(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Operators and addressing modes. The abstract syntax and dynamic semantics for the CminorSel, RTL, LTL and Mach languages depend on the following types, defined in this library: - [condition]: boolean conditions for conditional branches; - [operation]: arithmetic and logical operations; - [addressing]: addressing modes for load and store operations. These types are processor-specific and correspond roughly to what the processor can compute in one instruction. In other terms, these types reflect the state of the program after instruction selection. For a processor-independent set of operations, see the abstract syntax and dynamic semantics of the Cminor language. *) Require Import Axioms. Require Import Coqlib. Require Import AST. Require Import Integers. Require Import Floats. Require Import Values. Require Import Memory. Require Import Globalenvs. Require Import Events. Set Implicit Arguments. Local Transparent Archi.ptr64. Record shift_amount: Type := { s_amount: int; s_range: Int.ltu s_amount Int.iwordsize = true }. Coercion s_amount: shift_amount >-> int. Inductive shift : Type := | Slsl: shift_amount -> shift | Slsr: shift_amount -> shift | Sasr: shift_amount -> shift | Sror: shift_amount -> shift. (** Conditions (boolean-valued operators). *) Inductive condition : Type := | Ccomp: comparison -> condition (**r signed integer comparison *) | Ccompu: comparison -> condition (**r unsigned integer comparison *) | Ccompshift: comparison -> shift -> condition (**r signed integer comparison *) | Ccompushift: comparison -> shift -> condition (**r unsigned integer comparison *) | Ccompimm: comparison -> int -> condition (**r signed integer comparison with a constant *) | Ccompuimm: comparison -> int -> condition (**r unsigned integer comparison with a constant *) | Ccompf: comparison -> condition (**r 64-bit floating-point comparison *) | Cnotcompf: comparison -> condition (**r negation of a floating-point comparison *) | Ccompfzero: comparison -> condition (**r floating-point comparison with 0.0 *) | Cnotcompfzero: comparison -> condition (**r negation of a floating-point comparison with 0.0 *) | Ccompfs: comparison -> condition (**r 32-bit floating-point comparison *) | Cnotcompfs: comparison -> condition (**r negation of a floating-point comparison *) | Ccompfszero: comparison -> condition (**r floating-point comparison with 0.0 *) | Cnotcompfszero: comparison -> condition. (**r negation of a floating-point comparison with 0.0 *) (** Arithmetic and logical operations. In the descriptions, [rd] is the result of the operation and [r1], [r2], etc, are the arguments. *) Inductive operation : Type := | Omove: operation (**r [rd = r1] *) | Ointconst: int -> operation (**r [rd] is set to the given integer constant *) | Ofloatconst: float -> operation (**r [rd] is set to the given 64-bit float constant *) | Osingleconst: float32 -> operation (**r [rd] is set to the given 32-bit float constant *) | Oaddrsymbol: ident -> ptrofs -> operation (**r [rd] is set to the the address of the symbol plus the offset *) | Oaddrstack: ptrofs -> operation (**r [rd] is set to the stack pointer plus the given offset *) (*c Integer arithmetic: *) | Ocast8signed: operation (**r [rd] is 8-bit sign extension of [r1] *) | Ocast16signed: operation (**r [rd] is 16-bit sign extension of [r1] *) | Oadd: operation (**r [rd = r1 + r2] *) | Oaddshift: shift -> operation (**r [rd = r1 + shifted r2] *) | Oaddimm: int -> operation (**r [rd = r1 + n] *) | Osub: operation (**r [rd = r1 - r2] *) | Osubshift: shift -> operation (**r [rd = r1 - shifted r2] *) | Orsubshift: shift -> operation (**r [rd = shifted r2 - r1] *) | Orsubimm: int -> operation (**r [rd = n - r1] *) | Omul: operation (**r [rd = r1 * r2] *) | Omla: operation (**r [rd = r1 * r2 + r3] *) | Omulhs: operation (**r [rd = high part of r1 * r2, signed] *) | Omulhu: operation (**r [rd = high part of r1 * r2, unsigned] *) | Odiv: operation (**r [rd = r1 / r2] (signed) *) | Odivu: operation (**r [rd = r1 / r2] (unsigned) *) | Oand: operation (**r [rd = r1 & r2] *) | Oandshift: shift -> operation (**r [rd = r1 & shifted r2] *) | Oandimm: int -> operation (**r [rd = r1 & n] *) | Oor: operation (**r [rd = r1 | r2] *) | Oorshift: shift -> operation (**r [rd = r1 | shifted r2] *) | Oorimm: int -> operation (**r [rd = r1 | n] *) | Oxor: operation (**r [rd = r1 ^ r2] *) | Oxorshift: shift -> operation (**r [rd = r1 ^ shifted r2] *) | Oxorimm: int -> operation (**r [rd = r1 ^ n] *) | Obic: operation (**r [rd = r1 & ~r2] *) | Obicshift: shift -> operation (**r [rd = r1 & ~(shifted r2)] *) | Onot: operation (**r [rd = ~r1] *) | Onotshift: shift -> operation (**r [rd = ~(shifted r1)] *) | Oshl: operation (**r [rd = r1 << r2] *) | Oshr: operation (**r [rd = r1 >> r2] (signed) *) | Oshru: operation (**r [rd = r1 >> r2] (unsigned) *) | Oshift: shift -> operation (**r [rd = shifted r1] *) | Oshrximm: int -> operation (**r [rd = r1 / 2^n] (signed) *) (*c Floating-point arithmetic: *) | Onegf: operation (**r [rd = - r1] *) | Oabsf: operation (**r [rd = abs(r1)] *) | Oaddf: operation (**r [rd = r1 + r2] *) | Osubf: operation (**r [rd = r1 - r2] *) | Omulf: operation (**r [rd = r1 * r2] *) | Odivf: operation (**r [rd = r1 / r2] *) | Onegfs: operation (**r [rd = - r1] *) | Oabsfs: operation (**r [rd = abs(r1)] *) | Oaddfs: operation (**r [rd = r1 + r2] *) | Osubfs: operation (**r [rd = r1 - r2] *) | Omulfs: operation (**r [rd = r1 * r2] *) | Odivfs: operation (**r [rd = r1 / r2] *) | Osingleoffloat: operation (**r [rd] is [r1] truncated to single-precision float *) | Ofloatofsingle: operation (**r [rd] is [r1] expanded to double-precision float *) (*c Conversions between int and float: *) | Ointoffloat: operation (**r [rd = signed_int_of_float(r1)] *) | Ointuoffloat: operation (**r [rd = unsigned_int_of_float(r1)] *) | Ofloatofint: operation (**r [rd = float_of_signed_int(r1)] *) | Ofloatofintu: operation (**r [rd = float_of_unsigned_int(r1)] *) | Ointofsingle: operation (**r [rd = signed_int_of_single(r1)] *) | Ointuofsingle: operation (**r [rd = unsigned_int_of_single(r1)] *) | Osingleofint: operation (**r [rd = single_of_signed_int(r1)] *) | Osingleofintu: operation (**r [rd = single_of_unsigned_int(r1)] *) (*c Manipulating 64-bit integers: *) | Omakelong: operation (**r [rd = r1 << 32 | r2] *) | Olowlong: operation (**r [rd = low-word(r1)] *) | Ohighlong: operation (**r [rd = high-word(r1)] *) (*c Boolean tests: *) | Ocmp: condition -> operation (**r [rd = 1] if condition holds, [rd = 0] otherwise. *) | Osel: condition -> typ -> operation. (**r [rd = rs1] if condition holds, [rd = rs2] otherwise. *) (** Addressing modes. [r1], [r2], etc, are the arguments to the addressing. *) Inductive addressing: Type := | Aindexed: int -> addressing (**r Address is [r1 + offset] *) | Aindexed2: addressing (**r Address is [r1 + r2] *) | Aindexed2shift: shift -> addressing (**r Address is [r1 + shifted r2] *) | Ainstack: ptrofs -> addressing. (**r Address is [stack_pointer + offset] *) (** Comparison functions (used in module [CSE]). *) Definition eq_shift (x y: shift): {x=y} + {x<>y}. Proof. revert x y. generalize Int.eq_dec; intro. assert (forall (x y: shift_amount), {x=y}+{x<>y}). destruct x as [x Px]. destruct y as [y Py]. destruct (H x y). subst x. rewrite (proof_irr Px Py). left; auto. right. red; intro. elim n. inversion H0. auto. decide equality. Defined. Definition eq_condition (x y: condition) : {x=y} + {x<>y}. Proof. generalize Int.eq_dec; intro. assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality. generalize eq_shift; intro. decide equality. Defined. Definition eq_operation (x y: operation): {x=y} + {x<>y}. Proof. generalize Int.eq_dec Ptrofs.eq_dec ident_eq typ_eq; intros. generalize Float.eq_dec Float32.eq_dec; intros. generalize eq_shift; intro. generalize eq_condition; intro. decide equality. Defined. Definition eq_addressing (x y: addressing) : {x=y} + {x<>y}. Proof. generalize Int.eq_dec Ptrofs.eq_dec; intro. generalize eq_shift; intro. decide equality. Defined. Global Opaque eq_shift eq_condition eq_operation eq_addressing. (** * Evaluation functions *) (** Evaluation of conditions, operators and addressing modes applied to lists of values. Return [None] when the computation can trigger an error, e.g. integer division by zero. [eval_condition] returns a boolean, [eval_operation] and [eval_addressing] return a value. *) Definition eval_shift (s: shift) (v: val) : val := match s with | Slsl x => Val.shl v (Vint x) | Slsr x => Val.shru v (Vint x) | Sasr x => Val.shr v (Vint x) | Sror x => Val.ror v (Vint x) end. Definition eval_condition (cond: condition) (vl: list val) (m: mem): option bool := match cond, vl with | Ccomp c, v1 :: v2 :: nil => Val.cmp_bool c v1 v2 | Ccompu c, v1 :: v2 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 v2 | Ccompshift c s, v1 :: v2 :: nil => Val.cmp_bool c v1 (eval_shift s v2) | Ccompushift c s, v1 :: v2 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 (eval_shift s v2) | Ccompimm c n, v1 :: nil => Val.cmp_bool c v1 (Vint n) | Ccompuimm c n, v1 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint n) | Ccompf c, v1 :: v2 :: nil => Val.cmpf_bool c v1 v2 | Cnotcompf c, v1 :: v2 :: nil => option_map negb (Val.cmpf_bool c v1 v2) | Ccompfzero c, v1 :: nil => Val.cmpf_bool c v1 (Vfloat Float.zero) | Cnotcompfzero c, v1 :: nil => option_map negb (Val.cmpf_bool c v1 (Vfloat Float.zero)) | Ccompfs c, v1 :: v2 :: nil => Val.cmpfs_bool c v1 v2 | Cnotcompfs c, v1 :: v2 :: nil => option_map negb (Val.cmpfs_bool c v1 v2) | Ccompfszero c, v1 :: nil => Val.cmpfs_bool c v1 (Vsingle Float32.zero) | Cnotcompfszero c, v1 :: nil => option_map negb (Val.cmpfs_bool c v1 (Vsingle Float32.zero)) | _, _ => None end. Definition eval_operation (F V: Type) (genv: Genv.t F V) (sp: val) (op: operation) (vl: list val) (m: mem): option val := match op, vl with | Omove, v1::nil => Some v1 | Ointconst n, nil => Some (Vint n) | Ofloatconst n, nil => Some (Vfloat n) | Osingleconst n, nil => Some (Vsingle n) | Oaddrsymbol s ofs, nil => Some (Genv.symbol_address genv s ofs) | Oaddrstack ofs, nil => Some (Val.offset_ptr sp ofs) | Ocast8signed, v1::nil => Some (Val.sign_ext 8 v1) | Ocast16signed, v1::nil => Some (Val.sign_ext 16 v1) | Oadd, v1 :: v2 :: nil => Some (Val.add v1 v2) | Oaddshift s, v1 :: v2 :: nil => Some (Val.add v1 (eval_shift s v2)) | Oaddimm n, v1 :: nil => Some (Val.add v1 (Vint n)) | Osub, v1 :: v2 :: nil => Some (Val.sub v1 v2) | Osubshift s, v1 :: v2 :: nil => Some (Val.sub v1 (eval_shift s v2)) | Orsubshift s, v1 :: v2 :: nil => Some (Val.sub (eval_shift s v2) v1) | Orsubimm n, v1 :: nil => Some (Val.sub (Vint n) v1) | Omul, v1 :: v2 :: nil => Some (Val.mul v1 v2) | Omla, v1 :: v2 :: v3 :: nil => Some (Val.add (Val.mul v1 v2) v3) | Omulhs, v1::v2::nil => Some (Val.mulhs v1 v2) | Omulhu, v1::v2::nil => Some (Val.mulhu v1 v2) | Odiv, v1 :: v2 :: nil => Val.divs v1 v2 | Odivu, v1 :: v2 :: nil => Val.divu v1 v2 | Oand, v1 :: v2 :: nil => Some (Val.and v1 v2) | Oandshift s, v1 :: v2 :: nil => Some (Val.and v1 (eval_shift s v2)) | Oandimm n, v1 :: nil => Some (Val.and v1 (Vint n)) | Oor, v1 :: v2 :: nil => Some (Val.or v1 v2) | Oorshift s, v1 :: v2 :: nil => Some (Val.or v1 (eval_shift s v2)) | Oorimm n, v1 :: nil => Some (Val.or v1 (Vint n)) | Oxor, v1 :: v2 :: nil => Some (Val.xor v1 v2) | Oxorshift