From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/simplex/spxlp.c | 819 ++++++++++++++++++++++++++++ 1 file changed, 819 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/simplex/spxlp.c (limited to 'test/monniaux/glpk-4.65/src/simplex/spxlp.c') diff --git a/test/monniaux/glpk-4.65/src/simplex/spxlp.c b/test/monniaux/glpk-4.65/src/simplex/spxlp.c new file mode 100644 index 00000000..90ce2636 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/simplex/spxlp.c @@ -0,0 +1,819 @@ +/* spxlp.c */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2015 Andrew Makhorin, Department for Applied +* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights +* reserved. E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "env.h" +#include "spxlp.h" + +/*********************************************************************** +* spx_factorize - compute factorization of current basis matrix +* +* This routine computes factorization of the current basis matrix B. +* +* If the factorization has been successfully computed, the routine +* validates it and returns zero. Otherwise, the routine invalidates +* the factorization and returns the code provided by the factorization +* driver (bfd_factorize). */ + +static int jth_col(void *info, int j, int ind[], double val[]) +{ /* provide column B[j] */ + SPXLP *lp = info; + int m = lp->m; + int *A_ptr = lp->A_ptr; + int *head = lp->head; + int k, ptr, len; + xassert(1 <= j && j <= m); + k = head[j]; /* x[k] = xB[j] */ + ptr = A_ptr[k]; + len = A_ptr[k+1] - ptr; + memcpy(&ind[1], &lp->A_ind[ptr], len * sizeof(int)); + memcpy(&val[1], &lp->A_val[ptr], len * sizeof(double)); + return len; +} + +int spx_factorize(SPXLP *lp) +{ int ret; + ret = bfd_factorize(lp->bfd, lp->m, jth_col, lp); + lp->valid = (ret == 0); + return ret; +} + +/*********************************************************************** +* spx_eval_beta - compute current values of basic variables +* +* This routine computes vector beta = (beta[i]) of current values of +* basic variables xB = (xB[i]). (Factorization of the current basis +* matrix should be valid.) +* +* First the routine computes a modified vector of right-hand sides: +* +* n-m +* y = b - N * f = b - sum N[j] * f[j], +* j=1 +* +* where b = (b[i]) is the original vector of right-hand sides, N is +* a matrix composed from columns of the original constraint matrix A, +* which (columns) correspond to non-basic variables, f = (f[j]) is the +* vector of active bounds of non-basic variables xN = (xN[j]), +* N[j] = A[k] is a column of matrix A corresponding to non-basic +* variable xN[j] = x[k], f[j] is current active bound lN[j] = l[k] or +* uN[j] = u[k] of non-basic variable xN[j] = x[k]. The matrix-vector +* product N * f is computed as a linear combination of columns of N, +* so if f[j] = 0, column N[j] can be skipped. +* +* Then the routine performs FTRAN to compute the vector beta: +* +* beta = inv(B) * y. +* +* On exit the routine stores components of the vector beta to array +* locations beta[1], ..., beta[m]. */ + +void spx_eval_beta(SPXLP *lp, double beta[/*1+m*/]) +{ int m = lp->m; + int n = lp->n; + int *A_ptr = lp->A_ptr; + int *A_ind = lp->A_ind; + double *A_val = lp->A_val; + double *b = lp->b; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + int j, k, ptr, end; + double fj, *y; + /* compute y = b - N * xN */ + /* y := b */ + y = beta; + memcpy(&y[1], &b[1], m * sizeof(double)); + /* y := y - N * f */ + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + /* f[j] := active bound of xN[j] */ + fj = flag[j] ? u[k] : l[k]; + if (fj == 0.0 || fj == -DBL_MAX) + { /* either xN[j] has zero active bound or it is unbounded; + * in the latter case its value is assumed to be zero */ + continue; + } + /* y := y - N[j] * f[j] */ + ptr = A_ptr[k]; + end = A_ptr[k+1]; + for (; ptr < end; ptr++) + y[A_ind[ptr]] -= A_val[ptr] * fj; + } + /* compute beta = inv(B) * y */ + xassert(lp->valid); + bfd_ftran(lp->bfd, beta); + return; +} + +/*********************************************************************** +* spx_eval_obj - compute current value of objective function +* +* This routine computes the value of the objective function in the +* current basic solution: +* +* z = cB'* beta + cN'* f + c[0] = +* +* m n-m +* = sum cB[i] * beta[i] + sum cN[j] * f[j] + c[0], +* i=1 j=1 +* +* where cB = (cB[i]) is the vector of objective coefficients at basic +* variables, beta = (beta[i]) is the vector of current values of basic +* variables, cN = (cN[j]) is the vector of objective coefficients at +* non-basic variables, f = (f[j]) is the vector of current active +* bounds of non-basic variables, c[0] is the constant term of the +* objective function. +* +* It as assumed that components of the vector beta are stored in the +* array locations beta[1], ..., beta[m]. */ + +double spx_eval_obj(SPXLP *lp, const double beta[/*1+m*/]) +{ int m = lp->m; + int n = lp->n; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + int i, j, k; + double fj, z; + /* compute z = cB'* beta + cN'* f + c0 */ + /* z := c0 */ + z = c[0]; + /* z := z + cB'* beta */ + for (i = 1; i <= m; i++) + { k = head[i]; /* x[k] = xB[i] */ + z += c[k] * beta[i]; + } + /* z := z + cN'* f */ + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + /* f[j] := active bound of xN[j] */ + fj = flag[j] ? u[k] : l[k]; + if (fj == 0.0 || fj == -DBL_MAX) + { /* either xN[j] has zero active bound or it is unbounded; + * in the latter case its value is assumed to be zero */ + continue; + } + z += c[k] * fj; + } + return z; +} + +/*********************************************************************** +* spx_eval_pi - compute simplex multipliers in current basis +* +* This routine computes vector pi = (pi[i]) of simplex multipliers in +* the current basis. (Factorization of the current basis matrix should +* be valid.) +* +* The vector pi is computed by performing BTRAN: +* +* pi = inv(B') * cB, +* +* where cB = (cB[i]) is the vector of objective coefficients at basic +* variables xB = (xB[i]). +* +* On exit components of vector pi are stored in the array locations +* pi[1], ..., pi[m]. */ + +void spx_eval_pi(SPXLP *lp, double pi[/*1+m*/]) +{ int m = lp->m; + double *c = lp->c; + int *head = lp->head; + int i; + double *cB; + /* construct cB */ + cB = pi; + for (i = 1; i <= m; i++) + cB[i] = c[head[i]]; + /* compute pi = inv(B) * cB */ + bfd_btran(lp->bfd, pi); + return; +} + +/*********************************************************************** +* spx_eval_dj - compute reduced cost of j-th non-basic variable +* +* This routine computes reduced cost d[j] of non-basic variable +* xN[j] = x[k], 1 <= j <= n-m, in the current basic solution: +* +* d[j] = c[k] - A'[k] * pi, +* +* where c[k] is the objective coefficient at x[k], A[k] is k-th column +* of the constraint matrix, pi is the vector of simplex multipliers in +* the current basis. +* +* It as assumed that components of the vector pi are stored in the +* array locations pi[1], ..., pi[m]. */ + +double spx_eval_dj(SPXLP *lp, const double pi[/*1+m*/], int j) +{ int m = lp->m; + int n = lp->n; + int *A_ptr = lp->A_ptr; + int *A_ind = lp->A_ind; + double *A_val = lp->A_val; + int k, ptr, end; + double dj; + xassert(1 <= j && j <= n-m); + k = lp->head[m+j]; /* x[k] = xN[j] */ + /* dj := c[k] */ + dj = lp->c[k]; + /* dj := dj - A'[k] * pi */ + ptr = A_ptr[k]; + end = A_ptr[k+1]; + for (; ptr < end; ptr++) + dj -= A_val[ptr] * pi[A_ind[ptr]]; + return dj; +} + +/*********************************************************************** +* spx_eval_tcol - compute j-th column of simplex table +* +* This routine computes j-th column of the current simplex table +* T = (T[i,j]) = - inv(B) * N, 1 <= j <= n-m. (Factorization of the +* current basis matrix should be valid.) +* +* The simplex table column is computed by performing FTRAN: +* +* tcol = - inv(B) * N[j], +* +* where B is the current basis matrix, N[j] = A[k] is a column of the +* constraint matrix corresponding to non-basic variable xN[j] = x[k]. +* +* On exit components of the simplex table column are stored in the +* array locations tcol[1], ... tcol[m]. */ + +void spx_eval_tcol(SPXLP *lp, int j, double tcol[/*1+m*/]) +{ int m = lp->m; + int n = lp->n; + int *A_ptr = lp->A_ptr; + int *A_ind = lp->A_ind; + double *A_val = lp->A_val; + int *head = lp->head; + int i, k, ptr, end; + xassert(1 <= j && j <= n-m); + k = head[m+j]; /* x[k] = xN[j] */ + /* compute tcol = - inv(B) * N[j] */ + for (i = 1; i <= m; i++) + tcol[i] = 0.0; + ptr = A_ptr[k]; + end = A_ptr[k+1]; + for (; ptr < end; ptr++) + tcol[A_ind[ptr]] = -A_val[ptr]; + bfd_ftran(lp->bfd, tcol); + return; +} + +/*********************************************************************** +* spx_eval_rho - compute i-th row of basis matrix inverse +* +* This routine computes i-th row of the matrix inv(B), where B is +* the current basis matrix, 1 <= i <= m. (Factorization of the current +* basis matrix should be valid.) +* +* The inverse row is computed by performing BTRAN: +* +* rho = inv(B') * e[i], +* +* where e[i] is i-th column of unity matrix. +* +* On exit components of the row are stored in the array locations +* row[1], ..., row[m]. */ + +void spx_eval_rho(SPXLP *lp, int i, double rho[/*1+m*/]) +{ int m = lp->m; + int j; + xassert(1 <= i && i <= m); + /* compute rho = inv(B') * e[i] */ + for (j = 1; j <= m; j++) + rho[j] = 0.0; + rho[i] = 1.0; + bfd_btran(lp->bfd, rho); + return; +} + +#if 1 /* 31/III-2016 */ +void spx_eval_rho_s(SPXLP *lp, int i, FVS *rho) +{ /* sparse version of spx_eval_rho */ + int m = lp->m; + xassert(1 <= i && i <= m); + /* compute rho = inv(B') * e[i] */ + xassert(rho->n == m); + fvs_clear_vec(rho); + rho->nnz = 1; + rho->ind[1] = i; + rho->vec[i] = 1.0; + bfd_btran_s(lp->bfd, rho); + return; +} +#endif + +/*********************************************************************** +* spx_eval_tij - compute element T[i,j] of simplex table +* +* This routine computes element T[i,j] of the current simplex table +* T = - inv(B) * N, 1 <= i <= m, 1 <= j <= n-m, with the following +* formula: +* +* T[i,j] = - N'[j] * rho, (1) +* +* where N[j] = A[k] is a column of the constraint matrix corresponding +* to non-basic variable xN[j] = x[k], rho is i-th row of the inverse +* matrix inv(B). +* +* It as assumed that components of the inverse row rho = (rho[j]) are +* stored in the array locations rho[1], ..., rho[m]. */ + +double spx_eval_tij(SPXLP *lp, const double rho[/*1+m*/], int j) +{ int m = lp->m; + int n = lp->n; + int *A_ptr = lp->A_ptr; + int *A_ind = lp->A_ind; + double *A_val = lp->A_val; + int k, ptr, end; + double tij; + xassert(1 <= j && j <= n-m); + k = lp->head[m+j]; /* x[k] = xN[j] */ + /* compute