From feb8ebaeb76fa1c94de2dd7c4e5a0999b313f8c6 Mon Sep 17 00:00:00 2001 From: David Monniaux Date: Thu, 6 Jun 2019 20:09:32 +0200 Subject: GLPK 4.65 --- test/monniaux/glpk-4.65/src/simplex/spydual.c | 2101 +++++++++++++++++++++++++ 1 file changed, 2101 insertions(+) create mode 100644 test/monniaux/glpk-4.65/src/simplex/spydual.c (limited to 'test/monniaux/glpk-4.65/src/simplex/spydual.c') diff --git a/test/monniaux/glpk-4.65/src/simplex/spydual.c b/test/monniaux/glpk-4.65/src/simplex/spydual.c new file mode 100644 index 00000000..89d98db9 --- /dev/null +++ b/test/monniaux/glpk-4.65/src/simplex/spydual.c @@ -0,0 +1,2101 @@ +/* spydual.c */ + +/*********************************************************************** +* This code is part of GLPK (GNU Linear Programming Kit). +* +* Copyright (C) 2015-2017 Andrew Makhorin, Department for Applied +* Informatics, Moscow Aviation Institute, Moscow, Russia. All rights +* reserved. E-mail: . +* +* GLPK is free software: you can redistribute it and/or modify it +* under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* GLPK is distributed in the hope that it will be useful, but WITHOUT +* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY +* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public +* License for more details. +* +* You should have received a copy of the GNU General Public License +* along with GLPK. If not, see . +***********************************************************************/ + +#if 1 /* 18/VII-2017 */ +#define SCALE_Z 1 +#endif + +#include "env.h" +#include "simplex.h" +#include "spxat.h" +#include "spxnt.h" +#include "spxprob.h" +#include "spychuzc.h" +#include "spychuzr.h" +#if 0 /* 11/VI-2017 */ +#if 1 /* 29/III-2016 */ +#include "fvs.h" +#endif +#endif + +#define CHECK_ACCURACY 0 +/* (for debugging) */ + +struct csa +{ /* common storage area */ + SPXLP *lp; + /* LP problem data and its (current) basis; this LP has m rows + * and n columns */ + int dir; + /* original optimization direction: + * +1 - minimization + * -1 - maximization */ +#if SCALE_Z + double fz; + /* factor used to scale original objective */ +#endif + double *orig_b; /* double orig_b[1+m]; */ + /* copy of original right-hand sides */ + double *orig_c; /* double orig_c[1+n]; */ + /* copy of original objective coefficients */ + double *orig_l; /* double orig_l[1+n]; */ + /* copy of original lower bounds */ + double *orig_u; /* double orig_u[1+n]; */ + /* copy of original upper bounds */ + SPXAT *at; + /* mxn-matrix A of constraint coefficients, in sparse row-wise + * format (NULL if not used) */ + SPXNT *nt; + /* mx(n-m)-matrix N composed of non-basic columns of constraint + * matrix A, in sparse row-wise format (NULL if not used) */ + int phase; + /* search phase: + * 0 - not determined yet + * 1 - searching for dual feasible solution + * 2 - searching for optimal solution */ + double *beta; /* double beta[1+m]; */ + /* beta[i] is primal value of basic variable xB[i] */ + int beta_st; + /* status of the vector beta: + * 0 - undefined + * 1 - just computed + * 2 - updated */ + double *d; /* double d[1+n-m]; */ + /* d[j] is reduced cost of non-basic variable xN[j] */ + int d_st; + /* status of the vector d: + * 0 - undefined + * 1 - just computed + * 2 - updated */ + SPYSE *se; + /* dual projected steepest edge and Devex pricing data block + * (NULL if not used) */ +#if 0 /* 30/III-2016 */ + int num; + /* number of eligible basic variables */ + int *list; /* int list[1+m]; */ + /* list[1], ..., list[num] are indices i of eligible basic + * variables xB[i] */ +#else + FVS r; /* FVS r[1:m]; */ + /* vector of primal infeasibilities */ + /* r->nnz = num; r->ind = list */ + /* vector r has the same status as vector beta (see above) */ +#endif + int p; + /* xB[p] is a basic variable chosen to leave the basis */ +#if 0 /* 29/III-2016 */ + double *trow; /* double trow[1+n-m]; */ +#else + FVS trow; /* FVS trow[1:n-m]; */ +#endif + /* p-th (pivot) row of the simplex table */ +#if 1 /* 16/III-2016 */ + SPYBP *bp; /* SPYBP bp[1+n-m]; */ + /* dual objective break-points */ +#endif + int q; + /* xN[q] is a non-basic variable chosen to enter the basis */ +#if 0 /* 29/III-2016 */ + double *tcol; /* double tcol[1+m]; */ +#else + FVS tcol; /* FVS tcol[1:m]; */ +#endif + /* q-th (pivot) column of the simplex table */ + double *work; /* double work[1+m]; */ + /* working array */ + double *work1; /* double work1[1+n-m]; */ + /* another working array */ +#if 0 /* 11/VI-2017 */ +#if 1 /* 31/III-2016 */ + FVS wrow; /* FVS wrow[1:n-m]; */ + FVS wcol; /* FVS wcol[1:m]; */ + /* working sparse vectors */ +#endif +#endif + int p_stat, d_stat; + /* primal and dual solution statuses */ + /*--------------------------------------------------------------*/ + /* control parameters (see struct glp_smcp) */ + int msg_lev; + /* message level */ + int dualp; + /* if this flag is set, report failure in case of instability */ +#if 0 /* 16/III-2016 */ + int harris; + /* dual ratio test technique: + * 0 - textbook ratio test + * 1 - Harris' two pass ratio test */ +#else + int r_test; + /* dual ratio test technique: + * GLP_RT_STD - textbook ratio test + * GLP_RT_HAR - Harris' two pass ratio test + * GLP_RT_FLIP - long-step (flip-flop) ratio test */ +#endif + double tol_bnd, tol_bnd1; + /* primal feasibility tolerances */ + double tol_dj, tol_dj1; + /* dual feasibility tolerances */ + double tol_piv; + /* pivot tolerance */ + double obj_lim; + /* objective limit */ + int it_lim; + /* iteration limit */ + int tm_lim; + /* time limit, milliseconds */ + int out_frq; +#if 0 /* 15/VII-2017 */ + /* display output frequency, iterations */ +#else + /* display output frequency, milliseconds */ +#endif + int out_dly; + /* display output delay, milliseconds */ + /*--------------------------------------------------------------*/ + /* working parameters */ + double tm_beg; + /* time value at the beginning of the search */ + int it_beg; + /* simplex iteration count at the beginning of the search */ + int it_cnt; + /* simplex iteration count; it increases by one every time the + * basis changes */ + int it_dpy; + /* simplex iteration count at most recent display output */ +#if 1 /* 15/VII-2017 */ + double tm_dpy; + /* time value at most recent display output */ +#endif + int inv_cnt; + /* basis factorization count since most recent display output */ +#if 1 /* 11/VII-2017 */ + int degen; + /* count of successive degenerate iterations; this count is used + * to detect stalling */ +#endif +#if 1 /* 23/III-2016 */ + int ns_cnt, ls_cnt; + /* normal and long-step iteration count */ +#endif +}; + +/*********************************************************************** +* check_flags - check correctness of active bound flags +* +* This routine checks that flags specifying active bounds of all +* non-basic variables are correct. +* +* NOTE: It is important to note that if bounds of variables have been +* changed, active bound flags should be corrected accordingly. */ + +static void check_flags(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + int j, k; + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + if (l[k] == -DBL_MAX && u[k] == +DBL_MAX) + xassert(!flag[j]); + else if (l[k] != -DBL_MAX && u[k] == +DBL_MAX) + xassert(!flag[j]); + else if (l[k] == -DBL_MAX && u[k] != +DBL_MAX) + xassert(flag[j]); + else if (l[k] == u[k]) + xassert(!flag[j]); + } + return; +} + +/*********************************************************************** +* set_art_bounds - set artificial right-hand sides and bounds +* +* This routine sets artificial right-hand sides and artificial bounds +* for all variables to minimize the sum of dual infeasibilities on +* phase I. Given current reduced costs d = (d[j]) this routine also +* sets active artificial bounds of non-basic variables to provide dual +* feasibility (this is always possible because all variables have both +* lower and upper artificial bounds). */ + +static void set_art_bounds(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *b = lp->b; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + double *d = csa->d; + int i, j, k; +#if 1 /* 31/III-2016: FIXME */ + /* set artificial right-hand sides */ + for (i = 1; i <= m; i++) + b[i] = 0.0; + /* set artificial bounds depending on types of variables */ + for (k = 1; k <= n; k++) + { if (csa->orig_l[k] == -DBL_MAX && csa->orig_u[k] == +DBL_MAX) + { /* force free variables to enter the basis */ + l[k] = -1e3, u[k] = +1e3; + } + else if (csa->orig_l[k] != -DBL_MAX && csa->orig_u[k] == +DBL_MAX) + l[k] = 0.0, u[k] = +1.0; + else if (csa->orig_l[k] == -DBL_MAX && csa->orig_u[k] != +DBL_MAX) + l[k] = -1.0, u[k] = 0.0; + else + l[k] = u[k] = 0.0; + } +#endif + /* set active artificial bounds for non-basic variables */ + xassert(csa->d_st == 1); + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + flag[j] = (l[k] != u[k] && d[j] < 0.0); + } + /* invalidate values of basic variables, since active bounds of + * non-basic variables have been changed */ + csa->beta_st = 0; + return; +} + +/*********************************************************************** +* set_orig_bounds - restore original right-hand sides and bounds +* +* This routine restores original right-hand sides and original bounds +* for all variables. This routine also sets active original bounds for +* non-basic variables; for double-bounded non-basic variables current +* reduced costs d = (d[j]) are used to decide which bound (lower or +* upper) should be made active. */ + +static void set_orig_bounds(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *b = lp->b; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + double *d = csa->d; + int j, k; + /* restore original right-hand sides */ + memcpy(b, csa->orig_b, (1+m) * sizeof(double)); + /* restore original bounds of all variables */ + memcpy(l, csa->orig_l, (1+n) * sizeof(double)); + memcpy(u, csa->orig_u, (1+n) * sizeof(double)); + /* set active original bounds for non-basic variables */ + xassert(csa->d_st == 1); + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + if (l[k] == -DBL_MAX && u[k] == +DBL_MAX) + flag[j] = 0; + else if (l[k] != -DBL_MAX && u[k] == +DBL_MAX) + flag[j] = 0; + else if (l[k] == -DBL_MAX && u[k] != +DBL_MAX) + flag[j] = 1; + else if (l[k] != u[k]) + flag[j] = (d[j] < 0.0); + else + flag[j] = 0; + } + /* invalidate values of basic variables, since active bounds of + * non-basic variables have been changed */ + csa->beta_st = 0; + return; +} + +/*********************************************************************** +* check_feas - check dual feasibility of basic solution +* +* This routine checks that reduced costs of all non-basic variables +* d = (d[j]) have correct signs. +* +* Reduced cost d[j] is considered as having correct sign within the +* specified tolerance depending on status of non-basic variable xN[j] +* if one of the following conditions is met: +* +* xN[j] is free -eps <= d[j] <= +eps +* +* xN[j] has its lower bound active d[j] >= -eps +* +* xN[j] has its upper bound active d[j] <= +eps +* +* xN[j] is fixed d[j] has any value +* +* where eps = tol + tol1 * |cN[j]|, cN[j] is the objective coefficient +* at xN[j]. (See also the routine spx_chuzc_sel.) +* +* The flag recov allows the routine to recover dual feasibility by +* changing active bounds of non-basic variables. (For example, if +* xN[j] has its lower bound active and d[j] < -eps, the feasibility +* can be recovered by making xN[j] active on its upper bound.) +* +* If the basic solution is dual feasible, the routine returns zero. +* If the basic solution is dual infeasible, but its dual feasibility +* can be recovered (or has been recovered, if the flag recov is set), +* the routine returns a negative value. Otherwise, the routine returns +* the number j of some non-basic variable xN[j], whose reduced cost +* d[j] is dual infeasible and cannot be recovered. */ + +static int check_feas(struct csa *csa, double tol, double tol1, + int recov) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + double *d = csa->d; + int j, k, ret = 0; + double eps; + /* reduced costs should be just computed */ + xassert(csa->d_st == 1); + /* walk thru list of non-basic variables */ + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + if (l[k] == u[k]) + { /* xN[j] is fixed variable; skip it */ + continue; + } + /* determine absolute tolerance eps[j] */ + eps = tol + tol1 * (c[k] >= 0.0 ? +c[k] : -c[k]); + /* check dual feasibility of xN[j] */ + if (d[j] > +eps) + { /* xN[j] should have its lower bound active */ + if (l[k] == -DBL_MAX || flag[j]) + { /* but it either has no lower bound or its lower bound + * is inactive */ + if (l[k] == -DBL_MAX) + { /* cannot recover, since xN[j] has no lower bound */ + ret = j; + break; + } + /* recovering is possible */ + if (recov) + flag[j] = 0; + ret = -1; + } + } + else if (d[j] < -eps) + { /* xN[j] should have its upper bound active */ + if (!flag[j]) + { /* but it either has no upper bound or its upper bound + * is inactive */ + if (u[k] == +DBL_MAX) + { /* cannot recover, since xN[j] has no upper bound */ + ret = j; + break; + } + /* recovering is possible */ + if (recov) + flag[j] = 1; + ret = -1; + } + } + } + if (recov && ret) + { /* invalidate values of basic variables, since active bounds + * of non-basic variables have been changed */ + csa->beta_st = 0; + } + return ret; +} + +#if CHECK_ACCURACY +/*********************************************************************** +* err_in_vec - compute maximal relative error between two vectors +* +* This routine computes and returns maximal relative error between +* n-vectors x and y: +* +* err_max = max |x[i] - y[i]| / (1 + |x[i]|). +* +* NOTE: This routine is intended only for debugging purposes. */ + +static double err_in_vec(int n, const double x[], const double y[]) +{ int i; + double err, err_max; + err_max = 0.0; + for (i = 1; i <= n; i++) + { err = fabs(x[i] - y[i]) / (1.0 + fabs(x[i])); + if (err_max < err) + err_max = err; + } + return err_max; +} +#endif + +#if CHECK_ACCURACY +/*********************************************************************** +* err_in_beta - compute maximal relative error in vector beta +* +* This routine computes and returns maximal relative error in vector +* of values of basic variables beta = (beta[i]). +* +* NOTE: This routine is intended only for debugging purposes. */ + +static double err_in_beta(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + double err, *beta; + beta = talloc(1+m, double); + spx_eval_beta(lp, beta); + err = err_in_vec(m, beta, csa->beta); + tfree(beta); + return err; +} +#endif + +#if CHECK_ACCURACY +static double err_in_r(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int i, k; + double err, *r; + r = talloc(1+m, double); + for (i = 1; i <= m; i++) + { k = lp->head[i]; + if (csa->beta[i] < lp->l[k]) + r[i] = lp->l[k] - csa->beta[i]; + else if (csa->beta[i] > lp->u[k]) + r[i] = lp->u[k] - csa->beta[i]; + else + r[i] = 0.0; + +if (fabs(r[i] - csa->r.vec[i]) > 1e-6) +printf("i = %d; r = %g; csa->r = %g\n", i, r[i], csa->r.vec[i]); + + + } + err = err_in_vec(m, r, csa->r.vec); + tfree(r); + return err; +} +#endif + +#if CHECK_ACCURACY +/*********************************************************************** +* err_in_d - compute maximal relative error in vector d +* +* This routine computes and returns maximal relative error in vector +* of reduced costs of non-basic variables d = (d[j]). +* +* NOTE: This routine is intended only for debugging purposes. */ + +static double err_in_d(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + int j; + double err, *pi, *d; + pi = talloc(1+m, double); + d = talloc(1+n-m, double); + spx_eval_pi(lp, pi); + for (j = 1; j <= n-m; j++) + d[j] = spx_eval_dj(lp, pi, j); + err = err_in_vec(n-m, d, csa->d); + tfree(pi); + tfree(d); + return err; +} +#endif + +#if CHECK_ACCURACY +/*********************************************************************** +* err_in_gamma - compute maximal relative error in vector gamma +* +* This routine computes and returns maximal relative error in vector +* of projected steepest edge weights gamma = (gamma[j]). +* +* NOTE: This routine is intended only for debugging purposes. */ + +static double err_in_gamma(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + SPYSE *se = csa->se; + int i; + double err, *gamma; + xassert(se != NULL); +gamma = talloc(1+m, double); + for (i = 1; i <= m; i++) + gamma[i] = spy_eval_gamma_i(lp, se, i); + err = err_in_vec(m, gamma, se->gamma); + tfree(gamma); + return err; +} +#endif + +#if CHECK_ACCURACY +/*********************************************************************** +* check_accuracy - check accuracy of basic solution components +* +* This routine checks accuracy of current basic solution components. +* +* NOTE: This routine is intended only for debugging purposes. */ + +static void check_accuracy(struct csa *csa) +{ double e_beta, e_r, e_d, e_gamma; + e_beta = err_in_beta(csa); + e_r = err_in_r(csa); + e_d = err_in_d(csa); + if (csa->se == NULL) + e_gamma = 0.; + else + e_gamma = err_in_gamma(csa); + xprintf("e_beta = %10.3e; e_r = %10.3e; e_d = %10.3e; e_gamma = %" + "10.3e\n", e_beta, e_r, e_d, e_gamma); + xassert(e_beta <= 1e-5 && e_d <= 1e-5 && e_gamma <= 1e-3); + return; +} +#endif + +#if 1 /* 30/III-2016 */ +static +void spy_eval_r(SPXLP *lp, const double beta[/*1+m*/], double tol, + double tol1, FVS *r) +{ /* this routine computes the vector of primal infeasibilities: + * + * ( lB[i] - beta[i] > 0, if beta[i] < lb[i] + * r[i] = { 0, if lb[i] <= beta[i] <= ub[i] + * ( ub[i] - beta[i] < 0, if beta[i] > ub[i] + * + * (this routine replaces spy_chuzr_sel) */ + int m = lp->m; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + int *ind = r->ind; + double *vec = r->vec; + int i, k, nnz = 0; + double lk, uk, eps; + xassert(r->n == m); + /* walk thru the list of basic variables */ + for (i = 1; i <= m; i++) + { vec[i] = 0.0; + k = head[i]; /* x[k] = xB[i] */ + lk = l[k], uk = u[k]; + /* check primal feasibility */ + if (beta[i] < lk) + { /* determine absolute tolerance eps1[i] */ + eps = tol + tol1 * (lk >= 0.0 ? +lk : -lk); + if (beta[i] < lk - eps) + { /* lower bound is violated */ + ind[++nnz] = i; + vec[i] = lk - beta[i]; + } + } + else if (beta[i] > uk) + { /* determine absolute tolerance eps2[i] */ + eps = tol + tol1 * (uk >= 0.0 ? +uk : -uk); + if (beta[i] > uk + eps) + { /* upper bound is violated */ + ind[++nnz] = i; + vec[i] = uk - beta[i]; + } + } + } + r->nnz = nnz; + return; +} +#endif + +/*********************************************************************** +* choose_pivot - choose xB[p] and xN[q] +* +* Given the list of eligible basic variables this routine first +* chooses basic variable xB[p]. This choice is always possible, +* because the list is assumed to be non-empty. Then the routine +* computes p-th row T[p,*] of the simplex table T[i,j] and chooses +* non-basic variable xN[q]. If the pivot T[p,q] is small in magnitude, +* the routine attempts to choose another xB[p] and xN[q] in order to +* avoid badly conditioned adjacent bases. +* +* If the normal choice was made, the routine returns zero. Otherwise, +* if the long-step choice was made, the routine returns non-zero. */ + +#ifdef TIMING /* 31/III-2016 */ + +#include "choose_pivot.c" + +#else + +#define MIN_RATIO 0.0001 + +static int choose_pivot(struct csa *csa) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + SPXAT *at = csa->at; + SPXNT *nt = csa->nt; + double *beta = csa->beta; + double *d = csa->d; + SPYSE *se = csa->se; +#if 0 /* 30/III-2016 */ + int *list = csa->list; +#else + int *list = csa->r.ind; +#endif + double *rho = csa->work; + double *trow = csa->work1; + SPYBP *bp = csa->bp; + double tol_piv = csa->tol_piv; + int try, nnn, j, k, p, q, t, t_best, nbp, ret; + double big, temp, r, best_ratio, dz_best; + xassert(csa->beta_st); + xassert(csa->d_st); +more: /* initial number of eligible basic variables */ +#if 0 /* 30/III-2016 */ + nnn = csa->num; +#else + nnn = csa->r.nnz; +#endif + /* nothing has been chosen so far */ + csa->p = 0; + best_ratio = 0.0; + try = ret = 0; +try: /* choose basic variable xB[p] */ + xassert(nnn > 0); + try++; + if (se == NULL) + { /* dual Dantzig's rule */ + p = spy_chuzr_std(lp, beta, nnn, list); + } + else + { /* dual projected steepest edge */ + p = spy_chuzr_pse(lp, se, beta, nnn, list); + } + xassert(1 <= p && p <= m); + /* compute p-th row of inv(B) */ + spx_eval_rho(lp, p, rho); + /* compute p-th row of the simplex table */ + if (at != NULL) + spx_eval_trow1(lp, at, rho, trow); + else + spx_nt_prod(lp, nt, trow, 1, -1.0, rho); +#if 1 /* 23/III-2016 */ + /* big := max(1, |trow[1]|, ..., |trow[n-m]|) */ + big = 1.0; + for (j = 1; j <= n-m; j++) + { temp = trow[j]; + if (temp < 0.0) + temp = - temp; + if (big < temp) + big = temp; + } +#else + /* this still puzzles me */ + big = 1.0; +#endif + /* choose non-basic variable xN[q] */ + k = head[p]; /* x[k] = xB[p] */ + xassert(beta[p] < l[k] || beta[p] > u[k]); + r = beta[p] < l[k] ? l[k] - beta[p] : u[k] - beta[p]; + if (csa->r_test == GLP_RT_FLIP && try <= 2) + { /* long-step ratio test */ +#if 0 /* 23/III-2016 */ + /* determine dual objective break-points */ + nbp = spy_eval_bp(lp, d, r, trow, tol_piv, bp); + if (nbp <= 1) + goto skip; + /* choose appropriate break-point */ + t_best = 0, dz_best = -DBL_MAX; + for (t = 1; t <= nbp; t++) + { if (fabs(trow[bp[t].j]) / big >= MIN_RATIO) + { if (dz_best < bp[t].dz) + t_best = t, dz_best = bp[t].dz; + } + } + if (t_best == 0) + goto skip; +#else + int t, num, num1; + double slope, teta_lim; + /* determine dual objective break-points */ + nbp = spy_ls_eval_bp(lp, d, r, trow, tol_piv, bp); + if (nbp < 