s, v1 :: v2 :: nil => Some (Val.xor v1 (eval_shift s v2)) | Oxorimm n, v1 :: nil => Some (Val.xor v1 (Vint n)) | Obic, v1 :: v2 :: nil => Some (Val.and v1 (Val.notint v2)) | Obicshift s, v1 :: v2 :: nil => Some (Val.and v1 (Val.notint (eval_shift s v2))) | Onot, v1 :: nil => Some (Val.notint v1) | Onotshift s, v1 :: nil => Some (Val.notint (eval_shift s v1)) | Oshl, v1 :: v2 :: nil => Some (Val.shl v1 v2) | Oshr, v1 :: v2 :: nil => Some (Val.shr v1 v2) | Oshru, v1 :: v2 :: nil => Some (Val.shru v1 v2) | Oshift s, v1 :: nil => Some (eval_shift s v1) | Oshrximm n, v1 :: nil => Val.shrx v1 (Vint n) | Onegf, v1::nil => Some(Val.negf v1) | Oabsf, v1::nil => Some(Val.absf v1) | Oaddf, v1::v2::nil => Some(Val.addf v1 v2) | Osubf, v1::v2::nil => Some(Val.subf v1 v2) | Omulf, v1::v2::nil => Some(Val.mulf v1 v2) | Odivf, v1::v2::nil => Some(Val.divf v1 v2) | Onegfs, v1::nil => Some(Val.negfs v1) | Oabsfs, v1::nil => Some(Val.absfs v1) | Oaddfs, v1::v2::nil => Some(Val.addfs v1 v2) | Osubfs, v1::v2::nil => Some(Val.subfs v1 v2) | Omulfs, v1::v2::nil => Some(Val.mulfs v1 v2) | Odivfs, v1::v2::nil => Some(Val.divfs v1 v2) | Osingleoffloat, v1::nil => Some(Val.singleoffloat v1) | Ofloatofsingle, v1::nil => Some(Val.floatofsingle v1) | Ointoffloat, v1::nil => Val.intoffloat v1 | Ointuoffloat, v1::nil => Val.intuoffloat v1 | Ofloatofint, v1::nil => Val.floatofint v1 | Ofloatofintu, v1::nil => Val.floatofintu v1 | Ointofsingle, v1::nil => Val.intofsingle v1 | Ointuofsingle, v1::nil => Val.intuofsingle v1 | Osingleofint, v1::nil => Val.singleofint v1 | Osingleofintu, v1::nil => Val.singleofintu v1 | Omakelong, v1::v2::nil => Some(Val.longofwords v1 v2) | Olowlong, v1::nil => Some(Val.loword v1) | Ohighlong, v1::nil => Some(Val.hiword v1) | Ocmp c, _ => Some(Val.of_optbool (eval_condition c vl m)) | Osel c ty, v1::v2::vl => Some(Val.select (eval_condition c vl m) v1 v2 ty) | _, _ => None end. Definition eval_addressing (F V: Type) (genv: Genv.t F V) (sp: val) (addr: addressing) (vl: list val) : option val := match addr, vl with | Aindexed n, v1 :: nil => Some (Val.add v1 (Vint n)) | Aindexed2, v1 :: v2 :: nil => Some (Val.add v1 v2) | Aindexed2shift s, v1 :: v2 :: nil => Some (Val.add v1 (eval_shift s v2)) | Ainstack ofs, nil => Some (Val.offset_ptr sp ofs) | _, _ => None end. Remark eval_addressing_Ainstack: forall (F V: Type) (genv: Genv.t F V) sp ofs, eval_addressing genv sp (Ainstack ofs) nil = Some (Val.offset_ptr sp ofs). Proof. intros. reflexivity. Qed. Remark eval_addressing_Ainstack_inv: forall (F V: Type) (genv: Genv.t F V) sp ofs vl v, eval_addressing genv sp (Ainstack ofs) vl = Some v -> vl = nil /\ v = Val.offset_ptr sp ofs. Proof. unfold eval_addressing; intros; destruct vl; inv H; auto. Qed. Ltac FuncInv := match goal with | H: (match ?x with nil => _ | _ :: _ => _ end = Some _) |- _ => destruct x; simpl in H; try discriminate; FuncInv | H: (Some _ = Some _) |- _ => injection H; intros; clear H; FuncInv | _ => idtac end. (** * Static typing of conditions, operators and addressing modes. *) Definition type_of_condition (c: condition) : list typ := match c with | Ccomp _ => Tint :: Tint :: nil | Ccompu _ => Tint :: Tint :: nil | Ccompshift _ _ => Tint :: Tint :: nil | Ccompushift _ _ => Tint :: Tint :: nil | Ccompimm _ _ => Tint :: nil | Ccompuimm _ _ => Tint :: nil | Ccompf _ => Tfloat :: Tfloat :: nil | Cnotcompf _ => Tfloat :: Tfloat :: nil | Ccompfzero _ => Tfloat :: nil | Cnotcompfzero _ => Tfloat :: nil | Ccompfs _ => Tsingle :: Tsingle :: nil | Cnotcompfs _ => Tsingle :: Tsingle :: nil | Ccompfszero _ => Tsingle :: nil | Cnotcompfszero _ => Tsingle :: nil end. Definition type_of_operation (op: operation) : list typ * typ := match op with | Omove => (nil, Tint) (* treated specially *) | Ointconst _ => (nil, Tint) | Ofloatconst f => (nil, Tfloat) | Osingleconst f => (nil, Tsingle) | Oaddrsymbol _ _ => (nil, Tint) | Oaddrstack _ => (nil, Tint) | Ocast8signed => (Tint :: nil, Tint) | Ocast16signed => (Tint :: nil, Tint) | Oadd => (Tint :: Tint :: nil, Tint) | Oaddshift _ => (Tint :: Tint :: nil, Tint) | Oaddimm _ => (Tint :: nil, Tint) | Osub => (Tint :: Tint :: nil, Tint) | Osubshift _ => (Tint :: Tint :: nil, Tint) | Orsubshift _ => (Tint :: Tint :: nil, Tint) | Orsubimm _ => (Tint :: nil, Tint) | Omul => (Tint :: Tint :: nil, Tint) | Omla => (Tint :: Tint :: Tint :: nil, Tint) | Omulhs => (Tint :: Tint :: nil, Tint) | Omulhu => (Tint :: Tint :: nil, Tint) | Odiv => (Tint :: Tint :: nil, Tint) | Odivu => (Tint :: Tint :: nil, Tint) | Oand => (Tint :: Tint :: nil, Tint) | Oandshift _ => (Tint :: Tint :: nil, Tint) | Oandimm _ => (Tint :: nil, Tint) | Oor => (Tint :: Tint :: nil, Tint) | Oorshift _ => (Tint :: Tint :: nil, Tint) | Oorimm _ => (Tint :: nil, Tint) | Oxor => (Tint :: Tint :: nil, Tint) | Oxorshift _ => (Tint :: Tint :: nil, Tint) | Oxorimm _ => (Tint :: nil, Tint) | Obic => (Tint :: Tint :: nil, Tint) | Obicshift _ => (Tint :: Tint :: nil, Tint) | Onot => (Tint :: nil, Tint) | Onotshift _ => (Tint :: nil, Tint) | Oshl => (Tint :: Tint :: nil, Tint) | Oshr => (Tint :: Tint :: nil, Tint) | Oshru => (Tint :: Tint :: nil, Tint) | Oshift _ => (Tint :: nil, Tint) | Oshrximm _ => (Tint :: nil, Tint) | Onegf => (Tfloat :: nil, Tfloat) | Oabsf => (Tfloat :: nil, Tfloat) | Oaddf => (Tfloat :: Tfloat :: nil, Tfloat) | Osubf => (Tfloat :: Tfloat :: nil, Tfloat) | Omulf => (Tfloat :: Tfloat :: nil, Tfloat) | Odivf => (Tfloat :: Tfloat :: nil, Tfloat) | Onegfs => (Tsingle :: nil, Tsingle) | Oabsfs => (Tsingle :: nil, Tsingle) | Oaddfs => (Tsingle :: Tsingle :: nil, Tsingle) | Osubfs => (Tsingle :: Tsingle :: nil, Tsingle) | Omulfs => (Tsingle :: Tsingle :: nil, Tsingle) | Odivfs => (Tsingle :: Tsingle :: nil, Tsingle) | Osingleoffloat => (Tfloat :: nil, Tsingle) | Ofloatofsingle => (Tsingle :: nil, Tfloat) | Ointoffloat => (Tfloat :: nil, Tint) | Ointuoffloat => (Tfloat :: nil, Tint) | Ofloatofint => (Tint :: nil, Tfloat) | Ofloatofintu => (Tint :: nil, Tfloat) | Ointofsingle => (Tsingle :: nil, Tint) | Ointuofsingle => (Tsingle :: nil, Tint) | Osingleofint => (Tint :: nil, Tsingle) | Osingleofintu => (Tint :: nil, Tsingle) | Omakelong => (Tint :: Tint :: nil, Tlong) | Olowlong => (Tlong :: nil, Tint) | Ohighlong => (Tlong :: nil, Tint) | Ocmp c => (type_of_condition c, Tint) | Osel c ty => (ty :: ty :: type_of_condition c, ty) end. Definition type_of_addressing (addr: addressing) : list typ := match addr with | Aindexed _ => Tint :: nil | Aindexed2 => Tint :: Tint :: nil | Aindexed2shift _ => Tint :: Tint :: nil | Ainstack _ => nil end. (** Weak type soundness results for [eval_operation]: the result values, when defined, are always of the type predicted by [type_of_operation]. *) Section SOUNDNESS. Variable A V: Type. Variable genv: Genv.t A V. Lemma type_of_operation_sound: forall op vl sp v m, op <> Omove -> eval_operation genv sp op vl m = Some v -> Val.has_type v (snd (type_of_operation op)). Proof with (try exact I; try reflexivity). assert (S: forall s v, Val.has_type (eval_shift s v) Tint). intros. unfold eval_shift. destruct s; destruct v; simpl; auto; rewrite s_range; exact I. intros. destruct op; simpl; simpl in H0; FuncInv; try subst v... congruence. unfold Genv.symbol_address. destruct (Genv.find_symbol genv i)... destruct sp... destruct v0... destruct v0... destruct v0; destruct v1... generalize (S s v1). destruct v0; destruct (eval_shift s v1); simpl; tauto. destruct v0... destruct v0; destruct v1... simpl. destruct (eq_block b b0)... generalize (S s v1). destruct v0; destruct (eval_shift s v1); simpl; intuition. destruct (eq_block b b0)... generalize (S s v1). destruct v0; destruct (eval_shift s v1); simpl; intuition. destruct (eq_block b0 b)... destruct v0... destruct v0; destruct v1... destruct v0... destruct v1... destruct v2... destruct v0; destruct v1... destruct v0; destruct v1... destruct v0; destruct v1; simpl in H0; inv H0. destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2... destruct v0; destruct v1; simpl in H0; inv H0. destruct (Int.eq i0 Int.zero); inv H2... destruct v0; destruct v1... generalize (S s v1). destruct v0; destruct (eval_shift s v1); simpl; tauto. destruct v0... destruct v0; destruct v1... generalize (S s v1). destruct v0; destruct (eval_shift s v1); simpl; tauto. destruct v0... destruct v0; destruct v1... generalize (S s v1). destruct v0; destruct (eval_shift s v1); simpl; tauto. destruct v0... destruct v0; destruct v1... generalize (S s v1). destruct v0; destruct (eval_shift s v1); simpl; tauto. destruct v0... generalize (S s v0). destruct (eval_shift s v0); simpl; tauto. destruct v0; destruct v1... simpl. destruct (Int.ltu i0 Int.iwordsize)... destruct v0; destruct v1... simpl. destruct (Int.ltu i0 Int.iwordsize)... destruct v0; destruct v1... simpl. destruct (Int.ltu i0 Int.iwordsize)... apply S. destruct v0; simpl in H0; inv H0. destruct (Int.ltu i (Int.repr 31)); inv H2... destruct v0... destruct v0... destruct v0; destruct v1... destruct v0; destruct v1... destruct v0; destruct v1... destruct v0; destruct v1... destruct v0... destruct v0... destruct v0; destruct v1... destruct v0; destruct v1... destruct v0; destruct v1... destruct v0; destruct v1... destruct v0... destruct v0... destruct v0; simpl in H0; inv H0. destruct (Float.to_int f); simpl in H2; inv H2... destruct v0; simpl in H0; inv H0. destruct (Float.to_intu f); simpl in H2; inv H2... destruct v0; simpl in H0; inv H0... destruct v0; simpl in H0; inv H0... destruct v0; simpl in H0; inv H0. destruct (Float32.to_int f); simpl in H2; inv H2... destruct v0; simpl in H0; inv H0. destruct (Float32.to_intu f); simpl in H2; inv H2... destruct v0; simpl in H0; inv H0... destruct v0; simpl in H0; inv H0... destruct v0; destruct v1... destruct v0... destruct v0... destruct (eval_condition c vl m)... destruct b... unfold Val.select. destruct (eval_condition c vl m). apply Val.normalize_type. exact I. Qed. Definition is_trapping_op (op : operation) := match op with | Odiv | Odivu | Oshrximm _ | Ointoffloat | Ointuoffloat | Ointofsingle | Ointuofsingle | Ofloatofint | Ofloatofintu | Osingleofint | Osingleofintu => true | _ => false end. Definition args_of_operation op := if eq_operation op Omove then 1%nat else List.length (fst (type_of_operation op)). Lemma is_trapping_op_sound: forall op vl sp m, is_trapping_op op = false -> (List.length vl) = args_of_operation op -> eval_operation genv sp op vl m <> None. Proof. unfold args_of_operation. destruct op; destruct eq_operation; intros; simpl in *; try congruence. all: try (destruct vl as [ | vh1 vl1]; try discriminate). all: try (destruct vl1 as [ | vh2 vl2]; try discriminate). all: try (destruct vl2 as [ | vh3 vl3]; try discriminate). all: try (destruct vl3 as [ | vh4 vl4]; try discriminate). Qed. End SOUNDNESS. (** * Manipulating and transforming operations *) (** Constructing shift amounts. *) Program Definition mk_shift_amount (n: int) : shift_amount := {| s_amount := Int.modu n Int.iwordsize; s_range := _ |}. Next Obligation. assert (0 <= Z.modulo (Int.unsigned n) 32 < 32). apply Z_mod_lt. lia. unfold Int.ltu, Int.modu. change (Int.unsigned Int.iwordsize) with 32. rewrite Int.unsigned_repr. apply zlt_true. lia. assert (32 < Int.max_unsigned). compute; auto. lia. Qed. Lemma mk_shift_amount_eq: forall n, Int.ltu n Int.iwordsize = true -> s_amount (mk_shift_amount n) = n. Proof. intros; simpl. unfold Int.modu. transitivity (Int.repr (Int.unsigned n)). decEq. apply Z.mod_small. apply Int.ltu_inv; auto. apply Int.repr_unsigned. Qed. (** Recognition of move operations. *) Definition is_move_operation (A: Type) (op: operation) (args: list A) : option A := match op, args with | Omove, arg :: nil => Some arg | _, _ => None end. Lemma is_move_operation_correct: forall (A: Type) (op: operation) (args: list A) (a: A), is_move_operation op args = Some a -> op = Omove /\ args = a :: nil. Proof. intros until a. unfold is_move_operation; destruct op; try (intros; discriminate). destruct args. intros; discriminate. destruct args. intros. intuition congruence. intros; discriminate. Qed. (** [negate_condition cond] returns a condition that is logically equivalent to the negation of [cond]. *) Definition negate_condition (cond: condition): condition := match cond with | Ccomp c => Ccomp(negate_comparison c) | Ccompu c => Ccompu(negate_comparison c) | Ccompshift c s => Ccompshift (negate_comparison c) s | Ccompushift c s => Ccompushift (negate_comparison c) s | Ccompimm c n => Ccompimm (negate_comparison c) n | Ccompuimm c n => Ccompuimm (negate_comparison c) n | Ccompf c => Cnotcompf c | Cnotcompf c => Ccompf c | Ccompfzero c => Cnotcompfzero c | Cnotcompfzero c => Ccompfzero c | Ccompfs c => Cnotcompfs c | Cnotcompfs c => Ccompfs c | Ccompfszero c => Cnotcompfszero c | Cnotcompfszero c => Ccompfszero c end. Lemma eval_negate_condition: forall cond vl m, eval_condition (negate_condition cond) vl m = option_map negb (eval_condition cond vl m). Proof. intros. destruct cond; simpl. repeat (destruct vl; auto). apply Val.negate_cmp_bool. repeat (destruct vl; auto). apply Val.negate_cmpu_bool. repeat (destruct vl; auto). apply Val.negate_cmp_bool. repeat (destruct vl; auto). apply Val.negate_cmpu_bool. repeat (destruct vl; auto). apply Val.negate_cmp_bool. repeat (destruct vl; auto). apply Val.negate_cmpu_bool. repeat (destruct vl; auto). repeat (destruct vl; auto). destruct (Val.cmpf_bool c v v0); auto. destruct b; auto. repeat (destruct vl; auto). repeat (destruct vl; auto). destruct (Val.cmpf_bool c v (Vfloat Float.zero)); auto. destruct b; auto. repeat (destruct vl; auto). repeat (destruct vl; auto). destruct (Val.cmpfs_bool c v v0); auto. destruct b; auto. repeat (destruct vl; auto). repeat (destruct vl; auto). destruct (Val.cmpfs_bool c v (Vsingle Float32.zero)); auto. destruct b; auto. Qed. (** Shifting stack-relative references. This is used in [Stacking]. *) Definition shift_stack_addressing (delta: Z) (addr: addressing) := match addr with | Ainstack ofs => Ainstack (Ptrofs.add (Ptrofs.repr delta) ofs) | _ => addr end. Definition shift_stack_operation (delta: Z) (op: operation) := match op with | Oaddrstack ofs => Oaddrstack (Ptrofs.add (Ptrofs.repr delta) ofs) | _ => op end. Lemma type_shift_stack_addressing: forall delta addr, type_of_addressing (shift_stack_addressing delta addr) = type_of_addressing addr. Proof. intros. destruct addr; auto. Qed. Lemma type_shift_stack_operation: forall delta op, type_of_operation (shift_stack_operation delta op) = type_of_operation op. Proof. intros. destruct op; auto. Qed. Lemma eval_shift_stack_addressing: forall F V (ge: Genv.t F V) sp addr vl delta, eval_addressing ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl = eval_addressing ge (Vptr sp (Ptrofs.repr delta)) addr vl. Proof. intros. destruct addr; simpl; auto. rewrite Ptrofs.add_zero_l; auto. Qed. Lemma eval_shift_stack_operation: forall F V (ge: Genv.t F V) sp op vl m delta, eval_operation ge (Vptr sp Ptrofs.zero) (shift_stack_operation delta op) vl m = eval_operation ge (Vptr sp (Ptrofs.repr delta)) op vl m. Proof. intros. destruct op; simpl; auto. rewrite Ptrofs.add_zero_l; auto. Qed. (** Offset an addressing mode [addr] by a quantity [delta], so that it designates the pointer [delta] bytes past the pointer designated by [addr]. May be undefined, in which case [None] is returned. *) Definition offset_addressing (addr: addressing) (delta: Z) : option addressing := match addr with | Aindexed n => Some(Aindexed (Int.add n (Int.repr delta))) | Aindexed2 => None | Aindexed2shift s => None | Ainstack n => Some(Ainstack (Ptrofs.add n (Ptrofs.repr delta))) end. Lemma eval_offset_addressing: forall (F V: Type) (ge: Genv.t F V) sp addr args delta addr' v, offset_addressing addr delta = Some addr' -> eval_addressing ge sp addr args = Some v -> eval_addressing ge sp addr' args = Some(Val.add v (Vint (Int.repr delta))). Proof. intros. destruct addr; simpl in H; inv H; simpl in *; FuncInv; subst. rewrite Val.add_assoc; auto. destruct sp; simpl; auto. rewrite Ptrofs.add_assoc. do 4 f_equal. symmetry; auto with ptrofs. Qed. (** Two-address operations. There are none in the ARM architecture. *) Definition two_address_op (op: operation) : bool := false. (** Operations that are so cheap to recompute that CSE should not factor them out. *) Definition is_trivial_op (op: operation) : bool := match op with | Omove => true | Ointconst _ => true | Oaddrstack _ => true | _ => false end. (** Operations that depend on the memory state. *) Definition cond_depends_on_memory (c: condition) : bool := match c with | Ccompu _ | Ccompushift _ _| Ccompuimm _ _ => true | _ => false end. Definition op_depends_on_memory (op: operation) : bool := match op with | Ocmp c => cond_depends_on_memory c | Osel c ty => cond_depends_on_memory c | _ => false end. Lemma cond_depends_on_memory_correct: forall c args m1 m2, cond_depends_on_memory c = false -> eval_condition c args m1 = eval_condition c args m2. Proof. intros. destruct c; simpl; auto; discriminate. Qed. Lemma op_depends_on_memory_correct: forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2, op_depends_on_memory