t[i,j] = - N'[j] * pi */ + tij = 0.0; + ptr = A_ptr[k]; + end = A_ptr[k+1]; + for (; ptr < end; ptr++) + tij -= A_val[ptr] * rho[A_ind[ptr]]; + return tij; +} + +/*********************************************************************** +* spx_eval_trow - compute i-th row of simplex table +* +* This routine computes i-th row of the current simplex table +* T = (T[i,j]) = - inv(B) * N, 1 <= i <= m. +* +* Elements of the row T[i] = (T[i,j]), j = 1, ..., n-m, are computed +* directly with the routine spx_eval_tij. +* +* The vector rho = (rho[j]), which is i-th row of the basis inverse +* inv(B), should be previously computed with the routine spx_eval_rho. +* It is assumed that elements of this vector are stored in the array +* locations rho[1], ..., rho[m]. +* +* On exit components of the simplex table row are stored in the array +* locations trow[1], ... trow[n-m]. +* +* NOTE: For testing/debugging only. */ + +void spx_eval_trow(SPXLP *lp, const double rho[/*1+m*/], double + trow[/*1+n-m*/]) +{ int m = lp->m; + int n = lp->n; + int j; + for (j = 1; j <= n-m; j++) + trow[j] = spx_eval_tij(lp, rho, j); + return; +} + +/*********************************************************************** +* spx_update_beta - update values of basic variables +* +* This routine updates the vector beta = (beta[i]) of values of basic +* variables xB = (xB[i]) for the adjacent basis. +* +* On entry to the routine components of the vector beta in the current +* basis should be placed in array locations beta[1], ..., beta[m]. +* +* The parameter 1 <= p <= m specifies basic variable xB[p] which +* becomes non-basic variable xN[q] in the adjacent basis. The special +* case p < 0 means that non-basic variable xN[q] goes from its current +* active bound to opposite one in the adjacent basis. +* +* If the flag p_flag is set, the active bound of xB[p] in the adjacent +* basis is set to its upper bound. (In this case xB[p] should have its +* upper bound and should not be fixed.) +* +* The parameter 1 <= q <= n-m specifies non-basic variable xN[q] which +* becomes basic variable xB[p] in the adjacent basis (if 1 <= p <= m), +* or goes to its opposite bound (if p < 0). (In the latter case xN[q] +* should have both lower and upper bounds and should not be fixed.) +* +* It is assumed that the array tcol contains elements of q-th (pivot) +* column T[q] of the simple table in locations tcol[1], ..., tcol[m]. +* (This column should be computed for the current basis.) +* +* First, the routine determines the increment of basic variable xB[p] +* in the adjacent basis (but only if 1 <= p <= m): +* +* ( - beta[p], if -inf < xB[p] < +inf +* ( +* delta xB[p] = { lB[p] - beta[p], if p_flag = 0 +* ( +* ( uB[p] - beta[p], if p_flag = 1 +* +* where beta[p] is the value of xB[p] in the current basis, lB[p] and +* uB[p] are its lower and upper bounds. Then, the routine determines +* the increment of non-basic variable xN[q] in the adjacent basis: +* +* ( delta xB[p] / T[p,q], if 1 <= p <= m +* ( +* delta xN[q] = { uN[q] - lN[q], if p < 0 and f[q] = lN[q] +* ( +* ( lN[q] - uN[q], if p < 0 and f[q] = uN[q] +* +* where T[p,q] is the pivot element of the simplex table, f[q] is the +* active bound of xN[q] in the current basis. +* +* If 1 <= p <= m, in the adjacent basis xN[q] becomes xB[p], so: +* +* new beta[p] = f[q] + delta xN[q]. +* +* Values of other basic variables xB[i] for 1 <= i <= m, i != p, are +* updated as follows: +* +* new beta[i] = beta[i] + T[i,q] * delta xN[q]. +* +* On exit the routine stores updated components of the vector beta to +* the same