From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/simplex/spxprob.c | 679 ++++++++++++++++++++++++++ 1 file changed, 679 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/simplex/spxprob.c (limited to 'test/monniaux/glpk-4.65/src/simplex/spxprob.c') diff --git a/test/monniaux/glpk-4.65/src/simplex/spxprob.c b/test/monniaux/glpk-4.65/src/simplex/spxprob.c new file mode 100644 index 00000000..4bebe2e7 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/simplex/spxprob.c @@ -0,0 +1,679 @@ +/* spxprob.c */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2015 Andrew Makhorin, Department for Applied +* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights +* reserved. E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "env.h" +#include "spxprob.h" + +/*********************************************************************** +* spx_init_lp - initialize working LP object +* +* This routine determines the number of equality constraints m, the +* number of variables n, and the number of non-zero elements nnz in +* the constraint matrix for the working LP, which corresponds to the +* original LP, and stores these dimensions to the working LP object. +* (The working LP object should be allocated by the calling routine.) +* +* If the flag excl is set, the routine assumes that non-basic fixed +* variables will be excluded from the working LP. */ + +void spx_init_lp(SPXLP *lp, glp_prob *P, int excl) +{ int i, j, m, n, nnz; + m = P->m; + xassert(m > 0); + n = 0; + nnz = P->nnz; + xassert(P->valid); + /* scan rows of original LP */ + for (i = 1; i <= m; i++) + { GLPROW *row = P->row[i]; + if (excl && row->stat == GLP_NS) + { /* skip non-basic fixed auxiliary variable */ + /* nop */ + } + else + { /* include auxiliary variable in working LP */ + n++; + nnz++; /* unity column */ + } + } + /* scan columns of original LP */ + for (j = 1; j <= P->n; j++) + { GLPCOL *col = P->col[j]; + if (excl && col->stat == GLP_NS) + { /* skip non-basic fixed structural variable */ + GLPAIJ *aij; + for (aij = col->ptr; aij != NULL; aij = aij->c_next) + nnz--; + } + else + { /* include structural variable in working LP */ + n++; + } + } + /* initialize working LP data block */ + memset(lp, 0, sizeof(SPXLP)); + lp->m = m; + xassert(n > 0); + lp->n = n; + lp->nnz = nnz; + return; +} + +/*********************************************************************** +* spx_alloc_lp - allocate working LP arrays +* +* This routine allocates the memory for all arrays in the working LP +* object. */ + +void spx_alloc_lp(SPXLP *lp) +{ int m = lp->m; + int n = lp->n; + int nnz = lp->nnz; + lp->A_ptr = talloc(1+n+1, int); + lp->A_ind = talloc(1+nnz, int); + lp->A_val = talloc(1+nnz, double); + lp->b = talloc(1+m, double); + lp->c = talloc(1+n, double); + lp->l = talloc(1+n, double); + lp->u = talloc(1+n, double); + lp->head = talloc(1+n, int); + lp->flag = talloc(1+n-m, char); + return; +} + +/*********************************************************************** +* spx_build_lp - convert original LP to working LP +* +* This routine converts components (except the current basis) of the +* original LP to components of the working LP and perform scaling of +* these components. Also, if the original LP is maximization, the +* routine changes the signs of the objective coefficients and constant +* term to opposite ones. +* +* If the flag excl is set, original non-basic fixed variables are +* *not* included in the working LP. Otherwise, all (auxiliary and +* structural) original variables are included in the working LP. Note +* that this flag should have the same value as it has in a call to the +* routine spx_init_lp. +* +* If the flag shift is set, the routine shift bounds of variables +* included in the working LP to make at least one bound to be zero. +* If a variable has both lower and upper bounds, the bound having +* smaller magnitude is shifted to zero. +* +* On exit the routine stores information about correspondence between +* numbers of variables in the original and working LPs to the array +* map, which should have 1+P->m+P->n locations (location [0] is not +* used), where P->m is the numbers of rows and P->n is the number of +* columns in the original LP: +* +* map[i] = +k, 1 <= i <= P->m, means that i-th auxiliary variable of +* the original LP corresponds to variable x[k] of the working LP; +* +* map[i] = -k, 1 <= i <= P->m, means that i-th auxiliary variable of +* the original LP corresponds to variable x[k] of the working LP, and +* the upper bound of that variable was shifted to zero; +* +* map[i] = 0, 1 <= i <= P->m, means that i-th auxiliary variable of +* the original LP was excluded from the working LP; +* +* map[P->m+j], 1 <= j <= P->n, has the same sense as above, however, +* for j-th structural variable of the original LP. */ + +void spx_build_lp(SPXLP *lp, glp_prob *P, int excl, int shift, + int map[/*1+P->m+P->n*/]) +{ int m = lp->m; + int n = lp->n; + int nnz = lp->nnz; + int *A_ptr = lp->A_ptr; + int *A_ind = lp->A_ind; + double *A_val = lp->A_val; + double *b = lp->b; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int i, j, k, kk, ptr, end; + double dir, delta; + /* working LP is always minimization */ + switch (P->dir) + { case GLP_MIN: + dir = +1.0; + break; + case GLP_MAX: + dir = -1.0; + break; + default: + xassert(P != P); + } + /* initialize constant term of the objective */ + c[0] = dir * P->c0; + k = 0; /* number of variable in working LP */ + ptr = 1; /* current available position in A_ind/A_val */ + /* process rows of original LP */ + xassert(P->m == m); + for (i = 1; i <= m; i++) + { GLPROW *row = P->row[i]; + if (excl && row->stat == GLP_NS) + { /* i-th auxiliary variable is non-basic and fixed */ + /* substitute its scaled value in working LP */ + xassert(row->type == GLP_FX); + map[i] = 0; + b[i] = - row->lb * row->rii; + } + else + { /* include i-th auxiliary variable in working LP */ + map[i] = ++k; + /* setup k-th column of working constraint matrix which is + * i-th column of unity matrix */ + A_ptr[k] = ptr; + A_ind[ptr] = i; + A_val[ptr] = 1.0; + ptr++; + /* initialize right-hand side of i-th equality constraint + * and setup zero objective coefficient at variable x[k] */ + b[i] = c[k] = 0.0; + /* setup scaled bounds of variable x[k] */ + switch (row->type) + { case GLP_FR: + l[k] = -DBL_MAX, u[k] = +DBL_MAX; + break; + case GLP_LO: + l[k] = row->lb * row->rii, u[k] = +DBL_MAX; + break; + case GLP_UP: + l[k] = -DBL_MAX, u[k] = row->ub * row->rii; + break; + case GLP_DB: + l[k] = row->lb * row->rii, u[k] = row->ub * row->rii; + xassert(l[k] != u[k]); + break; + case GLP_FX: + l[k] = u[k] = row->lb * row->rii; + break; + default: + xassert(row != row); + } + } + } + /* process columns of original LP */ + for (j = 1; j <= P->n; j++) + { GLPCOL *col = P->col[j]; + GLPAIJ *aij; + if (excl && col->stat == GLP_NS) + { /* j-th structural variable is non-basic and fixed */ + /* substitute its scaled value in working LP */ + xassert(col->type == GLP_FX); + map[m+j] = 0; + if (col->lb != 0.0) + { /* (note that sjj scale factor is cancelled) */ + for (aij = col->ptr; aij != NULL; aij = aij->c_next) + b[aij->row->i] += + (aij->row->rii * aij->val) * col->lb; + c[0] += (dir * col->coef) * col->lb; + } + } + else + { /* include j-th structural variable in working LP */ + map[m+j] = ++k; + /* setup k-th column of working constraint matrix which is + * scaled j-th column of original constraint