op = false -> eval_operation ge sp op args m1 = eval_operation ge sp op args m2. Proof. intros until m2. destruct op; simpl; try congruence; intros C. - f_equal; f_equal; apply cond_depends_on_memory_correct; auto. - destruct args; auto. destruct args; auto. rewrite (cond_depends_on_memory_correct c args m1 m2 C). auto. Qed. Lemma cond_valid_pointer_eq: forall cond args m1 m2, (forall b z, Mem.valid_pointer m1 b z = Mem.valid_pointer m2 b z) -> eval_condition cond args m1 = eval_condition cond args m2. Proof. intros until m2. intro MEM. destruct cond eqn:COND; simpl; try congruence. all: repeat (destruct args; simpl; try congruence); erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto. Qed. Lemma op_valid_pointer_eq: forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2, (forall b z, Mem.valid_pointer m1 b z = Mem.valid_pointer m2 b z) -> eval_operation ge sp op args m1 = eval_operation ge sp op args m2. Proof. intros until m2. destruct op eqn:OP; simpl; try congruence. - intros MEM; destruct c; simpl; try congruence; repeat (destruct args; simpl; try congruence); erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto. - intro MEM; destruct c; simpl; try congruence; repeat (destruct args; simpl; try congruence); erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto. Qed. (** Global variables mentioned in an operation or addressing mode *) Definition globals_operation (op: operation) : list ident := match op with | Oaddrsymbol s ofs => s :: nil | _ => nil end. Definition globals_addressing (addr: addressing) : list ident := nil. (** * Invariance and compatibility properties. *) (** [eval_operation] and [eval_addressing] depend on a global environment for resolving references to global symbols. We show that they give the same results if a global environment is replaced by another that assigns the same addresses to the same symbols. *) Section GENV_TRANSF. Variable F1 F2 V1 V2: Type. Variable ge1: Genv.t F1 V1. Variable ge2: Genv.t F2 V2. Hypothesis agree_on_symbols: forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s. Lemma eval_operation_preserved: forall sp op vl m, eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m. Proof. intros. unfold eval_operation; destruct op; auto. unfold Genv.symbol_address. rewrite agree_on_symbols; auto. Qed. Lemma eval_addressing_preserved: forall sp addr vl, eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl. Proof. intros. assert (UNUSED: forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s). exact agree_on_symbols. unfold eval_addressing; destruct addr; auto. Qed. End GENV_TRANSF. (** Compatibility of the evaluation functions with value injections. *) Section EVAL_COMPAT. Variable F1 F2 V1 V2: Type. Variable ge1: Genv.t F1 V1. Variable ge2: Genv.t F2 V2. Variable f: meminj. Variable m1: mem. Variable m2: mem. Hypothesis valid_pointer_inj: forall b1 ofs b2 delta, f b1 = Some(b2, delta) -> Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. Hypothesis weak_valid_pointer_inj: forall b1 ofs b2 delta, f b1 = Some(b2, delta) -> Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. Hypothesis weak_valid_pointer_no_overflow: forall b1 ofs b2 delta, f b1 = Some(b2, delta) -> Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> 0 <= Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) <= Ptrofs.max_unsigned. Hypothesis valid_different_pointers_inj: forall b1 ofs1 b2 ofs2 b1' delta1 b2' delta2, b1 <> b2 -> Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true -> Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true -> f b1 = Some (b1', delta1) -> f b2 = Some (b2', delta2) -> b1' <> b2' \/ Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta1)) <> Ptrofs.unsigned (Ptrofs.add ofs2 (Ptrofs.repr delta2)). Ltac InvInject := match goal with | [ H: Val.inject _ (Vint _) _ |- _ ] => inv H; InvInject | [ H: Val.inject _ (Vfloat _) _ |- _ ] => inv H; InvInject | [ H: Val.inject _ (Vsingle _) _ |- _ ] => inv H; InvInject | [ H: Val.inject _ (Vptr _ _) _ |- _ ] => inv H; InvInject | [ H: Val.inject_list _ nil _ |- _ ] => inv H; InvInject | [ H: Val.inject_list _ (_ :: _) _ |- _ ] => inv H; InvInject | _ => idtac end. Remark eval_shift_inj: forall s v v', Val.inject f v v' -> Val.inject f (eval_shift s v) (eval_shift s v'). Proof. intros. inv H; destruct s; simpl; auto; rewrite s_range; auto. Qed. Lemma eval_condition_inj: forall cond vl1 vl2 b, Val.inject_list f vl1 vl2 -> eval_condition cond vl1 m1 = Some b -> eval_condition cond vl2 m2 = Some b. Proof. intros. destruct cond; simpl in H0; FuncInv; InvInject; simpl. eauto 4 using Val.cmp_bool_inject. eauto 4 using Val.cmpu_bool_inject, Mem.valid_pointer_implies. eauto using Val.cmp_bool_inject, eval_shift_inj. eauto 4 using Val.cmpu_bool_inject, Mem.valid_pointer_implies, eval_shift_inj. eauto 4 using Val.cmp_bool_inject. eauto 4 using Val.cmpu_bool_inject, Mem.valid_pointer_implies. inv H3; inv H2; simpl in H0; inv H0; auto. inv H3; inv H2; simpl in H0; inv H0; auto. inv H3; simpl in H0; inv H0; auto. inv H3; simpl in H0; inv H0; auto. inv H3; inv H2; simpl in H0; inv H0; auto. inv H3; inv H2; simpl in H0; inv H0; auto. inv H3; simpl in H0; inv H0; auto. inv H3; simpl in H0; inv H0; auto. Qed. Ltac TrivialExists := match goal with | [ |- exists v2, Some ?v1 = Some v2 /\ Val.inject _ _ v2 ] => exists v1; split; auto | _ => idtac end. Lemma eval_operation_inj: forall op sp1 vl1 sp2 vl2 v1, (forall id ofs, In id (globals_operation op) -> Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) -> Val.inject f sp1 sp2 -> Val.inject_list f vl1 vl2 -> eval_operation ge1 sp1 op vl1 m1 = Some v1 -> exists v2, eval_operation ge2 sp2 op vl2 m2 = Some v2 /\ Val.inject f v1 