From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/simplex/spychuzc.c | 567 +++++++++++++++++++++++++ 1 file changed, 567 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/simplex/spychuzc.c (limited to 'test/monniaux/glpk-4.65/src/simplex/spychuzc.c') diff --git a/test/monniaux/glpk-4.65/src/simplex/spychuzc.c b/test/monniaux/glpk-4.65/src/simplex/spychuzc.c new file mode 100644 index 00000000..b9221298 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/simplex/spychuzc.c @@ -0,0 +1,567 @@ +/* spychuzc.c */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2015-2018 Andrew Makhorin, Department for Applied +* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights +* reserved. E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#include "env.h" +#include "spychuzc.h" + +/*********************************************************************** +* spy_chuzc_std - choose non-basic variable (dual textbook ratio test) +* +* This routine implements an improved dual textbook ratio test to +* choose non-basic variable xN[q]. +* +* Current reduced costs of non-basic variables should be placed in the +* array locations d[1], ..., d[n-m]. Note that d[j] is a value of dual +* basic variable lambdaN[j] in the current basis. +* +#if 0 (* 14/III-2016 *) +* The parameter s specifies the sign of bound violation for basic +* variable xB[p] chosen: s = +1.0 means that xB[p] violates its lower +* bound, so dual non-basic variable lambdaB[p] = lambda^+B[p] +* increases, and s = -1.0 means that xB[p] violates its upper bound, +* so dual non-basic variable lambdaB[p] = lambda^-B[p] decreases. +* (Thus, the dual ray parameter theta = s * lambdaB[p] >= 0.) +#else +* The parameter r specifies the bound violation for basic variable +* xB[p] chosen: +* +* r = lB[p] - beta[p] > 0 means that xB[p] violates its lower bound, +* so dual non-basic variable lambdaB[p] = lambda^+B[p] increases; and +* +* r = uB[p] - beta[p] < 0 means that xB[p] violates its upper bound, +* so dual non-basic variable lambdaB[p] = lambda^-B[p] decreases. +* +* (Note that r is the dual reduced cost of lambdaB[p].) +#endif +* +* Elements of p-th simplex table row t[p] = (t[p,j]) corresponding +* to basic variable xB[p] should be placed in the array locations +* trow[1], ..., trow[n-m]. +* +* The parameter tol_piv specifies a tolerance for elements of the +* simplex table row t[p]. If |t[p,j]| < tol_piv, dual basic variable +* lambdaN[j] is skipped, i.e. it is assumed that it does not depend on +* the dual ray parameter theta. +* +* The parameters tol and tol1 specify tolerances used to increase the +* choice freedom by simulating an artificial degeneracy as follows. +* If lambdaN[j] = lambda^+N[j] >= 0 and d[j] <= +delta[j], or if +* lambdaN[j] = lambda^-N[j] <= 0 and d[j] >= -delta[j], where +* delta[j] = tol + tol1 * |cN[j]|, cN[j] is objective coefficient at +* xN[j], then it is assumed that reduced cost d[j] is equal to zero. +* +* The routine determines the index 1 <= q <= n-m of non-basic variable +* xN[q], for which corresponding dual basic variable lambda^+N[j] or +* lambda^-N[j] reaches its zero bound first on increasing the dual ray +* parameter theta, and returns p on exit. And if theta may increase +* unlimitedly, the routine returns zero. */ + +int spy_chuzc_std(SPXLP *lp, const double d[/*1+n-m*/], +#if 0 /* 14/III-2016 */ + double s, const double trow[/*1+n-m*/], double tol_piv, +#else + double r, const double trow[/*1+n-m*/], double tol_piv, +#endif + double tol, double tol1) +{ int m = lp->m; + int n = lp->n; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + int j, k, q; + double alfa, biga, delta, teta, teta_min; +#if 0 /* 14/III-2016 */ + xassert(s == +1.0 || s == -1.0); +#else + double s; + xassert(r != 0.0); + s = (r > 0.0 ? +1.0 : -1.0); +#endif + /* nothing is chosen so far */ + q = 0, teta_min = DBL_MAX, biga = 0.0; + /* walk thru the list of non-basic variables */ + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + /* if xN[j] is fixed variable, skip it */ + if (l[k] == u[k]) + continue; + alfa = s * trow[j]; + if (alfa >= +tol_piv && !flag[j]) + { /* xN[j] is either free or has its lower bound active, so + * lambdaN[j] = d[j] >= 0 decreases down to zero */ + delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); + /* determine theta on which lambdaN[j] reaches zero */ + teta = (d[j] < +delta ? 