locations, where the input vector beta was stored. */ + +void spx_update_beta(SPXLP *lp, double beta[/*1+m*/], int p, + int p_flag, int q, const double tcol[/*1+m*/]) +{ int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + int i, k; + double delta_p, delta_q; + if (p < 0) + { /* special case: xN[q] goes to its opposite bound */ + xassert(1 <= q && q <= n-m); + /* xN[q] should be double-bounded variable */ + k = head[m+q]; /* x[k] = xN[q] */ + xassert(l[k] != -DBL_MAX && u[k] != +DBL_MAX && l[k] != u[k]); + /* determine delta xN[q] */ + if (flag[q]) + { /* xN[q] goes from its upper bound to its lower bound */ + delta_q = l[k] - u[k]; + } + else + { /* xN[q] goes from its lower bound to its upper bound */ + delta_q = u[k] - l[k]; + } + } + else + { /* xB[p] leaves the basis, xN[q] enters the basis */ + xassert(1 <= p && p <= m); + xassert(1 <= q && q <= n-m); + /* determine delta xB[p] */ + k = head[p]; /* x[k] = xB[p] */ + if (p_flag) + { /* xB[p] goes to its upper bound */ + xassert(l[k] != u[k] && u[k] != +DBL_MAX); + delta_p = u[k] - beta[p]; + } + else if (l[k] == -DBL_MAX) + { /* unbounded xB[p] becomes non-basic (unusual case) */ + xassert(u[k] == +DBL_MAX); + delta_p = 0.0 - beta[p]; + } + else + { /* xB[p] goes to its lower bound or becomes fixed */ + delta_p = l[k] - beta[p]; + } + /* determine delta xN[q] */ + delta_q = delta_p / tcol[p]; + /* compute new beta[p], which is the value of xN[q] in the + * adjacent basis */ + k = head[m+q]; /* x[k] = xN[q] */ + if (flag[q]) + { /* xN[q] has its upper bound active */ + xassert(l[k] != u[k] && u[k] != +DBL_MAX); + beta[p] = u[k] + delta_q; + } + else if (l[k] == -DBL_MAX) + { /* xN[q] is non-basic unbounded variable */ + xassert(u[k] == +DBL_MAX); + beta[p] = 0.0 + delta_q; + } + else + { /* xN[q] has its lower bound active or is fixed (latter + * case is unusual) */ + beta[p] = l[k] + delta_q; + } + } + /* compute new beta[i] for all i != p */ + for (i = 1; i <= m; i++) + { if (i != p) + beta[i] += tcol[i] * delta_q; + } + return; +} + +#if 1 /* 30/III-2016 */ +void spx_update_beta_s(SPXLP *lp, double beta[/*1+m*/], int p, + int p_flag, int q, const FVS *tcol) +{ /* sparse version of spx_update_beta */ + int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + int nnz = tcol->nnz; + int *ind = tcol->ind; + double *vec = tcol->vec; + int i, k; + double delta_p, delta_q; + xassert(tcol->n == m); + if (p < 0) + { /* special case: xN[q] goes to its opposite bound */ +#if 0 /* 11/VI-2017 */ + /* FIXME: not tested yet */ + xassert(0); +#endif + xassert(1 <= q && q <= n-m); + /* xN[q] should be double-bounded variable */ + k = head[m+q]; /* x[k] = xN[q] */ + xassert(l[k] != -DBL_MAX && u[k] != +DBL_MAX && l[k] != u[k]); + /* determine delta xN[q] */ + if (flag[q]) + { /* xN[q] goes from its upper bound to its lower bound */ + delta_q = l[k] - u[k]; + } + else + { /* xN[q] goes from its lower bound to its upper bound */ + delta_q = u[k] - l[k]; + } + } + else + { /* xB[p] leaves the basis, xN[q] enters the basis */ + xassert(1 <= p && p <= m); + xassert(1 <= q && q <= n-m); + /* determine delta xB[p] */ + k = head[p]; /* x[k] = xB[p] */ + if (p_flag) + { /* xB[p] goes to its upper bound */ + xassert(l[k] != u[k] && u[k] != +DBL_MAX); + delta_p = u[k] - beta[p]; + } + else if (l[k] == -DBL_MAX) + { /* unbounded xB[p] becomes non-basic (unusual case) */ + xassert(u[k] == +DBL_MAX); + delta_p = 0.0 - beta[p]; + } + else + { /* xB[p] goes to its lower bound or becomes fixed */ + delta_p = l[k] - beta[p]; + } + /* determine delta xN[q] */ + delta_q = delta_p / vec[p]; + /* compute new beta[p], which is the value of xN[q] in the + * adjacent basis */ + k = head[m+q]; /* x[k] = xN[q] */ + if (flag[q]) + { /* xN[q] has its upper bound active */ + xassert(l[k] != u[k] && u[k] != +DBL_MAX); + beta[p] = u[k] + delta_q; + } + else if (l[k] == -DBL_MAX) + { /* xN[q] is non-basic unbounded variable */ + xassert(u[k] == +DBL_MAX); + beta[p] = 0.0 + delta_q; + } + else + { /* xN[q] has its lower bound active or is fixed (latter + * case is unusual) */ + beta[p] = l[k] + delta_q; + } + } + /* compute new beta[i] for all i != p */ + for (k = 1; k <= nnz; k++) + { i = ind[k]; + if (i != p) + beta[i] += vec[i] * delta_q; + } + return; +} +#endif + +/*********************************************************************** +* spx_update_d - update reduced costs of non-basic variables +* +* This routine updates the vector d = (d[j]) of reduced costs of +* non-basic variables xN = (xN[j]) for the adjacent basis. +* +* On entry to the routine components of the vector d in the current +* basis should be placed in locations d[1], ..., d[n-m]. +* +* The parameter 1 <= p <= m specifies basic variable xB[p] which +* becomes non-basic variable xN[q] in the adjacent basis. +* +* The parameter 1 <= q <= n-m specified non-basic variable xN[q] which +* becomes basic variable xB[p] in the adjacent basis. +* +* It is assumed that the array trow contains elements of p-th (pivot) +* row T'[p] of the simplex table in locations trow[1], ..., trow[n-m]. +* It is also assumed that the array tcol contains elements of q-th +* (pivot) column T[q] of the simple table in locations tcol[1], ..., +* tcol[m]. (These row and column should be computed for the current +* basis.) +* +* First, the routine computes more accurate reduced cost d[q] in the +* current basis using q-th column of the simplex table: +* +* n-m +* d[q] = cN[q] + sum t[i,q] * cB[i], +* i=1 +* +* where cN[q] and cB[i] are objective coefficients at variables xN[q] +* and xB[i], resp. The routine also computes the relative error: +* +* e = |d[q] - d'[q]| / (1 + |d[q]|), +* +* where d'[q] is the reduced cost of xN[q] on entry to the routine, +* and returns e on exit. (If e happens to be large enough, the calling +* program may compute the reduced costs directly, since other reduced +* costs also may be inaccurate.) +* +* In the adjacent basis xB[p] becomes xN[q], so: +* +* new d[q] = d[q] / T[p,q], +* +* where T[p,q] is the pivot element of the simplex table (it is taken +* from column T[q] as more accurate). Reduced costs of other non-basic +* variables xN[j] for 1 <= j <= n-m, j != q, are updated as follows: +* +* new d[j] = d[j] + T[p,j] * new d[q]. +* +* On exit the routine stores updated components of the vector d to the +* same locations, where the input vector d was stored. */ + +double spx_update_d(SPXLP *lp, double d[/*1+n-m*/], int p, int q, + const double trow[/*1+n-m*/], const double tcol[/*1+m*/]) +{ int m = lp->m; + int n = lp->n; + double *c = lp->c; + int *head = lp->head; + int i, j, k; + double dq, e; + xassert(1 <= p && p <= m); + xassert(1 <= q && q <= n); + /* compute d[q] in current basis more accurately */ + k = head[m+q]; /* x[k] = xN[q] */ + dq = c[k]; + for (i = 1; i <= m; i++) + dq += tcol[i] * c[head[i]]; + /* compute relative error in d[q] */ + e = fabs(dq - d[q]) / (1.0 + fabs(dq)); + /* compute new d[q], which is the reduced cost of xB[p] in the + * adjacent basis */ + d[q] = (dq /= tcol[p]); + /* compute new d[j] for all j != q */ + for (j = 1; j <= n-m; j++) + { if (j != q) + d[j] -= trow[j] * dq; + } + return