v2. Proof. intros until v1; intros GL; intros. destruct op; simpl in H1; simpl; FuncInv; InvInject; TrivialExists. apply GL; simpl; auto. apply Val.offset_ptr_inject; auto. inv H4; simpl; auto. inv H4; simpl; auto. apply Val.add_inject; auto. apply Val.add_inject; auto. apply eval_shift_inj; auto. apply Val.add_inject; auto. apply Val.sub_inject; auto. apply Val.sub_inject; auto. apply eval_shift_inj; auto. apply Val.sub_inject; auto. apply eval_shift_inj; auto. apply (@Val.sub_inject f (Vint i) (Vint i) v v'); auto. inv H4; inv H2; simpl; auto. apply Val.add_inject; auto. inv H4; inv H2; simpl; auto. inv H4; inv H2; simpl; auto. inv H4; inv H2; simpl; auto. inv H4; inv H3; simpl in H1; inv H1. simpl. destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2. TrivialExists. inv H4; inv H3; simpl in H1; inv H1. simpl. destruct (Int.eq i0 Int.zero); inv H2. TrivialExists. inv H4; inv H2; simpl; auto. exploit (eval_shift_inj s). eexact H2. intros IS. inv H4; inv IS; simpl; auto. inv H4; simpl; auto. inv H4; inv H2; simpl; auto. exploit (eval_shift_inj s). eexact H2. intros IS. inv H4; inv IS; simpl; auto. inv H4; simpl; auto. inv H4; inv H2; simpl; auto. exploit (eval_shift_inj s). eexact H2. intros IS. inv H4; inv IS; simpl; auto. inv H4; simpl; auto. inv H4; inv H2; simpl; auto. exploit (eval_shift_inj s). eexact H2. intros IS. inv H4; inv IS; simpl; auto. inv H4; simpl; auto. exploit (eval_shift_inj s). eexact H4. intros IS. inv IS; simpl; auto. inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto. inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto. inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto. apply eval_shift_inj; auto. inv H4; simpl in H1; inv H1. simpl. destruct (Int.ltu i (Int.repr 31)); inv H2. TrivialExists. inv H4; simpl; auto. inv H4; simpl; auto. inv H4; inv H2; simpl; auto. inv H4; inv H2; simpl; auto. inv H4; inv H2; simpl; auto. inv H4; inv H2; simpl; auto. inv H4; simpl; auto. inv H4; simpl; auto. inv H4; inv H2; simpl; auto. inv H4; inv H2; simpl; auto. inv H4; inv H2; simpl; auto. inv H4; inv H2; simpl; auto. inv H4; simpl; auto. inv H4; simpl; auto. inv H4; simpl in H1; inv H1. simpl. destruct (Float.to_int f0); simpl in H2; inv H2. exists (Vint i); auto. inv H4; simpl in H1; inv H1. simpl. destruct (Float.to_intu f0); simpl in H2; inv H2. exists (Vint i); auto. inv H4; simpl in *; inv H1. TrivialExists. inv H4; simpl in *; inv H1. TrivialExists. inv H4; simpl in H1; inv H1. simpl. destruct (Float32.to_int f0); simpl in H2; inv H2. exists (Vint i); auto. inv H4; simpl in H1; inv H1. simpl. destruct (Float32.to_intu f0); simpl in H2; inv H2. exists (Vint i); auto. inv H4; simpl in *; inv H1. TrivialExists. inv H4; simpl in *; inv H1. TrivialExists. inv H4; inv H2; simpl; auto. inv H4; simpl; auto. inv H4; simpl; auto. subst v1. destruct (eval_condition c vl1 m1) eqn:?. exploit eval_condition_inj; eauto. intros EQ; rewrite EQ. destruct b; simpl; constructor. simpl; constructor. apply Val.select_inject; auto. destruct (eval_condition c vl1 m1) eqn:?; auto. right; symmetry; eapply eval_condition_inj; eauto. Qed. Lemma eval_addressing_inj: forall addr sp1 vl1 sp2 vl2 v1, (forall id ofs, In id (globals_addressing addr) -> Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) -> Val.inject f sp1 sp2 -> Val.inject_list f vl1 vl2 -> eval_addressing ge1 sp1 addr vl1 = Some v1 -> exists v2, eval_addressing ge2 sp2 addr vl2 = Some v2 /\ Val.inject f v1 v2. Proof. intros. destruct addr; simpl in H2; simpl; FuncInv; InvInject; TrivialExists. apply Val.add_inject; auto. apply Val.add_inject; auto. apply Val.add_inject; auto. apply eval_shift_inj; auto. apply Val.offset_ptr_inject; auto. Qed. Lemma eval_addressing_inj_none: forall addr sp1 vl1 sp2 vl2, (forall id ofs, In id (globals_addressing addr) -> Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) -> Val.inject f sp1 sp2 -> Val.inject_list f vl1 vl2 -> eval_addressing ge1 sp1 addr vl1 = None -> eval_addressing ge2 sp2 addr vl2 = None. Proof. intros until vl2. intros Hglobal Hinjsp Hinjvl. destruct addr; simpl in *; inv Hinjvl; trivial; try discriminate; inv H0; trivial; try discriminate; inv H2; trivial; try discriminate. Qed. End EVAL_COMPAT. (** Compatibility of the evaluation functions with the ``is less defined'' relation over values. *) Section EVAL_LESSDEF. Variable F V: Type. Variable genv: Genv.t F V. Remark valid_pointer_extends: forall m1 m2, Mem.extends m1 m2 -> forall b1 ofs b2 delta, Some(b1, 0) = Some(b2, delta) -> Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. Proof. intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.valid_pointer_extends; eauto. Qed. Remark weak_valid_pointer_extends: forall m1 m2, Mem.extends m1 m2 -> forall b1 ofs b2 delta, Some(b1, 0) = Some(b2, delta) -> Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. Proof. intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.weak_valid_pointer_extends; eauto. Qed. Remark weak_valid_pointer_no_overflow_extends: forall m1 b1 ofs b2 delta, Some(b1, 0) = Some(b2, delta) -> Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> 0 <= Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) <= Ptrofs.max_unsigned. Proof. intros. inv H. rewrite Z.add_0_r. apply Ptrofs.unsigned_range_2. Qed. Remark valid_different_pointers_extends: forall m1 b1 ofs1 b2 ofs2 b1' delta1 b2' delta2, b1 <> b2 -> Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true -> Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true -> Some(b1, 0) = Some (b1', delta1) -> Some(b2, 0) = Some (b2', delta2) -> b1' <> b2' \/ Ptrofs.unsigned(Ptrofs.add ofs1 (Ptrofs.repr delta1)) <> Ptrofs.unsigned(Ptrofs.add ofs2 (Ptrofs.repr delta2)). Proof. intros. inv H2; inv