2) + goto skip; + /* set initial slope */ + slope = fabs(r); + /* estimate initial teta_lim */ + teta_lim = DBL_MAX; + for (t = 1; t <= nbp; t++) + { if (teta_lim > bp[t].teta) + teta_lim = bp[t].teta; + } + xassert(teta_lim >= 0.0); + if (teta_lim < 1e-6) + teta_lim = 1e-6; + /* nothing has been chosen so far */ + t_best = 0, dz_best = 0.0, num = 0; + /* choose appropriate break-point */ + while (num < nbp) + { /* select and process a new portion of break-points */ + num1 = spy_ls_select_bp(lp, trow, nbp, bp, num, &slope, + teta_lim); + for (t = num+1; t <= num1; t++) + { if (fabs(trow[bp[t].j]) / big >= MIN_RATIO) + { if (dz_best < bp[t].dz) + t_best = t, dz_best = bp[t].dz; + } + } + if (slope < 0.0) + { /* the dual objective starts decreasing */ + break; + } + /* the dual objective continues increasing */ + num = num1; + teta_lim += teta_lim; + } + if (dz_best == 0.0) + goto skip; + xassert(1 <= t_best && t_best <= num1); +#endif + /* the choice has been made */ + csa->p = p; +#if 0 /* 29/III-2016 */ + memcpy(&csa->trow[1], &trow[1], (n-m) * sizeof(double)); +#else + memcpy(&csa->trow.vec[1], &trow[1], (n-m) * sizeof(double)); + fvs_gather_vec(&csa->trow, DBL_EPSILON); +#endif + csa->q = bp[t_best].j; + best_ratio = fabs(trow[bp[t_best].j]) / big; +#if 0 + xprintf("num = %d; t_best = %d; dz = %g\n", num, t_best, + bp[t_best].dz); +#endif + ret = 1; + goto done; +skip: ; + } + if (csa->r_test == GLP_RT_STD) + { /* textbook dual ratio test */ + q = spy_chuzc_std(lp, d, r, trow, tol_piv, + .30 * csa->tol_dj, .30 * csa->tol_dj1); + } + else + { /* Harris' two-pass dual ratio test */ + q = spy_chuzc_harris(lp, d, r, trow, tol_piv, + .35 * csa->tol_dj, .35 * csa->tol_dj1); + } + if (q == 0) + { /* dual unboundedness */ + csa->p = p; +#if 0 /* 29/III-2016 */ + memcpy(&csa->trow[1], &trow[1], (n-m) * sizeof(double)); +#else + memcpy(&csa->trow.vec[1], &trow[1], (n-m) * sizeof(double)); + fvs_gather_vec(&csa->trow, DBL_EPSILON); +#endif + csa->q = q; + best_ratio = 1.0; + goto done; + } + /* either keep previous choice or accept new choice depending on + * which one is better */ + if (best_ratio < fabs(trow[q]) / big) + { csa->p = p; +#if 0 /* 29/III-2016 */ + memcpy(&csa->trow[1], &trow[1], (n-m) * sizeof(double)); +#else + memcpy(&csa->trow.vec[1], &trow[1], (n-m) * sizeof(double)); + fvs_gather_vec(&csa->trow, DBL_EPSILON); +#endif + csa->q = q; + best_ratio = fabs(trow[q]) / big; + } + /* check if the current choice is acceptable */ + if (best_ratio >= MIN_RATIO || nnn == 1 || try == 5) + goto done; + /* try to choose other xB[p] and xN[q] */ + /* find xB[p] in the list */ + for (t = 1; t <= nnn; t++) + if (list[t] == p) break; + xassert(t <= nnn); + /* move xB[p] to the end of the list */ + list[t] = list[nnn], list[nnn] = p; + /* and exclude it from consideration */ + nnn--; + /* repeat the choice */ + goto try; +done: /* the choice has been made */ +#if 1 /* FIXME: currently just to avoid badly conditioned basis */ + if (best_ratio < .001 * MIN_RATIO) + { /* looks like this helps */ + if (bfd_get_count(lp->bfd) > 0) + return -1; + /* didn't help; last chance to improve the choice */ + if (tol_piv == csa->tol_piv) + { tol_piv *= 1000.; + goto more; + } + } +#endif +#if 1 /* FIXME */ + if (ret) + { /* invalidate basic solution components */ +#if 0 /* 28/III-2016 */ + csa->beta_st = csa->d_st = 0; +#else + /* dual solution remains valid */ + csa->beta_st = 0; +#endif + /* set double-bounded non-basic variables to opposite bounds + * for all break-points preceding the chosen one */ + for (t = 1; t < t_best; t++) + { k = head[m + bp[t].j]; + xassert(-DBL_MAX < l[k] && l[k] < u[k] && u[k] < +DBL_MAX); + lp->flag[bp[t].j] = !(lp->flag[bp[t].j]); + } + } +#endif + return ret; +} + +#endif + +/*********************************************************************** +* play_coef - play objective coefficients +* +* This routine is called after the reduced costs d[j] was updated and +* the basis was changed to the adjacent one. +* +* It is assumed that before updating all the reduced costs d[j] were +* strongly feasible, so in the adjacent basis d[j] remain feasible +* within a tolerance, i.e. if some d[j] violates its zero bound, the +* violation is insignificant. +* +* If some d[j] violates its zero bound, the routine changes (perturbs) +* objective coefficient cN[j] to provide d[j] = 0, i.e. to make all +* d[j] strongly feasible. Otherwise, if d[j] has a feasible value, the +* routine attempts to reduce (or remove) perturbation in cN[j] by +* shifting d[j] to its zero bound keeping strong feasibility. */ + +static void play_coef(struct csa *csa, int all) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *c = lp->c; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + char *flag = lp->flag; + double *orig_c = csa->orig_c; + double *d = csa->d; + const double *trow = csa->trow.vec; + /* this vector was used to update d = (d[j]) */ + int j, k; + static const double eps = 1e-9; + /* reduced costs d = (d[j]) should be valid */ + xassert(csa->d_st); + /* walk thru the list of non-basic variables xN = (xN[j]) */ + for (j = 1; j <= n-m; j++) + { if (all || trow[j] != 0.0) + { /* d[j] has changed in the adjacent basis */ + k = head[m+j]; /* x[k] = xN[j] */ + if (l[k] == u[k]) + { /* xN[j] is fixed variable */ + /* d[j] may have any sign */ + } + else if (l[k] == -DBL_MAX && u[k] == +DBL_MAX) + { /* xN[j] is free (unbounded) variable */ + /* strong feasibility means d[j] = 0 */ + c[k] -= d[j], d[j] = 0.0; + /* in this case dual degeneracy is not critical, since + * if xN[j] enters the basis, it never leaves it */ + } + else if (!flag[j]) + { /* xN[j] has its lower bound active */ + xassert(l[k] != -DBL_MAX); + /* first, we remove current perturbation to provide + * c[k] = orig_c[k] */ + d[j] -= c[k] - orig_c[k], c[k] = orig_c[k]; + /* strong feasibility means d[j] >= 0, but we provide + * d[j] >= +eps to prevent dual degeneracy */ + if (d[j] < +eps) + c[k] -= d[j] - eps, d[j] = +eps; + } + else + { /* xN[j] has its upper bound active */ + xassert(u[k] != +DBL_MAX); + /* similarly, we remove current perturbation to provide + * c[k] = orig_c[k] */ + d[j] -= c[k] - orig_c[k], c[k] = orig_c[k]; + /* strong feasibility means d[j] <= 0, but we provide + * d[j] <= -eps to prevent dual degeneracy */ + if (d[j] > -eps) + c[k] -= d[j] + eps, d[j] = -eps; + } + } + } + return; +} + +#if 1 /* 11/VII-2017 */ +static void remove_perturb(struct csa *csa) +{ /* remove perturbation */ + SPXLP *lp = csa->lp; + int n = lp->n; + double *c = lp->c; + double *orig_c = csa->orig_c; + memcpy(c, orig_c, (1+n) * sizeof(double)); + /* removing perturbation changes dual solution components */ + csa->phase = csa->d_st = 0; +#if 1 + if (csa->msg_lev >= GLP_MSG_ALL) + xprintf("Removing LP perturbation [%d]...