e; +} + +#if 1 /* 30/III-2016 */ +double spx_update_d_s(SPXLP *lp, double d[/*1+n-m*/], int p, int q, + const FVS *trow, const FVS *tcol) +{ /* sparse version of spx_update_d */ + int m = lp->m; + int n = lp->n; + double *c = lp->c; + int *head = lp->head; + int trow_nnz = trow->nnz; + int *trow_ind = trow->ind; + double *trow_vec = trow->vec; + int tcol_nnz = tcol->nnz; + int *tcol_ind = tcol->ind; + double *tcol_vec = tcol->vec; + int i, j, k; + double dq, e; + xassert(1 <= p && p <= m); + xassert(1 <= q && q <= n); + xassert(trow->n == n-m); + xassert(tcol->n == m); + /* compute d[q] in current basis more accurately */ + k = head[m+q]; /* x[k] = xN[q] */ + dq = c[k]; + for (k = 1; k <= tcol_nnz; k++) + { i = tcol_ind[k]; + dq += tcol_vec[i] * c[head[i]]; + } + /* compute relative error in d[q] */ + e = fabs(dq - d[q]) / (1.0 + fabs(dq)); + /* compute new d[q], which is the reduced cost of xB[p] in the + * adjacent basis */ + d[q] = (dq /= tcol_vec[p]); + /* compute new d[j] for all j != q */ + for (k = 1; k <= trow_nnz; k++) + { j = trow_ind[k]; + if (j != q) + d[j] -= trow_vec[j] * dq; + } + return e; +} +#endif + +/*********************************************************************** +* spx_change_basis - change current basis to adjacent one +* +* This routine changes the current basis to the adjacent one making +* necessary changes in lp->head and lp->flag members. +* +* The parameters p, p_flag, and q have the same meaning as for the +* routine spx_update_beta. */ + +void spx_change_basis(SPXLP *lp, int p, int p_flag, int q) +{ int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + int k; + if (p < 0) + { /* special case: xN[q] goes to its opposite bound */ + xassert(1 <= q && q <= n-m); + /* xN[q] should be double-bounded variable */ + k = head[m+q]; /* x[k] = xN[q] */ + xassert(l[k] != -DBL_MAX && u[k] != +DBL_MAX && l[k] != u[k]); + /* change active bound flag */ + flag[q] = 1 - flag[q]; + } + else + { /* xB[p] leaves the basis, xN[q] enters the basis */ + xassert(1 <= p && p <= m); + xassert(p_flag == 0 || p_flag == 1); + xassert(1 <= q && q <= n-m); + k = head[p]; /* xB[p] = x[k] */ + if (p_flag) + { /* xB[p] goes to its upper bound */ + xassert(l[k] != u[k] && u[k] != +DBL_MAX); + } + /* swap xB[p] and xN[q] in the basis */ + head[p] = head[m+q], head[m+q] = k; + /* and set active bound flag for new xN[q] */ + lp->flag[q] = p_flag; + } + return; +} + +/*********************************************************************** +* spx_update_invb - update factorization of basis matrix +* +* This routine updates factorization of the basis matrix B when i-th +* column of B is replaced by k-th column of the constraint matrix A. +* +* The parameter 1 <= i <= m specifies the number of column of matrix B +* to be replaced by a new column. +* +* The parameter 1 <= k <= n specifies the number of column of matrix A +* to be used for replacement. +* +* If the factorization has been successfully updated, the routine +* validates it and returns zero. Otherwise, the routine invalidates +* the factorization and returns the code provided by the factorization +* driver (bfd_update). */ + +int spx_update_invb(SPXLP *lp, int i, int k) +{ int m = lp->m; + int n = lp->n; + int *A_ptr = lp->A_ptr; + int *A_ind = lp->A_ind; + double *A_val = lp->A_val; + int ptr, len, ret; + xassert(1 <= i && i <= m); + xassert(1 <= k && k <= n); + ptr = A_ptr[k]; + len = A_ptr[k+1] - ptr; + ret = bfd_update(lp->bfd, i, len, &A_ind[ptr-1], &A_val[ptr-1]); + lp->valid = (ret == 0); + return ret; +} + +/* eof */ -- cgit