0.0 : d[j] / alfa); + } + else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) + { /* xN[j] is either free or has its upper bound active, so + * lambdaN[j] = d[j] <= 0 increases up to zero */ + delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); + /* determine theta on which lambdaN[j] reaches zero */ + teta = (d[j] > -delta ? 0.0 : d[j] / alfa); + } + else + { /* lambdaN[j] cannot reach zero on increasing theta */ + continue; + } + /* choose non-basic variable xN[q] by corresponding dual basic + * variable lambdaN[q] for which theta is minimal */ + xassert(teta >= 0.0); + alfa = (alfa >= 0.0 ? +alfa : -alfa); + if (teta_min > teta || (teta_min == teta && biga < alfa)) + q = j, teta_min = teta, biga = alfa; + } + return q; +} + +/*********************************************************************** +* spy_chuzc_harris - choose non-basic var. (dual Harris' ratio test) +* +* This routine implements dual Harris' ratio test to choose non-basic +* variable xN[q]. +* +* All the parameters, except tol and tol1, as well as the returned +* value have the same meaning as for the routine spx_chuzr_std (see +* above). +* +* The parameters tol and tol1 specify tolerances on zero bound +* violations for reduced costs of non-basic variables. For reduced +* cost d[j] the tolerance is delta[j] = tol + tol1 |cN[j]|, where +* cN[j] is objective coefficient at non-basic variable xN[j]. */ + +int spy_chuzc_harris(SPXLP *lp, const double d[/*1+n-m*/], +#if 0 /* 14/III-2016 */ + double s, const double trow[/*1+n-m*/], double tol_piv, +#else + double r, const double trow[/*1+n-m*/], double tol_piv, +#endif + double tol, double tol1) +{ int m = lp->m; + int n = lp->n; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + int j, k, q; + double alfa, biga, delta, teta, teta_min; +#if 0 /* 14/III-2016 */ + xassert(s == +1.0 || s == -1.0); +#else + double s; + xassert(r != 0.0); + s = (r > 0.0 ? +1.0 : -1.0); +#endif + /*--------------------------------------------------------------*/ + /* first pass: determine teta_min for relaxed bounds */ + /*--------------------------------------------------------------*/ + teta_min = DBL_MAX; + /* walk thru the list of non-basic variables */ + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + /* if xN[j] is fixed variable, skip it */ + if (l[k] == u[k]) + continue; + alfa = s * trow[j]; + if (alfa >= +tol_piv && !flag[j]) + { /* xN[j] is either free or has its lower bound active, so + * lambdaN[j] = d[j] >= 0 decreases down to zero */ + delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); + /* determine theta on which lambdaN[j] reaches -delta */ + teta = ((d[j] < 0.0 ? 0.0 : d[j]) + delta) / alfa; + } + else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) + { /* xN[j] is either free or has its upper bound active, so + * lambdaN[j] = d[j] <= 0 increases up to zero */ + delta = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); + /* determine theta on which lambdaN[j] reaches +delta */ + teta = ((d[j] > 0.0 ? 