matrix (-A) */ + A_ptr[k] = ptr; + for (aij = col->ptr; aij != NULL; aij = aij->c_next) + { A_ind[ptr] = aij->row->i; + A_val[ptr] = - aij->row->rii * aij->val * col->sjj; + ptr++; + } + /* setup scaled objective coefficient at variable x[k] */ + c[k] = dir * col->coef * col->sjj; + /* setup scaled bounds of variable x[k] */ + switch (col->type) + { case GLP_FR: + l[k] = -DBL_MAX, u[k] = +DBL_MAX; + break; + case GLP_LO: + l[k] = col->lb / col->sjj, u[k] = +DBL_MAX; + break; + case GLP_UP: + l[k] = -DBL_MAX, u[k] = col->ub / col->sjj; + break; + case GLP_DB: + l[k] = col->lb / col->sjj, u[k] = col->ub / col->sjj; + xassert(l[k] != u[k]); + break; + case GLP_FX: + l[k] = u[k] = col->lb / col->sjj; + break; + default: + xassert(col != col); + } + } + } + xassert(k == n); + xassert(ptr == nnz+1); + A_ptr[n+1] = ptr; + /* shift bounds of all variables of working LP (optionally) */ + if (shift) + { for (kk = 1; kk <= m+P->n; kk++) + { k = map[kk]; + if (k == 0) + { /* corresponding original variable was excluded */ + continue; + } + /* shift bounds of variable x[k] */ + if (l[k] == -DBL_MAX && u[k] == +DBL_MAX) + { /* x[k] is unbounded variable */ + delta = 0.0; + } + else if (l[k] != -DBL_MAX && u[k] == +DBL_MAX) + { /* shift lower bound to zero */ + delta = l[k]; + l[k] = 0.0; + } + else if (l[k] == -DBL_MAX && u[k] != +DBL_MAX) + { /* shift upper bound to zero */ + map[kk] = -k; + delta = u[k]; + u[k] = 0.0; + } + else if (l[k] != u[k]) + { /* x[k] is double bounded variable */ + if (fabs(l[k]) <= fabs(u[k])) + { /* shift lower bound to zero */ + delta = l[k]; + l[k] = 0.0, u[k] -= delta; + } + else + { /* shift upper bound to zero */ + map[kk] = -k; + delta = u[k]; + l[k] -= delta, u[k] = 0.0; + } + xassert(l[k] != u[k]); + } + else + { /* shift fixed value to zero */ + delta = l[k]; + l[k] = u[k] = 0.0; + } + /* substitute x[k] = x'[k] + delta into all constraints + * and the objective function of working LP */ + if (delta != 0.0) + { ptr = A_ptr[k]; + end = A_ptr[k+1]; + for (; ptr < end; ptr++) + b[A_ind[ptr]] -= A_val[ptr] * delta; + c[0] += c[k] * delta; + } + } + } + return; +} + +/*********************************************************************** +* spx_build_basis - convert original LP basis to working LP basis +* +* This routine converts the current basis of the original LP to +* corresponding initial basis of the working LP, and moves the basis +* factorization driver from the original LP object to the working LP +* object. +* +* The array map should contain information provided by the routine +* spx_build_lp. */ + +void spx_build_basis(SPXLP *lp, glp_prob *P, const int map[]) +{ int m = lp->m; + int n = lp->n; + int *head = lp->head; + char *flag = lp->flag; + int i, j, k, ii, jj; + /* original basis factorization should be valid that guarantees + * the basis is correct */ + xassert(P->m == m); + xassert(P->valid); + /* initialize basis header for working LP */ + memset(&head[1], 0, m * sizeof(int)); + jj = 0; + /* scan rows of original LP */ + xassert(P->m == m); + for (i = 1; i <= m; i++) + { GLPROW *row = P->row[i]; + /* determine ordinal number of x[k] in working LP */ + if ((k = map[i]) < 0) + k = -k; + if (k == 0) + { /* corresponding original variable was excluded */ + continue; + } + xassert(1 <= k && k <= n); + if (row->stat == GLP_BS) + { /* x[k] is basic variable xB[ii] */ + ii = row->bind; + xassert(1 <= ii && ii <= m); + xassert(head[ii] == 0); + head[ii] = k; + } + else + { /* x[k] is non-basic variable xN[jj] */ + jj++; + head[m+jj] = k; + flag[jj] = (row->stat == GLP_NU); + } + } + /* scan columns of original LP */ + for (j = 1; j <= P->n; j++) + { GLPCOL *col = P->col[j]; + /* determine ordinal number of x[k] in working