\n", + csa->it_cnt); +#endif + return; +} +#endif + +/*********************************************************************** +* display - display search progress +* +* This routine displays some information about the search progress +* that includes: +* +* search phase; +* +* number of simplex iterations performed by the solver; +* +* original objective value (only on phase II); +* +* sum of (scaled) dual infeasibilities for original bounds; +* +* number of dual infeasibilities (phase I) or primal infeasibilities +* (phase II); +* +* number of basic factorizations since last display output. */ + +static void display(struct csa *csa, int spec) +{ SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + int *head = lp->head; + char *flag = lp->flag; + double *l = csa->orig_l; /* original lower bounds */ + double *u = csa->orig_u; /* original upper bounds */ + double *beta = csa->beta; + double *d = csa->d; + int j, k, nnn; + double sum; +#if 1 /* 15/VII-2017 */ + double tm_cur; +#endif + /* check if the display output should be skipped */ + if (csa->msg_lev < GLP_MSG_ON) goto skip; +#if 1 /* 15/VII-2017 */ + tm_cur = xtime(); +#endif + if (csa->out_dly > 0 && +#if 0 /* 15/VII-2017 */ + 1000.0 * xdifftime(xtime(), csa->tm_beg) < csa->out_dly) +#else + 1000.0 * xdifftime(tm_cur, csa->tm_beg) < csa->out_dly) +#endif + goto skip; + if (csa->it_cnt == csa->it_dpy) goto skip; +#if 0 /* 15/VII-2017 */ + if (!spec && csa->it_cnt % csa->out_frq != 0) goto skip; +#else + if (!spec && + 1000.0 * xdifftime(tm_cur, csa->tm_dpy) < csa->out_frq) + goto skip; +#endif + /* display search progress depending on search phase */ + switch (csa->phase) + { case 1: + /* compute sum and number of (scaled) dual infeasibilities + * for original bounds */ + sum = 0.0, nnn = 0; + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + if (d[j] > 0.0) + { /* xN[j] should have lower bound */ + if (l[k] == -DBL_MAX) + { sum += d[j]; + if (d[j] > +1e-7) + nnn++; + } + } + else if (d[j] < 0.0) + { /* xN[j] should have upper bound */ + if (u[k] == +DBL_MAX) + { sum -= d[j]; + if (d[j] < -1e-7) + nnn++; + } + } + } + /* on phase I variables have artificial bounds which are + * meaningless for original LP, so corresponding objective + * function value is also meaningless */ +#if 0 /* 27/III-2016 */ + xprintf(" %6d: %23s inf = %11.3e (%d)", + csa->it_cnt, "", sum, nnn); +#else + xprintf(" %6d: sum = %17.9e inf = %11.3e (%d)", + csa->it_cnt, lp->c[0] - spx_eval_obj(lp, beta), + sum, nnn); +#endif + break; + case 2: + /* compute sum of (scaled) dual infeasibilities */ + sum = 0.0, nnn = 0; + for (j = 1; j <= n-m; j++) + { k = head[m+j]; /* x[k] = xN[j] */ + if (d[j] > 0.0) + { /* xN[j] should have its lower bound active */ + if (l[k] == -DBL_MAX || flag[j]) + sum += d[j]; + } + else if (d[j] < 0.0) + { /* xN[j] should have its upper bound active */ + if (l[k] != u[k] && !flag[j]) + sum -= d[j]; + } + } + /* compute number of primal infeasibilities */ + nnn = spy_chuzr_sel(lp, beta, csa->tol_bnd, csa->tol_bnd1, + NULL); + xprintf("#%6d: obj = %17.9e inf = %11.3e (%d)", +#if SCALE_Z + csa->it_cnt, + (double)csa->dir * csa->fz * spx_eval_obj(lp, beta), +#else + csa->it_cnt, (double)csa->dir * spx_eval_obj(lp, beta), +#endif + sum, nnn); + break; + default: + xassert(csa != csa); + } + if (csa->inv_cnt) + { /* number of basis factorizations performed */ + xprintf(" %d", csa->inv_cnt); + csa->inv_cnt = 0; + } +#if 1 /* 23/III-2016 */ + if (csa->r_test == GLP_RT_FLIP) + { /*xprintf(" %d,%d", csa->ns_cnt, csa->ls_cnt);*/ + if (csa->ns_cnt + csa->ls_cnt) + xprintf(" %d%%", + (100 * csa->ls_cnt) / (csa->ns_cnt + csa->ls_cnt)); + csa->ns_cnt = csa->ls_cnt = 0; + } +#endif + xprintf("\n"); + csa->it_dpy = csa->it_cnt; +#if 1 /* 15/VII-2017 */ + csa->tm_dpy = tm_cur; +#endif +skip: return; +} + +#if 1 /* 31/III-2016 */ +static +void spy_update_r(SPXLP *lp, int p, int q, const double beta[/*1+m*/], + const FVS *tcol, double tol, double tol1, FVS *r) +{ /* update vector r of primal infeasibilities */ + /* it is assumed that xB[p] leaves the basis, xN[q] enters the + * basis, and beta corresponds to the adjacent basis (i.e. this + * routine should be called after spx_update_beta) */ + int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + int *tcol_ind = tcol->ind; + int *ind = r->ind; + double *vec = r->vec; + int i, k, t, nnz; + double lk, uk, ri, eps; + xassert(1 <= p && p <= m); + xassert(1 <= q && q <= n-m); + nnz = r->nnz; + for (t = tcol->nnz; t >= 1; t--) + { i = tcol_ind[t]; + /* xB[i] changes in the adjacent basis to beta[i], so only + * r[i] should be updated */ + if (i == p) + k = head[m+q]; /* x[k] = new xB[p] = old xN[q] */ + else + k = head[i]; /* x[k] = new xB[i] = old xB[i] */ + lk = l[k], uk = u[k]; + /* determine new value of r[i]; see spy_eval_r */ + ri = 0.0; + if (beta[i] < lk) + { /* determine absolute tolerance eps1[i] */ + eps = tol + tol1 * (lk >= 0.0 ? +lk : -lk); + if (beta[i] < lk - eps) + { /* lower bound is violated */ + ri = lk - beta[i]; + } + } + else if (beta[i] > uk) + { /* determine absolute tolerance eps2[i] */ + eps = tol + tol1 * (uk >= 0.0 ? +uk : -uk); + if (beta[i] > uk + eps) + { /* upper bound is violated */ + ri = uk - beta[i]; + } + } + if (ri == 0.0) + { if (vec[i] != 0.0) + vec[i] = DBL_MIN; /* will be removed */ + } + else + { if (vec[i] == 0.0) + ind[++nnz] = i; + vec[i] = ri; + } + + } + r->nnz = nnz; + /* remove zero elements */ + fvs_adjust_vec(r, DBL_MIN + DBL_MIN); + return; +} +#endif + +/*********************************************************************** +* spy_dual - driver to the dual simplex method +* +* This routine is a driver to the two-phase dual simplex method. +* +* On exit this routine returns one of the following codes: +* +* 0 LP instance has been successfully solved. +* +* GLP_EOBJLL +* Objective lower limit has been reached (maximization). +* +* GLP_EOBJUL +* Objective upper limit has been reached (minimization). +* +* GLP_EITLIM +* Iteration limit has been exhausted. +* +* GLP_ETMLIM +* Time limit has been exhausted. +* +* GLP_EFAIL +* The solver failed to solve LP instance. */ + +static int dual_simplex(struct csa *csa) +{ /* dual simplex method main logic routine */ + SPXLP *lp = csa->lp; + int m = lp->m; + int n = lp->n; + double *l = lp->l; + double *u = lp->u; + int *head = lp->head; + SPXNT *nt = csa->nt; + double *beta = csa->beta; + double *d = csa->d; + SPYSE *se = csa->se; +#if 0 /* 30/III-2016 */ + int *list = csa->list; +#endif +#if 0 /* 31/III-2016 */ + double *trow = csa->trow; + double *tcol = csa->tcol; +#endif + double *pi = csa->work; + int msg_lev = csa->msg_lev; + double tol_bnd = csa->tol_bnd; + double tol_bnd1 = csa->tol_bnd1; + double tol_dj = csa->tol_dj; + double tol_dj1 = csa->tol_dj1; + int j, k, p_flag, refct, ret; + int perturb = -1; + /* -1 = perturbation is not used, but enabled + * 0 = perturbation is not used and disabled + * +1 = perturbation is being used */ +#if 1 /* 27/III-2016 */ + int instab = 0; /* instability count */ +#endif +#ifdef TIMING + double t_total = timer(); /* total time */ + double t_fact = 0.0; /* computing factorization */ + double t_rtest = 0.0; /* performing ratio test */ + double t_pivcol = 0.0; /* computing pivot column */ + double t_upd1 = 0.0; /* updating primal values */ + double t_upd2 = 0.0; /* updating dual values */ + double t_upd3 = 0.0; /* updating se weights */ + double t_upd4 = 0.0; /* updating matrix N */ + double t_upd5 = 0.0; /* updating factorization */ + double t_start; +#endif + check_flags(csa); +loop: /* main loop starts here */ + /* compute factorization of the basis matrix */ + if (!lp->valid) + { double cond; +#ifdef TIMING + t_start = timer(); +#endif + ret = spx_factorize(lp); +#ifdef TIMING + t_fact += timer() - t_start; +#endif + csa->inv_cnt++; + if (ret != 0) + { if (msg_lev >= GLP_MSG_ERR) + xprintf("Error: unable to factorize the basis matrix (%d" + ")\n", ret); + csa->p_stat = csa->d_stat = GLP_UNDEF; + ret = GLP_EFAIL; + goto fini; + } + /* check condition of the basis matrix */ + cond = bfd_condest(lp->bfd); + if (cond > 1.0 / DBL_EPSILON) + { if (msg_lev >= GLP_MSG_ERR) + xprintf("Error: basis matrix is singular to working prec" + "ision (cond = %.3g)\n", cond); + csa->p_stat = csa->d_stat = GLP_UNDEF; + ret = GLP_EFAIL; + goto fini; + } + if (cond > 0.001 / DBL_EPSILON) + { if (msg_lev >= GLP_MSG_ERR) + xprintf("Warning: basis matrix is ill-conditioned (cond " + "= %.3g)\n", cond); + } + /* invalidate basic solution components */ + csa->beta_st = csa->d_st = 0; + } + /* compute reduced costs of non-basic variables d = (d[j]) */ + if (!csa->d_st) + { spx_eval_pi(lp, pi); + for (j = 1; j <= n-m; j++) + d[j] = spx_eval_dj(lp, pi, j); + csa->d_st = 1; /* just computed */ + /* determine the search phase, if not determined yet (this is + * performed only once at the beginning of the search for the + * original bounds) */ + if (!csa->phase) + { j = check_feas(csa, 0.97 * tol_dj, 0.97 * tol_dj1, 1); + if (j > 0) + { /* initial basic solution is dual infeasible and cannot + * be recovered */ + /* start to search for dual feasible solution */ + set_art_bounds(csa); + csa->phase = 1; + } + else + { /* initial basic solution is either dual feasible or its + * dual feasibility has been recovered */ + /* start to search for optimal solution */ + csa->phase = 2; + } + } + /* make sure that current basic solution is dual feasible */ +#if 1 /* 11/VII-2017 */ + if (perturb <= 0) + { if (check_feas(csa, tol_dj, tol_dj1, 0)) + { /* dual feasibility is broken due to excessive round-off + * errors */ + if (perturb < 0) + { if (msg_lev >= GLP_MSG_ALL) + xprintf("Perturbing LP to avoid instability [%d].." + ".\n", csa->it_cnt); + perturb = 1; + goto loop; + } + if (msg_lev >= GLP_MSG_ERR) + xprintf("Warning: numerical instability (dual simplex" + ", phase %s)\n", csa->phase == 1 ? "I" : "II"); + instab++; + if (csa->dualp && instab >= 10) + { /* do not continue the search; report failure */ + if (msg_lev >= GLP_MSG_ERR) + xprintf("Warning: dual simplex failed due to exces" + "sive numerical instability\n"); + csa->p_stat = csa->d_stat = GLP_UNDEF; + ret = -1; /* special case of GLP_EFAIL */ + goto fini; + } + /* try to recover dual feasibility */ + j = check_feas(csa, 0.97 * tol_dj, 0.97 * tol_dj1, 1); + if (j > 0) + { /* dual feasibility cannot be recovered (this may + * happen only on phase II) */ + xassert(csa->phase == 2); + /* restart to search for dual feasible solution */ + set_art_bounds(csa); + csa->phase = 1; + } + } + } + else + { /* FIXME */ + play_coef(csa, 1); + } + } +#endif + /* at this point the search phase is determined */ + xassert(csa->phase == 1 || csa->phase == 2); + /* compute values of basic variables beta = (beta[i]) */ + if (!csa->beta_st) + { spx_eval_beta(lp, beta); +#if 1 /* 31/III-2016 */ + /* also compute vector r of primal infeasibilities */ + switch (csa->phase) + { case 1: + spy_eval_r(lp, beta, 1e-8, 0.0, &csa->r); + break; + case 2: + spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r); + break; + default: + xassert(csa != csa); + } +#endif + csa->beta_st = 1; /* just computed */ + } + /* reset the dual reference space, if necessary */ + if (se != NULL && !se->valid) + spy_reset_refsp(lp, se), refct = 1000; + /* at this point the basis factorization and all basic solution + * components are valid */ + xassert(lp->valid && csa->beta_st && csa->d_st); +#ifdef GLP_DEBUG + check_flags(csa); +#endif +#if CHECK_ACCURACY + /* check accuracy of current basic solution components (only for + * debugging) */ + check_accuracy(csa); +#endif + /* check if the objective limit has been reached */ + if (csa->phase == 2 && csa->obj_lim != DBL_MAX + && spx_eval_obj(lp, beta) >= csa->obj_lim) + { +#if 1 /* 26/V-2017 by mao */ + if (perturb > 0) + { /* remove perturbation */ + /* [Should note that perturbing of objective coefficients + * implemented in play_coef is equivalent to *relaxing* of + * (zero) bounds of dual variables, so the perturbed + * objective is always better (*greater*) that the original + * one at the same basic point.] */ + remove_perturb(csa); + perturb = 0; + } +#endif + if (csa->beta_st != 1) + csa->beta_st = 0; + if (csa->d_st != 1) + csa->d_st = 0; + if (!(csa->beta_st && csa->d_st)) + goto loop; + display(csa, 1); + if (msg_lev >= GLP_MSG_ALL) + xprintf("OBJECTIVE %s LIMIT REACHED; SEARCH TERMINATED\n", + csa->dir > 0 ? "UPPER" : "LOWER"); +#if 0 /* 30/III-2016 */ + csa->num = spy_chuzr_sel(lp, beta, tol_bnd, tol_bnd1, list); + csa->p_stat = (csa->num == 0 ? GLP_FEAS : GLP_INFEAS); +#else + spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r); + csa->p_stat = (csa->r.nnz == 0 ? GLP_FEAS : GLP_INFEAS); +#endif + csa->d_stat = GLP_FEAS; + ret = (csa->dir > 0 ? GLP_EOBJUL : GLP_EOBJLL); + goto fini; + } + /* check if the iteration limit has been exhausted */ + if (csa->it_cnt - csa->it_beg >= csa->it_lim) + { if (perturb > 0) + { /* remove perturbation */ + remove_perturb(csa); + perturb = 0; + } + if (csa->beta_st != 1) + csa->beta_st = 0; + if (csa->d_st != 1) + csa->d_st = 0; + if (!(csa->beta_st && csa->d_st)) + goto loop; + display(csa, 1); + if (msg_lev >= GLP_MSG_ALL) + xprintf("ITERATION LIMIT EXCEEDED; SEARCH TERMINATED\n"); + if (csa->phase == 1) + { set_orig_bounds(csa); + check_flags(csa); + spx_eval_beta(lp, beta); + } +#if 0 /* 30/III-2016 */ + csa->num = spy_chuzr_sel(lp, beta, tol_bnd, tol_bnd1, list); + csa->p_stat = (csa->num == 0 ? GLP_FEAS : GLP_INFEAS); +#else + spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r); + csa->p_stat = (csa->r.nnz == 0 ? GLP_FEAS : GLP_INFEAS); +#endif + csa->d_stat = (csa->phase == 1 ? GLP_INFEAS : GLP_FEAS); + ret = GLP_EITLIM; + goto fini; + } + /* check if the time limit has been exhausted */ + if (1000.0 * xdifftime(xtime(), csa->tm_beg) >= csa->tm_lim) + { if (perturb > 0) + { /* remove perturbation */ + remove_perturb(csa); + perturb = 0; + } + if (csa->beta_st != 1) + csa->beta_st = 0; + if (csa->d_st != 1) + csa->d_st = 0; + if (!(csa->beta_st && csa->d_st)) + goto loop; + display(csa, 1); + if (msg_lev >= GLP_MSG_ALL) + xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n"); + if (csa->phase == 1) + { set_orig_bounds(csa); + check_flags(csa); + spx_eval_beta(lp, beta); + } +#if 0 /* 30/III-2016 */ + csa->num = spy_chuzr_sel(lp, beta, tol_bnd, tol_bnd1, list); + csa->p_stat = (csa->num == 0 ? GLP_FEAS : GLP_INFEAS); +#else + spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r); + csa->p_stat = (csa->r.nnz == 0 ? GLP_FEAS : GLP_INFEAS); +#endif + csa->d_stat = (csa->phase == 1 ? GLP_INFEAS : GLP_FEAS); + ret = GLP_ETMLIM; + goto fini; + } + /* display the search progress */ + display(csa, 0); + /* select eligible basic variables */ +#if 0 /* 31/III-2016; not needed because r is valid */ + switch (csa->phase) + { case 1: +#if 0 /* 30/III-2016 */ + csa->num = spy_chuzr_sel(lp, beta, 1e-8, 0.0, list); +#else + spy_eval_r(lp, beta, 1e-8, 0.0, &csa->r); +#endif + break; + case 2: +#if 0 /* 30/III-2016 */ + csa->num = spy_chuzr_sel(lp, beta, tol_bnd, tol_bnd1, list); +#else + spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r); +#endif + break; + default: + xassert(csa != csa); + } +#endif + /* check for optimality */ +#if 0 /* 30/III-2016 */ + if (csa->num == 0) +#else + if (csa->r.nnz == 0) +#endif + { if (perturb > 0 && csa->phase == 2) + { /* remove perturbation */ + remove_perturb(csa); + perturb = 0; + } + if (csa->beta_st != 1) + csa->beta_st = 0; + if (csa->d_st != 1) + csa->d_st = 0; + if (!