0.0 : d[j]) - delta) / alfa; + } + else + { /* lambdaN[j] cannot reach zero on increasing theta */ + continue; + } + xassert(teta >= 0.0); + if (teta_min > teta) + teta_min = teta; + } + /*--------------------------------------------------------------*/ + /* second pass: choose non-basic variable xN[q] */ + /*--------------------------------------------------------------*/ + if (teta_min == DBL_MAX) + { /* theta may increase unlimitedly */ + q = 0; + goto done; + } + /* nothing is chosen so far */ + q = 0, biga = 0.0; + /* walk thru the list of non-basic variables */ + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + /* if xN[j] is fixed variable, skip it */ + if (l[k] == u[k]) + continue; + alfa = s * trow[j]; + if (alfa >= +tol_piv && !flag[j]) + { /* xN[j] is either free or has its lower bound active, so + * lambdaN[j] = d[j] >= 0 decreases down to zero */ + /* determine theta on which lambdaN[j] reaches zero */ + teta = d[j] / alfa; + } + else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) + { /* xN[j] is either free or has its upper bound active, so + * lambdaN[j] = d[j] <= 0 increases up to zero */ + /* determine theta on which lambdaN[j] reaches zero */ + teta = d[j] / alfa; + } + else + { /* lambdaN[j] cannot reach zero on increasing theta */ + continue; + } + /* choose non-basic variable for which theta is not greater + * than theta_min determined for relaxed bounds and which has + * best (largest in magnitude) pivot */ + alfa = (alfa >= 0.0 ? +alfa : -alfa); + if (teta <= teta_min && biga < alfa) + q = j, biga = alfa; + } + /* something must be chosen */ + xassert(1 <= q && q <= n-m); +done: return q; +} + +#if 0 /* 23/III-2016 */ +/*********************************************************************** +* spy_eval_bp - determine dual objective function break-points +* +* This routine determines the dual objective function break-points. +* +* The parameters lp, d, r, trow, and tol_piv have the same meaning as +* for the routine spx_chuzc_std (see above). +* +* On exit the routine stores the break-points determined to the array +* elements bp[1], ..., bp[num], where 0 <= num <= n-m is the number of +* break-points returned by the routine. +* +* The break-points stored in the array bp are ordered by ascending +* the ray parameter teta >= 0. The break-points numbered 1, ..., num-1 +* always correspond to non-basic non-fixed variables xN[j] of primal +* LP having both lower and upper bounds while the last break-point +* numbered num may correspond to a non-basic variable having only one +* lower or upper bound, if such variable prevents further increasing +* of the ray parameter teta. Besides, the routine includes in the +* array bp only the break-points that correspond to positive increment +* of the dual objective. */ + +static int CDECL fcmp(const void *v1, const void *v2) +{ const SPYBP *p1 = v1, *p2 = v2; + if (p1->teta < p2->teta) + return -1; + else if (p1->teta > p2->teta) + return +1; + else + return 0; +} + +int spy_eval_bp(SPXLP *lp, const double d[/*1+n-m*/], + double r, const double trow[/*1+n-m*/], double tol_piv, + SPYBP bp[/*1+n-m*/]) +{ int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + int j, j_max, k, t, nnn, num; + double s, alfa, teta, teta_max, dz, v; + xassert(r != 0.0); + s = (r > 0.0 ? +1.0 : -1.0); + /* build the list of all dual basic variables lambdaN[j] that + * can reach zero on increasing the ray parameter teta >= 0 */ + num = 0; + /* walk thru the list of non-basic variables */ + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + /* if xN[j] is fixed variable, skip it */ + if (l[k] == u[k]) + continue; + alfa = s * trow[j]; + if (alfa >= +tol_piv && !flag[j]) + { /* xN[j] is either free or has its lower bound active, so + * lambdaN[j] = d[j] >= 0 decreases down to zero */ + /* determine teta[j] on which lambdaN[j] reaches zero */ + teta = (d[j] < 0.0 ? 0.0 : d[j] / alfa); + } + else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) + { /* xN[j] is either free or has its upper bound active, so + * lambdaN[j] = d[j] <= 0 increases up to zero */ + /* determine teta[j] on which lambdaN[j] reaches zero */ + teta = (d[j] > 0.0 ? 