LP */ + if ((k = map[m+j]) < 0) + k = -k; + if (k == 0) + { /* corresponding original variable was excluded */ + continue; + } + xassert(1 <= k && k <= n); + if (col->stat == GLP_BS) + { /* x[k] is basic variable xB[ii] */ + ii = col->bind; + xassert(1 <= ii && ii <= m); + xassert(head[ii] == 0); + head[ii] = k; + } + else + { /* x[k] is non-basic variable xN[jj] */ + jj++; + head[m+jj] = k; + flag[jj] = (col->stat == GLP_NU); + } + } + xassert(m+jj == n); + /* acquire basis factorization */ + lp->valid = 1; + lp->bfd = P->bfd; + P->valid = 0; + P->bfd = NULL; + return; +} + +/*********************************************************************** +* spx_store_basis - convert working LP basis to original LP basis +* +* This routine converts the current working LP basis to corresponding +* original LP basis. This operations includes determining and setting +* statuses of all rows (auxiliary variables) and columns (structural +* variables), and building the basis header. +* +* The array map should contain information provided by the routine +* spx_build_lp. +* +* On exit the routine fills the array daeh. This array should have +* 1+lp->n locations (location [0] is not used) and contain the inverse +* of the working basis header lp->head, i.e. head[k'] = k means that +* daeh[k] = k'. */ + +void spx_store_basis(SPXLP *lp, glp_prob *P, const int map[], + int daeh[/*1+n*/]) +{ int m = lp->m; + int n = lp->n; + int *head = lp->head; + char *flag = lp->flag; + int i, j, k, kk; + /* determine inverse of working basis header */ + for (kk = 1; kk <= n; kk++) + daeh[head[kk]] = kk; + /* set row statuses */ + xassert(P->m == m); + for (i = 1; i <= m; i++) + { GLPROW *row = P->row[i]; + if ((k = map[i]) < 0) + k = -k; + if (k == 0) + { /* non-basic fixed auxiliary variable was excluded */ + xassert(row->type == GLP_FX); + row->stat = GLP_NS; + row->bind = 0; + } + else + { /* auxiliary variable corresponds to variable x[k] */ + kk = daeh[k]; + if (kk <= m) + { /* x[k] = xB[kk] */ + P->head[kk] = i; + row->stat = GLP_BS; + row->bind = kk; + } + else + { /* x[k] = xN[kk-m] */ + switch (row->type) + { case GLP_FR: + row->stat = GLP_NF; + break; + case GLP_LO: + row->stat = GLP_NL; + break; + case GLP_UP: + row->stat = GLP_NU; + break; + case GLP_DB: + row->stat = (flag[kk-m] ? GLP_NU : GLP_NL); + break; + case GLP_FX: + row->stat = GLP_NS; + break; + default: + xassert(row != row); + } + row->bind = 0; + } + } + } + /* set column statuses */ + for (j = 1; j <= P->n; j++) + { GLPCOL *col = P->col[j]; + if ((k = map[m+j]) < 0) + k = -k; + if (k == 0) + { /* non-basic fixed structural variable was excluded */ + xassert(col->type == GLP_FX); + col->stat = GLP_NS; + col->bind = 0; + } + else + { /* structural variable corresponds to variable x[k] */ + kk = daeh[k]; + if (kk <= m) + { /* x[k] = xB[kk] */ + P->head[kk] = m+j; + col->stat = GLP_BS; + col->bind = kk; + } + else + { /* x[k] = xN[kk-m] */ + switch (col->type) + { case GLP_FR: + col->stat = GLP_NF; + break; + case GLP_LO: + col->stat = GLP_NL; + break; + case GLP_UP: + col->stat = GLP_NU; + break; + case GLP_DB: + col->stat = (flag[kk-m] ? GLP_NU : GLP_NL); + break; + case GLP_FX: + col->stat = GLP_NS; + break; + default: + xassert(col != col); + } + col->bind = 0; + } + } + } + return; +} + +/*********************************************************************** +* spx_store_sol - convert working LP solution to original LP solution +* +* This routine converts the current basic solution of the working LP +* (values of basic variables, simplex multipliers, reduced costs of +* non-basic variables) to corresponding basic solution of the original +* LP (values and reduced costs of auxiliary and structural variables). +* This