(csa->beta_st && csa->d_st)) + goto loop; + /* current basis is optimal */ + display(csa, 1); + switch (csa->phase) + { case 1: + /* check for dual feasibility */ + set_orig_bounds(csa); + check_flags(csa); + if (check_feas(csa, tol_dj, tol_dj1, 0) == 0) + { /* dual feasible solution found; switch to phase II */ + csa->phase = 2; + xassert(!csa->beta_st); + goto loop; + } +#if 1 /* 26/V-2017 by cmatraki */ + if (perturb > 0) + { /* remove perturbation */ + remove_perturb(csa); + perturb = 0; + goto loop; + } +#endif + /* no dual feasible solution exists */ + if (msg_lev >= GLP_MSG_ALL) + xprintf("LP HAS NO DUAL FEASIBLE SOLUTION\n"); + spx_eval_beta(lp, beta); +#if 0 /* 30/III-2016 */ + csa->num = spy_chuzr_sel(lp, beta, tol_bnd, tol_bnd1, + list); + csa->p_stat = (csa->num == 0 ? GLP_FEAS : GLP_INFEAS); +#else + spy_eval_r(lp, beta, tol_bnd, tol_bnd1, &csa->r); + csa->p_stat = (csa->r.nnz == 0 ? GLP_FEAS : GLP_INFEAS); +#endif + csa->d_stat = GLP_NOFEAS; + ret = 0; + goto fini; + case 2: + /* optimal solution found */ + if (msg_lev >= GLP_MSG_ALL) + xprintf("OPTIMAL LP SOLUTION FOUND\n"); + csa->p_stat = csa->d_stat = GLP_FEAS; + ret = 0; + goto fini; + default: + xassert(csa != csa); + } + } + /* choose xB[p] and xN[q] */ +#if 0 /* 23/III-2016 */ + choose_pivot(csa); +#else +#ifdef TIMING + t_start = timer(); +#endif +#if 1 /* 31/III-2016 */ + ret = choose_pivot(csa); +#endif +#ifdef TIMING + t_rtest += timer() - t_start; +#endif + if (ret < 0) + { lp->valid = 0; + goto loop; + } + if (ret == 0) + csa->ns_cnt++; + else + csa->ls_cnt++; +#endif + /* check for dual unboundedness */ + if (csa->q == 0) + { if (perturb > 0) + { /* remove perturbation */ + remove_perturb(csa); + perturb = 0; + } + if (csa->beta_st != 1) + csa->beta_st = 0; + if (csa->d_st != 1) + csa->d_st = 0; + if (!(csa->beta_st && csa->d_st)) + goto loop; + display(csa, 1); + switch (csa->phase) + { case 1: + /* this should never happen */ + if (msg_lev >= GLP_MSG_ERR) + xprintf("Error: dual simplex failed\n"); + csa->p_stat = csa->d_stat = GLP_UNDEF; + ret = GLP_EFAIL; + goto fini; + case 2: + /* dual unboundedness detected */ + if (msg_lev >= GLP_MSG_ALL) + xprintf("LP HAS NO PRIMAL FEASIBLE SOLUTION\n"); + csa->p_stat = GLP_NOFEAS; + csa->d_stat = GLP_FEAS; + ret = 0; + goto fini; + default: + xassert(csa != csa); + } + } + /* compute q-th column of the simplex table */ +#ifdef TIMING + t_start = timer(); +#endif +#if 0 /* 31/III-2016 */ + spx_eval_tcol(lp, csa->q, tcol); +#else + spx_eval_tcol(lp, csa->q, csa->tcol.vec); + fvs_gather_vec(&csa->tcol, DBL_EPSILON); +#endif +#ifdef TIMING + t_pivcol += timer() - t_start; +#endif + /* FIXME: tcol[p] and trow[q] should be close to each other */ +#if 0 /* 26/V-2017 by cmatraki */ + xassert(csa->tcol.vec[csa->p] != 0.0); +#else + if (csa->tcol.vec[csa->p] == 0.0) + { if (msg_lev >= GLP_MSG_ERR) + xprintf("Error: tcol[p] = 0.0\n"); + csa->p_stat = csa->d_stat = GLP_UNDEF; + ret = GLP_EFAIL; + goto fini; + } +#endif + /* update values of basic variables for adjacent basis */ + k = head[csa->p]; /* x[k] = xB[p] */ + p_flag = (l[k] != u[k] && beta[csa->p] > u[k]); +#if 0 /* 16/III-2016 */ + spx_update_beta(lp, beta, csa->p, p_flag, csa->q, tcol); + csa->beta_st = 2; +#else + /* primal solution may be invalidated due to long step */ +#ifdef TIMING + t_start = timer(); +#endif + if (csa->beta_st) +#if 0 /* 30/III-2016 */ + { spx_update_beta(lp, beta, csa->p, p_flag, csa->q, tcol); +#else + { spx_update_beta_s(lp, beta, csa->p, p_flag, csa->q, + &csa->tcol); + /* also update vector r of primal infeasibilities */ + /*fvs_check_vec(&csa->r);*/ + switch (csa->phase) + { case 1: + spy_update_r(lp, csa->p, csa->q, beta, &csa->tcol, + 1e-8, 0.0, &csa->r); + break; + case 2: + spy_update_r(lp, csa->p, csa->q, beta, &csa->tcol, + tol_bnd, tol_bnd1, &csa->r); + break; + default: + xassert(csa != csa); + } + /*fvs_check_vec(&csa->r);*/ +#endif + csa->beta_st = 2; + } +#ifdef TIMING + t_upd1 += timer() - t_start; +#endif +#endif +#if 1 /* 11/VII-2017 */ + /* check for stalling */ + { int k; + xassert(1 <= csa->p && csa->p <= m); + xassert(1 <= csa->q && csa->q <= n-m); + /* FIXME: recompute d[q]; see spx_update_d */ + k = head[m+csa->q]; /* x[k] = xN[q] */ + if (!(lp->l[k] == -DBL_MAX && lp->u[k] == +DBL_MAX)) + { if (fabs(d[csa->q]) >= 1e-6) + { csa->degen = 0; + goto skip1; + } + /* degenerate iteration has been detected */ + csa->degen++; + if (perturb < 0 && csa->degen >= 200) + { if (msg_lev >= GLP_MSG_ALL) + xprintf("Perturbing LP to avoid stalling [%d]...\n", + csa->it_cnt); + perturb = 1; + } +skip1: ; + } + } +#endif + /* update reduced costs of non-basic variables for adjacent + * basis */ +#if 1 /* 28/III-2016 */ + xassert(csa->d_st); +#endif +#ifdef TIMING + t_start = timer(); +#endif +#if 0 /* 30/III-2016 */ + if (spx_update_d(lp, d, csa->p, csa->q, trow, tcol) <= 1e-9) +#else + if (spx_update_d_s(lp, d, csa->p, csa->q, &csa->trow, &csa->tcol) + <= 1e-9) +#endif + { /* successful updating */ + csa->d_st = 2; + } + else + { /* new reduced costs are inaccurate */ + csa->d_st = 0; + } +#ifdef TIMING + t_upd2 += timer() - t_start; +#endif + /* update steepest edge weights for adjacent basis, if used */ +#ifdef TIMING + t_start = timer(); +#endif + if (se != NULL) + { if (refct > 0) +#if 0 /* 30/III-2016 */ + { if (spy_update_gamma(lp, se, csa->p, csa->q, trow, tcol) + <= 1e-3) +#else + { if (spy_update_gamma_s(lp, se, csa->p, csa->q, &csa->trow, + &csa->tcol) <= 1e-3) +#endif + { /* successful updating */ + refct--; + } + else + { /* new weights are inaccurate; reset reference space */ + se->valid = 0; + } + } + else + { /* too many updates; reset reference space */ + se->valid = 0; + } + } +#ifdef TIMING + t_upd3 += timer() - t_start; +#endif +#ifdef TIMING + t_start = timer(); +#endif + /* update matrix N for adjacent basis, if used */ + if (nt != NULL) + spx_update_nt(lp, nt, csa->p, csa->q); +#ifdef TIMING + t_upd4 += timer() - t_start; +#endif + /* change current basis header to adjacent one */ + spx_change_basis(lp, csa->p, p_flag, csa->q); + /* and update factorization of the basis matrix */ +#ifdef TIMING + t_start = timer(); +#endif +#if 0 /* 16/III-2016 */ + if (csa->p > 0) +#endif + spx_update_invb(lp, csa->p, head[csa->p]); +#ifdef TIMING + t_upd5 += timer() - t_start; +#endif + if (perturb > 0 && csa->d_st) + play_coef(csa, 0); + /* dual simplex iteration complete */ + csa->it_cnt++; + goto loop; +fini: +#ifdef TIMING + t_total = timer() - t_total; + xprintf("Total time = %10.3f\n", t_total); + xprintf("Factorization = %10.3f\n", t_fact); + xprintf("Ratio test = %10.3f\n", t_rtest); + xprintf("Pivot column = %10.3f\n", t_pivcol); + xprintf("Updating beta = %10.3f\n", t_upd1); + xprintf("Updating d = %10.3f\n", t_upd2); + xprintf("Updating gamma = %10.3f\n", t_upd3); + xprintf("Updating N = %10.3f\n", t_upd4); + xprintf("Updating inv(B) = %10.3f\n", t_upd5); +#endif + return ret; +} + +int spy_dual(glp_prob *P, const glp_smcp *parm) +{ /* driver to the dual simplex method */ + struct csa csa_, *csa = &csa_; + SPXLP lp; + SPXAT at; + SPXNT nt; + SPYSE se; + int ret, *map, *daeh; +#if SCALE_Z + int i, j, k; +#endif + /* build working LP and its initial basis */ + memset(csa, 0, sizeof(struct csa)); + csa->lp = &lp; + spx_init_lp(csa->lp, P, parm->excl); + spx_alloc_lp(csa->lp); + map = talloc(1+P->m+P->n, int); + spx_build_lp(csa->lp, P, parm->excl, parm->shift, map); + spx_build_basis(csa->lp, P, map); + switch (P->dir) + { case GLP_MIN: + csa->dir = +1; + break; + case GLP_MAX: + csa->dir = -1; + break; + default: + xassert(P != P); + } +#if SCALE_Z + csa->fz = 0.0; + for (k = 1; k <= csa->lp->n; k++) + { double t = fabs(csa->lp->c[k]); + if (csa->fz < t) + csa->fz = t; + } + if (csa->fz <= 1000.0) + csa->fz = 1.0; + else + csa->fz /= 1000.0; + /*xprintf("csa->fz = %g\n", csa->fz);*/ + for (k = 0; k <= csa->lp->n; k++) + csa->lp->c[k] /= csa->fz; +#endif + csa->orig_b = talloc(1+csa->lp->m, double); + memcpy(csa->orig_b, csa->lp->b, (1+csa->lp->m) * sizeof(double)); + csa->orig_c = talloc(1+csa->lp->n, double); + memcpy(csa->orig_c, csa->lp->c, (1+csa->lp->n) * sizeof(double)); + csa->orig_l = talloc(1+csa->lp->n, double); + memcpy(csa->orig_l, csa->lp->l, (1+csa->lp->n) * sizeof(double)); + csa->orig_u = talloc(1+csa->lp->n, double); + memcpy(csa->orig_u, csa->lp->u, (1+csa->lp->n) * sizeof(double)); + switch (parm->aorn) + { case GLP_USE_AT: + /* build matrix A in row-wise format */ + csa->at = &at; + csa->nt = NULL; + spx_alloc_at(csa->lp, csa->at); + spx_build_at(csa->lp, csa->at); + break; + case GLP_USE_NT: + /* build matrix N in row-wise format for initial basis */ + csa->at = NULL; + csa->nt = &nt; + spx_alloc_nt(csa->lp, csa->nt); + spx_init_nt(csa->lp, csa->nt); + spx_build_nt(csa->lp, csa->nt); + break; + default: + xassert(parm != parm); + } + /* allocate and initialize working components */ + csa->phase = 0; + csa->beta = talloc(1+csa->lp->m, double); + csa->beta_st = 0; + csa->d = talloc(1+csa->lp->n-csa->lp->m, double); + csa->d_st = 0; + switch (parm->pricing) + { case GLP_PT_STD: + csa->se = NULL; + break; + case GLP_PT_PSE: + csa->se = &se; + spy_alloc_se(csa->lp, csa->se); + break; + default: + xassert(parm != parm); + } +#if 0 /* 30/III-2016 */ + csa->list = talloc(1+csa->lp->m, int); + csa->trow = talloc(1+csa->lp->n-csa->lp->m, double); + csa->tcol = talloc(1+csa->lp->m, double); +#else + fvs_alloc_vec(&csa->r, csa->lp->m); + fvs_alloc_vec(&csa->trow, csa->lp->n-csa->lp->m); + fvs_alloc_vec(&csa->tcol, csa->lp->m); +#endif +#if 1 /* 16/III-2016 */ + csa->bp = NULL; +#endif + csa->work = talloc(1+csa->lp->m, double); + csa->work1 = talloc(1+csa->lp->n-csa->lp->m, double); +#if 0 /* 11/VI-2017 */ +#if 1 /* 31/III-2016 */ + fvs_alloc_vec(&csa->wrow, csa->lp->n-csa->lp->m); + fvs_alloc_vec(&csa->wcol, csa->lp->m); +#endif +#endif + /* initialize control parameters */ + csa->msg_lev = parm->msg_lev; + csa->dualp = (parm->meth == GLP_DUALP); +#if 0 /* 16/III-2016 */ + switch (parm->r_test) + { case GLP_RT_STD: + csa->harris = 0; + break; + case GLP_RT_HAR: + csa->harris = 1; + break; + default: + xassert(parm != parm); + } +#else + switch (parm->r_test) + { case GLP_RT_STD: + case GLP_RT_HAR: + break; + case GLP_RT_FLIP: + csa->bp = talloc(1+csa->lp->n-csa->lp->m, SPYBP); + break; + default: + xassert(parm != parm); + } + csa->r_test = parm->r_test; +#endif + csa->tol_bnd = parm->tol_bnd; + csa->tol_bnd1 = .001 * parm->tol_bnd; + csa->tol_dj = parm->tol_dj; + csa->tol_dj1 = .001 * parm->tol_dj; +#if 0 + csa->tol_dj1 = 1e-9 * parm->tol_dj; +#endif + csa->tol_piv = parm->tol_piv; + switch (P->dir) + { case GLP_MIN: + csa->obj_lim = + parm->obj_ul; + break; + case GLP_MAX: + csa->obj_lim = - parm->obj_ll; + break; + default: + xassert(parm != parm); + } +#if SCALE_Z + if (csa->obj_lim != DBL_MAX) + csa->obj_lim /= csa->fz; +#endif + csa->it_lim = parm->it_lim; + csa->tm_lim = parm->tm_lim; + csa->out_frq = parm->out_frq; + csa->out_dly = parm->out_dly; + /* initialize working parameters */ + csa->tm_beg = xtime(); + csa->it_beg = csa->it_cnt = P->it_cnt; + csa->it_dpy = -1; +#if 1 /* 15/VII-2017 */ + csa->tm_dpy = 0.0; +#endif + csa->inv_cnt = 0; +#if 1 /* 11/VII-2017 */ + csa->degen = 0; +#endif +#if 1 /* 23/III-2016 */ + csa->ns_cnt = csa->ls_cnt = 0; +#endif + /* try to solve working LP */ + ret = dual_simplex(csa); + /* return basis factorization back to problem object */ + P->valid = csa->lp->valid; + P->bfd = csa->lp->bfd; + /* set solution status */ + P->pbs_stat = csa->p_stat; + P->dbs_stat = csa->d_stat; + /* if the solver failed, do not store basis header and basic + * solution components to problem object */ + if (ret == GLP_EFAIL) + goto skip; + /* convert working LP basis to original LP basis and store it to + * problem object */ + daeh = talloc(1+csa->lp->n, int); + spx_store_basis(csa->lp, P, map, daeh); + /* compute simplex multipliers for final basic solution found by + * the solver */ + spx_eval_pi(csa->lp, csa->work); + /* convert working LP solution to original LP solution and store + * it to problem object */ +#if SCALE_Z + for (i = 1; i <= csa->lp->m; i++) + csa->work[i] *= csa->fz; + for (j = 1; j <= csa->lp->n-csa->lp->m; j++) + csa->d[j] *= csa->fz; +#endif + spx_store_sol(csa->lp, P, parm->shift, map, daeh, csa->beta, + csa->work, csa->d); + tfree(daeh); + /* save simplex iteration count */ + P->it_cnt = csa->it_cnt; + /* report auxiliary/structural variable causing unboundedness */ + P->some = 0; + if (csa->p_stat == GLP_NOFEAS && csa->d_stat == GLP_FEAS) + { int k, kk; + /* xB[p] = x[k] causes dual unboundedness */ + xassert(1 <= csa->p && csa->p <= csa->lp->m); + k = csa->lp->head[csa->p]; + xassert(1 <= k && k <= csa->lp->n); + /* convert to number of original variable */ + for (kk = 1; kk <= P->m + P->n; kk++) + { if (abs(map[kk]) == k) + { P->some = kk; + break; + } + } + xassert(P->some != 0); + } +skip: /* deallocate working objects and arrays */ + spx_free_lp(csa->lp); + tfree(map); + tfree(csa->orig_b); + tfree(csa->orig_c); + tfree(csa->orig_l); + tfree(csa->orig_u); + if (csa->at != NULL) + spx_free_at(csa->lp, csa->at); + if (csa->nt != NULL) + spx_free_nt(csa->lp, csa->nt); + tfree(csa->beta); + tfree(csa->d); + if (csa->se != NULL) + spy_free_se(csa->lp, csa->se); +#if 0 /* 30/III-2016 */ + tfree(csa->list); + tfree(csa->trow); +#else + fvs_free_vec(&csa->r); + fvs_free_vec(&csa->trow); +#endif +#if 1 /* 16/III-2016 */ + if (csa->bp != NULL) + tfree(csa->bp); +#endif +#if 0 /* 29/III-2016 */ + tfree(csa->tcol); +#else + fvs_free_vec(&csa->tcol); +#endif + tfree(csa->work); + tfree(csa->work1); +#if 0 /* 11/VI-2017 */ +#if 1 /* 31/III-2016 */ + fvs_free_vec(&csa->wrow); + fvs_free_vec(&csa->wcol); +#endif +#endif + /* return to calling program */ + return ret >= 0 ? ret : GLP_EFAIL; +} + +/* eof */ -- cgit