0.0 : d[j] / alfa); + } + else + { /* lambdaN[j] cannot reach zero on increasing teta */ + continue; + } + /* add lambdaN[j] to the list */ + num++; + bp[num].j = j; + bp[num].teta = teta; + } + if (num == 0) + { /* dual unboundedness */ + goto done; + } + /* determine "blocking" dual basic variable lambdaN[j_max] that + * prevents increasing teta more than teta_max */ + j_max = 0, teta_max = DBL_MAX; + for (t = 1; t <= num; t++) + { j = bp[t].j; + k = head[m+j]; /* x[k] = xN[j] */ + if (l[k] == -DBL_MAX || u[k] == +DBL_MAX) + { /* lambdaN[j] cannot intersect zero */ + if (j_max == 0 + || teta_max > bp[t].teta + || (teta_max == bp[t].teta + && fabs(trow[j_max]) < fabs(trow[j]))) + j_max = j, teta_max = bp[t].teta; + } + } + /* keep in the list only dual basic variables lambdaN[j] that + * correspond to primal double-bounded variables xN[j] and whose + * teta[j] is not greater than teta_max */ + nnn = 0; + for (t = 1; t <= num; t++) + { j = bp[t].j; + k = head[m+j]; /* x[k] = xN[j] */ + if (l[k] != -DBL_MAX && u[k] != +DBL_MAX + && bp[t].teta <= teta_max) + { nnn++; + bp[nnn].j = j; + bp[nnn].teta = bp[t].teta; + } + } + num = nnn; + /* sort break-points by ascending teta[j] */ + qsort(&bp[1], num, sizeof(SPYBP), fcmp); + /* add lambdaN[j_max] to the end of the list */ + if (j_max != 0) + { xassert(num < n-m); + num++; + bp[num].j = j_max; + bp[num].teta = teta_max; + } + /* compute increments of the dual objective at all break-points + * (relative to its value at teta = 0) */ + dz = 0.0; /* dual objective increment */ + v = fabs(r); /* dual objective slope d zeta / d teta */ + for (t = 1; t <= num; t++) + { /* compute increment at current break-point */ + dz += v * (bp[t].teta - (t == 1 ? 0.0 : bp[t-1].teta)); + if (dz < 0.001) + { /* break-point with non-positive increment reached */ + num = t - 1; + break; + } + bp[t].dz = dz; + /* compute next slope on the right to current break-point */ + if (t < num) + { j = bp[t].j; + k = head[m+j]; /* x[k] = xN[j] */ + xassert(-DBL_MAX < l[k] && l[k] < u[k] && u[k] < +DBL_MAX); + v -= fabs(trow[j]) * (u[k] - l[k]); + } + } +done: return num; +} +#endif + +/*********************************************************************** +* spy_ls_eval_bp - determine dual objective function break-points +* +* This routine determines the dual objective function break-points. +* +* The parameters lp, d, r, trow, and tol_piv have the same meaning as +* for the routine spx_chuzc_std (see above). +* +* The routine stores the break-points determined to the array elements +* bp[1], ..., bp[nbp] in *arbitrary* order, where 0 <= nbp <= n-m is +* the number of break-points returned by the routine on exit. */ + +int spy_ls_eval_bp(SPXLP *lp, const double d[/*1+n-m*/], + double r, const double trow[/*1+n-m*/], double tol_piv, + SPYBP bp[/*1+n-m*/]) +{ int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + int j, k, t, nnn, nbp; + double s, alfa, teta, teta_max; + xassert(r != 0.0); + s = (r > 0.0 ? +1.0 : -1.0); + /* build the list of all dual basic variables lambdaN[j] that + * can reach zero on increasing the ray parameter teta >= 0 */ + nnn = 0, teta_max = DBL_MAX; + /* walk thru the list of non-basic variables */ + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + /* if xN[j] is fixed variable, skip it */ + if (l[k] == u[k]) + continue; + alfa = s * trow[j]; + if (alfa >= +tol_piv && !flag[j]) + { /* xN[j] is either free or has its lower bound active, so + * lambdaN[j] = d[j] >= 0 decreases down to zero */ + /* determine teta[j] on which lambdaN[j] reaches zero */ + teta = (d[j] < 0.0 ? 0.0 : d[j] / alfa); + /* if xN[j] has no upper bound, lambdaN[j] cannot become + * negative and thereby blocks further increasing teta */ + if (u[k] == +DBL_MAX && teta_max > teta) + teta_max = teta; + } + else if (alfa <= -tol_piv && (l[k] == -DBL_MAX || flag[j])) + { /* xN[j] is either free or has its upper bound active, so + * lambdaN[j] = d[j] <= 0 increases up to zero */ + /* determine teta[j] on which lambdaN[j] reaches zero */ + teta = (d[j] > 0.0 ? 