conversion includes unscaling all basic solution components, +* computing reduced costs of excluded non-basic variables, recovering +* unshifted values of basic variables, changing the signs of reduced +* costs (if the original LP is maximization), and computing the value +* of the objective function. +* +* The flag shift should have the same value as it has in a call to the +* routine spx_build_lp. +* +* The array map should contain information provided by the routine +* spx_build_lp. +* +* The array daeh should contain information provided by the routine +* spx_store_basis. +* +* The arrays beta, pi, and d should contain basic solution components +* for the working LP: +* +* array locations beta[1], ..., beta[m] should contain values of basic +* variables beta = (beta[i]); +* +* array locations pi[1], ..., pi[m] should contain simplex multipliers +* pi = (pi[i]); +* +* array locations d[1], ..., d[n-m] should contain reduced costs of +* non-basic variables d = (d[j]). */ + +void spx_store_sol(SPXLP *lp, glp_prob *P, int shift, + const int map[], const int daeh[], const double beta[], + const double pi[], const double d[]) +{ int m = lp->m; + char *flag = lp->flag; + int i, j, k, kk; + double dir; + /* working LP is always minimization */ + switch (P->dir) + { case GLP_MIN: + dir = +1.0; + break; + case GLP_MAX: + dir = -1.0; + break; + default: + xassert(P != P); + } + /* compute row solution components */ + xassert(P->m == m); + for (i = 1; i <= m; i++) + { GLPROW *row = P->row[i]; + if ((k = map[i]) < 0) + k = -k; + if (k == 0) + { /* non-basic fixed auxiliary variable was excluded */ + xassert(row->type == GLP_FX); + row->prim = row->lb; + /* compute reduced cost d[k] = c[k] - A'[k] * pi as if x[k] + * would be non-basic in working LP */ + row->dual = - dir * pi[i] * row->rii; + } + else + { /* auxiliary variable corresponds to variable x[k] */ + kk = daeh[k]; + if (kk <= m) + { /* x[k] = xB[kk] */ + row->prim = beta[kk] / row->rii; + if (shift) + row->prim += (map[i] < 0 ? row->ub : row->lb); + row->dual = 0.0; + } + else + { /* x[k] = xN[kk-m] */ + row->prim = (flag[kk-m] ? row->ub : row->lb); + row->dual = (dir * d[kk-m]) * row->rii; + } + } + } + /* compute column solution components and objective value */ + P->obj_val = P->c0; + for (j = 1; j <= P->n; j++) + { GLPCOL *col = P->col[j]; + if ((k = map[m+j]) < 0) + k = -k; + if (k == 0) + { /* non-basic fixed structural variable was excluded */ + GLPAIJ *aij; + double dk; + xassert(col->type == GLP_FX); + col->prim = col->lb; + /* compute reduced cost d[k] = c[k] - A'[k] * pi as if x[k] + * would be non-basic in working LP */ + /* (note that sjj scale factor is cancelled) */ + dk = dir * col->coef; + for (aij = col->ptr; aij != NULL; aij = aij->c_next) + dk += (aij->row->rii * aij->val) * pi[aij->row->i]; + col->dual = dir * dk; + } + else + { /* structural variable corresponds to variable x[k] */ + kk = daeh[k]; + if (kk <= m) + { /* x[k] = xB[kk] */ + col->prim = beta[kk] * col->sjj; + if (shift) + col->prim += (map[m+j] < 0 ? col->ub : col->lb); + col->dual = 0.0; + } + else + { /* x[k] = xN[kk-m] */ + col->prim = (flag[kk-m] ? col->ub : col->lb); + col->dual = (dir * d[kk-m]) / col->sjj; + } + } + P->obj_val += col->coef * col->prim; + } + return; +} + +/*********************************************************************** +* spx_free_lp - deallocate working LP arrays +* +* This routine deallocates the memory used for arrays of the working +* LP object. */ + +void spx_free_lp(SPXLP *lp) +{ tfree(lp->A_ptr); + tfree(lp->A_ind); + tfree(lp->A_val); + tfree(lp->b); + tfree(lp->c); + tfree(lp->l); + tfree(lp->u); + tfree(lp->head); + tfree(lp->flag); + return; +} + +/* eof */ -- cgit