(* *************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Sylvain Boulmé Grenoble-INP, VERIMAG *) (* Pierre Goutagny ENS-Lyon, VERIMAG *) (* *) (* Copyright VERIMAG. All rights reserved. *) (* This file is distributed under the terms of the INRIA *) (* Non-Commercial License Agreement. *) (* *) (* *************************************************************) (* This file implements the core functions of the tunneling passes, for both RTL and LTL, by using a simplified CFG as a transparent interface See [LTLTunneling.v]/[LTLTunnelingaux.ml] and [RTLTunneling.v]/[RTLTunnelingaux.ml]. *) open Maps open Camlcoq (* type of labels in the cfg *) type label = int * P.t (* instructions under analyzis *) type simple_inst = (* a simplified view of instructions *) BRANCH of node | COND of node * node | OTHER and node = { lab: label; mutable inst: simple_inst; mutable link: node; (* link in the union-find: itself for non "nop"-nodes, target of the "nop" otherwise *) mutable dist: int; mutable tag: int } type positive = P.t type integer = Z.t (* type of the (simplified) CFG *) type cfg = { nodes: (int, node) Hashtbl.t; mutable rems: node list; (* remaining conditions that may become lbranch or not *) mutable num_rems: int; mutable iter_num: int (* number of iterations in elimination of conditions *) } exception BugOnPC of int (* keeps track of the total number of nops seen, for debugging purposes *) let nopcounter = ref 0 (* General functions that do not require language-specific context, and that are used for building language-specific functions *) let rec target c n = (* inspired from the "find" of union-find algorithm *) match n.inst with | COND(s1,s2) -> if n.link != n then update c n else if n.tag < c.iter_num then ( (* we try to change the condition ... *) n.tag <- c.iter_num; (* ... but at most once by iteration *) let ts1 = target c s1 in let ts2 = target c s2 in if ts1 == ts2 then (n.link <- ts1; ts1) else n ) else n | _ -> if n.link != n then update c n else n and update c n = let t = target c n.link in n.link <- t; t let get_node c p = let li = P.to_int p in try Hashtbl.find c.nodes li with Not_found -> let rec n = { lab = (li, p); inst = OTHER; link = n ; dist = 0; tag = 0 } in Hashtbl.add c.nodes li n; n let set_branch c p s = let li = P.to_int p in try let n = Hashtbl.find c.nodes li in n.inst <- BRANCH s; n.link <- target c s with Not_found -> let n = { lab = (li,p); inst = BRANCH s; link = target c s; dist = 0; tag = 0 } in Hashtbl.add c.nodes li n let get td pc = match PTree.get pc td with | Some p -> let (t0, d) = p in (t0, d) | None -> (pc, Z.of_uint 0) let lab_i (n: node): int = fst n.lab let lab_p (n: node): P.t = snd n.lab let undef_dist = -1 let self_dist = undef_dist-1 let rec dist n = if n.dist = undef_dist then ( n.dist <- self_dist; (* protection against an unexpected loop in the data-structure *) n.dist <- (match n.inst with | OTHER -> 0 | BRANCH p -> 1 + dist p | COND (p1,p2) -> 1 + (max (dist p1) (dist p2))); n.dist ) else if n.dist=self_dist then raise (BugOnPC (lab_i n)) else n.dist let string_of_labeli nodes ipc = try let pc = Hashtbl.find nodes ipc in if pc.link == pc then Printf.sprintf "(Target@%d)" (dist pc) else Printf.sprintf "(Nop %d @%d)" (lab_i pc.link) (dist pc) with Not_found -> "" (* * When given the necessary types and options as context, and then some * language-specific functions that cannot be factorised between LTL and RTL, the * `Tunneling` functor returns a module containing the corresponding * `branch_target` function. *) module Tunneling = functor (* Language-specific types *) (LANG: sig type code_unit (* the type of a node of the code cfg (an instruction or a bblock *) type funct (* type of internal functions *) end) (* Compilation options for debugging *) (OPT: sig val langname: string val limit_tunneling: int option (* for debugging: [Some x] limit the number of iterations *) val debug_flag: bool ref val final_dump: bool (* set to true to have a more verbose debugging *) end) -> struct (* The `debug` function uses values from `OPT`, and is used in functions passed to `F` so it must be defined between the two *) let debug fmt = if !OPT.debug_flag then Printf.eprintf fmt else Printf.ifprintf stderr fmt module T (* Language-specific functions *) (FUNS: sig (* build [c.nodes] and accumulate in [acc] conditions at beginning of LTL basic-blocks *) val build_simplified_cfg: cfg -> node list -> positive -> LANG.code_unit -> node list val print_code_unit: cfg -> bool -> int * LANG.code_unit -> bool val fn_code: LANG.funct -> LANG.code_unit PTree.t val fn_entrypoint: LANG.funct -> positive val check_code_unit: (positive * integer) PTree.t -> positive -> LANG.code_unit -> unit end) (* only export what's needed *) : sig val branch_target: LANG.funct -> (positive * integer) PTree.t end = struct (* try to change a condition into a branch [acc] is the current accumulator of conditions to consider in the next iteration of repeat_change_cond *) let try_change_cond c acc pc = match pc.inst with | COND(s1,s2) -> let ts1 = target c s1 in let ts2 = target c s2 in if ts1 == ts2 then ( pc.link <- ts1; c.num_rems <- c.num_rems - 1; acc ) else pc::acc | _ -> raise (BugOnPC (lab_i pc)) (* COND expected *) (* repeat [try_change_cond] until no condition is changed into a branch *) let rec repeat_change_cond c = c.iter_num <- c.iter_num + 1; debug "++ %sTunneling.branch_target %d: remaining number of conds to consider = %d\n" OPT.langname (c.iter_num) (c.num_rems); let old = c.num_rems in c.rems <- List.fold_left (try_change_cond c) [] c.rems; let curr = c.num_rems in let continue = match OPT.limit_tunneling with | Some n -> curr < old && c.iter_num < n | None -> curr < old in if continue then repeat_change_cond c (*********************************************) (*** START: printing and debugging functions *) let print_cfg (f: LANG.funct) c = let a = Array.of_list (PTree.fold (fun acc pc cu -> (P.to_int pc,cu)::acc) (FUNS.fn_code f) []) in Array.fast_sort (fun (i1,_) (i2,_) -> i2 - i1) a; let ep = P.to_int (FUNS.fn_entrypoint f) in debug "entrypoint: %d %s\n" ep (string_of_labeli c.nodes ep); let println = Array.fold_left (FUNS.print_code_unit c) false a in (if println then debug "\n");debug "remaining cond:"; List.iter (fun n -> debug "%d " (lab_i n)) c.rems; debug "\n" (*************************************************************) (* Copy-paste of the extracted code of the verifier *) (* with [raise (BugOnPC (P.to_int pc))] instead of [Error.*] *) (** val check_code : coq_UF -> code -> unit res **) let check_code td c = PTree.fold (fun _ pc cu -> FUNS.check_code_unit td pc cu) c (()) (*** END: copy-paste & debugging functions *******) (* compute the final distance of each nop nodes to its target *) let final_export f c = let count = ref 0 in let filter_nops_init_dist _ n acc = let tn = target c n in if tn == n then ( n.dist <- 0; (* force [n] to be a base case in the recursion of [dist] *) acc ) else ( n.dist <- undef_dist; (* force [dist] to compute the actual [n.dist] *) count := !count+1; n::acc ) in let nops = Hashtbl.fold filter_nops_init_dist c.nodes [] in let res = List.fold_left (fun acc n -> PTree.set (lab_p n) (lab_p n.link, Z.of_uint (dist n)) acc) PTree.empty nops in debug "* %sTunneling.branch_target: initial number of nops = %d\n" OPT.langname !nopcounter; debug "* %sTunneling.branch_target: final number of eliminated nops = %d\n" OPT.langname !count; res let branch_target f = debug "* %sTunneling.branch_target: starting on a new function\n" OPT.langname; if OPT.limit_tunneling <> None then debug "* WARNING: limit_tunneling <> None\n"; let c = { nodes = Hashtbl.create 100; rems = []; num_rems = 0; iter_num = 0 } in c.rems <- PTree.fold (FUNS.build_simplified_cfg c) (FUNS.fn_code f) []; repeat_change_cond c; let res = final_export f c in if !OPT.debug_flag then ( try check_code res (FUNS.fn_code f); if OPT.final_dump then print_cfg f c; with e -> ( print_cfg f c; check_code res (FUNS.fn_code f) ) ); res end end