0.0 : d[j] / alfa); + /* if xN[j] has no lower bound, lambdaN[j] cannot become + * positive and thereby blocks further increasing teta */ + if (l[k] == -DBL_MAX && teta_max > teta) + teta_max = teta; + } + else + { /* lambdaN[j] cannot reach zero on increasing teta */ + continue; + } + /* add lambdaN[j] to the list */ + nnn++; + bp[nnn].j = j; + bp[nnn].teta = teta; + } + /* remove from the list all dual basic variables lambdaN[j], for + * which teta[j] > teta_max */ + nbp = 0; + for (t = 1; t <= nnn; t++) + { if (bp[t].teta <= teta_max + 1e-6) + { nbp++; + bp[nbp].j = bp[t].j; + bp[nbp].teta = bp[t].teta; + } + } + return nbp; +} + +/*********************************************************************** +* spy_ls_select_bp - select and process dual objective break-points +* +* This routine selects a next portion of the dual objective function +* break-points and processes them. +* +* On entry to the routine it is assumed that break-points bp[1], ..., +* bp[num] are already processed, and slope is the dual objective slope +* to the right of the last processed break-point bp[num]. (Initially, +* when num = 0, slope should be specified as fabs(r), where r has the +* same meaning as above.) +* +* The routine selects break-points among bp[num+1], ..., bp[nbp], for +* which teta <= teta_lim, and moves these break-points to the array +* elements bp[num+1], ..., bp[num1], where num <= num1 <= n-m is the +* new number of processed break-points returned by the routine on +* exit. Then the routine sorts these break-points by ascending teta +* and computes the change of the dual objective function relative to +* its value at teta = 0. +* +* On exit the routine also replaces the parameter slope with a new +* value that corresponds to the new last break-point bp[num1]. */ + +static int CDECL fcmp(const void *v1, const void *v2) +{ const SPYBP *p1 = v1, *p2 = v2; + if (p1->teta < p2->teta) + return -1; + else if (p1->teta > p2->teta) + return +1; + else + return 0; +} + +int spy_ls_select_bp(SPXLP *lp, const double trow[/*1+n-m*/], + int nbp, SPYBP bp[/*1+n-m*/], int num, double *slope, double + teta_lim) +{ int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + int j, k, t, num1; + double teta, dz; + xassert(0 <= num && num <= nbp && nbp <= n-m); + /* select a new portion of break-points */ + num1 = num; + for (t = num+1; t <= nbp; t++) + { if (bp[t].teta <= teta_lim) + { /* move break-point to the beginning of the new portion */ + num1++; + j = bp[num1].j, teta = bp[num1].teta; + bp[num1].j = bp[t].j, bp[num1].teta = bp[t].teta; + bp[t].j = j, bp[t].teta = teta; + } + } + /* sort new break-points bp[num+1], ..., bp[num1] by ascending + * the ray parameter teta */ + if (num1 - num > 1) + qsort(&bp[num+1], num1 - num, sizeof(SPYBP), fcmp); + /* calculate the dual objective change at the new break-points */ + for (t = num+1; t <= num1; t++) + { /* calculate the dual objective change relative to its value + * at break-point bp[t-1] */ + if (*slope == -DBL_MAX) + dz = -DBL_MAX; + else + dz = (*slope) * + (bp[t].teta - (t == 1 ? 0.0 : bp[t-1].teta)); + /* calculate the dual objective change relative to its value + * at teta = 0 */ + if (dz == -DBL_MAX) + bp[t].dz = -DBL_MAX; + else + bp[t].dz = (t == 1 ? 0.0 : bp[t-1].dz) + dz; + /* calculate a new slope of the dual objective to the right of + * the current break-point bp[t] */ + if (*slope != -DBL_MAX) + { j = bp[t].j; + k = head[m+j]; /* x[k] = xN[j] */ + if (l[k] == -DBL_MAX || u[k] == +DBL_MAX) + *slope = -DBL_MAX; /* blocking break-point reached */ + else + { xassert(l[k] < u[k]); + *slope -= fabs(trow[j]) * (u[k] - l[k]); + } + } + } + return num1; +} + +/* eof */ -- cgit