; + AT_val[pos] = A_val[ptr]; + } + } + xassert(AT_ptr[1] == 1); + return; +} + +/*********************************************************************** +* spx_at_prod - compute product y := y + s * A'* x +* +* This routine computes the product: +* +* y := y + s * A'* x, +* +* where A' is a matrix transposed to the mxn-matrix A of constraint +* coefficients, x is a m-vector, s is a scalar, y is a n-vector. +* +* The routine uses the row-wise representation of the matrix A and +* computes the product as a linear combination: +* +* y := y + s * (A'[1] * x[1] + ... + A'[m] * x[m]), +* +* where A'[i] is i-th row of A, 1 <= i <= m. */ + +void spx_at_prod(SPXLP *lp, SPXAT *at, double y[/*1+n*/], double s, + const double x[/*1+m*/]) +{ int m = lp->m; + int *AT_ptr = at->ptr; + int *AT_ind = at->ind; + double *AT_val = at->val; + int i, ptr, end; + double t; + for (i = 1; i <= m; i++) + { if (x[i] != 0.0) + { /* y := y + s * (i-th row of A) * x[i] */ + t = s * x[i]; + ptr = AT_ptr[i]; + end = AT_ptr[i+1]; + for (; ptr < end; ptr++) + y[AT_ind[ptr]] += AT_val[ptr] * t; + } + } + return; +} + +/*********************************************************************** +* spx_nt_prod1 - compute product y := y + s * N'* x +* +* This routine computes the product: +* +* y := y + s * N'* x, +* +* where N' is a matrix transposed to the mx(n-m)-matrix N composed +* from non-basic columns of the constraint matrix A, x is a m-vector, +* s is a scalar, y is (n-m)-vector. +* +* If the flag ign is non-zero, the routine ignores the input content +* of the array y assuming that y = 0. */ + +void spx_nt_prod1(SPXLP *lp, SPXAT *at, double y[/*1+n-m*/], int ign, + double s, const double x[/*1+m*/]) +{ int m = lp->m; + int n = lp->n; + int *head = lp->head; + double *work = at->work; + int j, k; + for (k = 1; k <= n; k++) + work[k] = 0.0; + if (!ign) + { for (j = 1; j <= n-m; j++) + work[head[m+j]] = y[j]; + } + spx_at_prod(lp, at, work, s, x); + for (j = 1; j <= n-m; j++) + y[j] = work[head[m+j]]; + return; +} + +/*********************************************************************** +* spx_eval_trow1 - compute i-th row of simplex table +* +* This routine computes i-th row of the current simplex table +* T = (T[i,j]) = - inv(B) * N, 1 <= i <= m, using representation of +* the constraint matrix A in row-wise format. +* +* The vector rho = (rho[j]), which is i-th row of the basis inverse +* inv(B), should be previously computed with the routine spx_eval_rho. +* It is assumed that elements of this vector are stored in the array +* locations rho[1], ..., rho[m]. +* +* There exist two ways to compute the simplex table row. +* +* 1. T[i,j], j = 1,...,n-m, is computed as inner product: +* +* m +* T[i,j] = - sum a[i,k] * rho[i], +* i=1 +* +* where N[j] = A[k] is a column of the constraint matrix corresponding +* to non-basic variable xN[j]. The estimated number of operations in +* this case is: +* +* n1 = (n - m) * (nnz(A) / n), +* +* (n - m) is the number of columns of N, nnz(A) / n is the average +* number of non-zeros in one column of A and, therefore, of N. +* +* 2. The simplex table row is computed as part of a linear combination +* of rows of A with coefficients rho[i] != 0. The estimated number +* of operations in this case is: +* +* n2 = nnz(rho) * (nnz(A) / m), +* +* where nnz(rho) is the number of non-zeros in the vector rho, +* nnz(A) / m is the average number of non-zeros in one row of A. +* +* If n1 < n2, the routine computes the simples table row using the +* first way (like the routine spx_eval_trow). Otherwise, the routine +* uses the second way calling the routine spx_nt_prod1. +* +* On exit components of the simplex table row are stored in the array +* locations trow[1], ... trow[n-m]. */ + +void spx_eval_trow1(SPXLP *lp, SPXAT *at, const double rho[/*1+m*/], + double trow[/*1+n-m*/]) +{ int m = lp->m; + int n = lp->n; + int nnz = lp->nnz; + int i, j, nnz_rho; + double cnt1, cnt2; + /* determine nnz(rho) */ + nnz_rho = 0; + for (i = 1; i <= m; i++) + { if (rho[i] != 0.0) + nnz_rho++; + } + /* estimate the number of operations for both ways */ + cnt1 = (double)(n - m) * ((double)nnz / (double)n); + cnt2 = (double)nnz_rho * ((double)nnz / (double)m); + /* compute i-th row of simplex table */ + if (cnt1 < cnt2) + { /* as inner products */ + int *A_ptr = lp->A_ptr; + int *A_ind = lp->A_ind; + double *A_val = lp->A_val; + int *head = lp->head; + int k, ptr, end; + double tij; + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + /* compute t[i,j] = - N'[j] * pi */ + tij = 0.0; + ptr = A_ptr[k]; + end = A_ptr[k+1]; + for (; ptr < end; ptr++) + tij -= A_val[ptr] * rho[A_ind[ptr]]; + trow[j] = tij; + } + } + else + { /* as linear combination */ + spx_nt_prod1(lp, at, trow, 1, -1.0, rho); + } + return; +} + +/*********************************************************************** +* spx_free_at - deallocate constraint matrix in sparse row-wise format +* +* This routine deallocates the memory used for arrays of the program +* object at. */ + +void spx_free_at(SPXLP *lp, SPXAT *at) +{ xassert(lp == lp); + tfree(at->ptr); + tfree(at->ind); + tfree(at->val); + tfree(at->work); + return; +} + +/* eof */ -- cgit