H3. auto. Qed. Lemma eval_condition_lessdef: forall cond vl1 vl2 b m1 m2, Val.lessdef_list vl1 vl2 -> Mem.extends m1 m2 -> eval_condition cond vl1 m1 = Some b -> eval_condition cond vl2 m2 = Some b. Proof. intros. eapply eval_condition_inj with (f := fun b => Some(b, 0)) (m1 := m1). apply valid_pointer_extends; auto. apply weak_valid_pointer_extends; auto. apply weak_valid_pointer_no_overflow_extends. apply valid_different_pointers_extends; auto. rewrite <- val_inject_list_lessdef. eauto. auto. Qed. Lemma eval_operation_lessdef: forall sp op vl1 vl2 v1 m1 m2, Val.lessdef_list vl1 vl2 -> Mem.extends m1 m2 -> eval_operation genv sp op vl1 m1 = Some v1 -> exists v2, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.lessdef v1 v2. Proof. intros. rewrite val_inject_list_lessdef in H. assert (exists v2 : val, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.inject (fun b => Some(b, 0)) v1 v2). eapply eval_operation_inj with (m1 := m1) (sp1 := sp). apply valid_pointer_extends; auto. apply weak_valid_pointer_extends; auto. apply weak_valid_pointer_no_overflow_extends. apply valid_different_pointers_extends; auto. intros. rewrite <- val_inject_lessdef; auto. rewrite <- val_inject_lessdef; auto. eauto. auto. destruct H2 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto. Qed. Lemma eval_addressing_lessdef: forall sp addr vl1 vl2 v1, Val.lessdef_list vl1 vl2 -> eval_addressing genv sp addr vl1 = Some v1 -> exists v2, eval_addressing genv sp addr vl2 = Some v2 /\ Val.lessdef v1 v2. Proof. intros. rewrite val_inject_list_lessdef in H. assert (exists v2 : val, eval_addressing genv sp addr vl2 = Some v2 /\ Val.inject (fun b => Some(b, 0)) v1 v2). eapply eval_addressing_inj with (sp1 := sp). intros. rewrite <- val_inject_lessdef; auto. rewrite <- val_inject_lessdef; auto. eauto. auto. destruct H1 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto. Qed. Lemma eval_addressing_lessdef_none: forall sp addr vl1 vl2, Val.lessdef_list vl1 vl2 -> eval_addressing genv sp addr vl1 = None -> eval_addressing genv sp addr vl2 = None. Proof. intros. rewrite val_inject_list_lessdef in H. eapply eval_addressing_inj_none with (sp1 := sp). intros. rewrite <- val_inject_lessdef; auto. rewrite <- val_inject_lessdef; auto. eauto. auto. Qed. End EVAL_LESSDEF. (** Compatibility of the evaluation functions with memory injections. *) Section EVAL_INJECT. Variable F V: Type. Variable genv: Genv.t F V. Variable f: meminj. Hypothesis globals: meminj_preserves_globals genv f. Variable sp1: block. Variable sp2: block. Variable delta: Z. Hypothesis sp_inj: f sp1 = Some(sp2, delta). Remark symbol_address_inject: forall id ofs, Val.inject f (Genv.symbol_address genv id ofs) (Genv.symbol_address genv id ofs). Proof. intros. unfold Genv.symbol_address. destruct (Genv.find_symbol genv id) eqn:?; auto. exploit (proj1 globals); eauto. intros. econstructor; eauto. rewrite Ptrofs.add_zero; auto. Qed. Lemma eval_condition_inject: forall cond vl1 vl2 b m1 m2, Val.inject_list f vl1 vl2 -> Mem.inject f m1 m2 -> eval_condition cond vl1 m1 = Some b -> eval_condition cond vl2 m2 = Some b. Proof. intros. eapply eval_condition_inj with (f := f) (m1 := m1); eauto. intros; eapply Mem.valid_pointer_inject_val; eauto. intros; eapply Mem.weak_valid_pointer_inject_val; eauto. intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto. intros; eapply Mem.different_pointers_inject; eauto. Qed. Lemma eval_addressing_inject: forall addr vl1 vl2 v1, Val.inject_list f vl1 vl2 -> eval_addressing genv (Vptr sp1 Ptrofs.zero) addr vl1 = Some v1 -> exists v2, eval_addressing genv (Vptr sp2 Ptrofs.zero) (shift_stack_addressing delta addr) vl2 = Some v2 /\ Val.inject f v1 v2. Proof. intros. rewrite eval_shift_stack_addressing. eapply eval_addressing_inj with (sp1 := Vptr sp1 Ptrofs.zero); eauto. intros. apply symbol_address_inject. econstructor; eauto. rewrite Ptrofs.add_zero_l; auto. Qed. Lemma eval_addressing_inject_none: forall addr vl1 vl2, Val.inject_list f vl1 vl2 -> eval_addressing genv (Vptr sp1 Ptrofs.zero) addr vl1 = None -> eval_addressing genv (Vptr sp2 Ptrofs.zero) (shift_stack_addressing delta addr) vl2 = None. Proof. intros. rewrite eval_shift_stack_addressing. eapply eval_addressing_inj_none with (sp1 := Vptr sp1 Ptrofs.zero); eauto. intros. apply symbol_address_inject. econstructor; eauto. rewrite Ptrofs.add_zero_l; auto. Qed. Lemma eval_operation_inject: forall op vl1 vl2 v1 m1 m2, Val.inject_list f vl1 vl2 -> Mem.inject f m1 m2 -> eval_operation genv (Vptr sp1 Ptrofs.zero) op vl1 m1 = Some v1 -> exists v2, eval_operation genv (Vptr sp2 Ptrofs.zero) (shift_stack_operation delta op) vl2 m2 = Some v2 /\ Val.inject f v1 v2. Proof. intros. rewrite eval_shift_stack_operation. simpl. eapply eval_operation_inj with (sp1 := Vptr sp1 Ptrofs.zero) (m1 := m1); eauto. intros; eapply Mem.valid_pointer_inject_val; eauto. intros; eapply Mem.weak_valid_pointer_inject_val; eauto. intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto. intros; eapply Mem.different_pointers_inject; eauto. intros; apply symbol_address_inject. econstructor; eauto. rewrite Ptrofs.add_zero_l; auto. Qed. End EVAL_INJECT. (** * Handling of builtin arguments *) Definition builtin_arg_ok_1 (A: Type) (ba: builtin_arg A) (c: builtin_arg_constraint) := match c, ba with | OK_all, _ => true | OK_const, (BA_int _ | BA_long _ | BA_float _ | BA_single _) => true | OK_addrstack, BA_addrstack _ => true | OK_addressing, BA_addrstack _ => true | OK_addressing, BA_addptr (BA _) (BA_int _) => true | _, _ => false end. Definition builtin_arg_ok (A: Type) (ba: builtin_arg A) (c: builtin_arg_constraint) := match ba with | (BA _ | BA_splitlong (BA _) (BA _)) => true | _ => builtin_arg_ok_1 ba c end.