
CIL API Documentation (version 1.3.5)

May 20, 2006

Contents

1 Module Pretty : Utility functions for pretty-printing. 1

2 Module Errormsg : Utility functions for error-reporting 7

3 Module Clist : Utilities for managing "concatenable lists" (clists). 9

4 Module Stats : Utilities for maintaining timing statistics 10

5 Module Cil : CIL API Documentation. 11

6 Module Formatcil : An Interpreter for constructing CIL constructs 55

7 Module Alpha : ALPHA conversion 56

1 Module Pretty : Utility functions for pretty-printing.

The major features provided by this module are

• An fprintf-style interface with support for user-de�ned printers

• The printout is �t to a width by selecting some of the optional newlines

• Constructs for alignment and indentation

• Print ellipsis starting at a certain nesting depth

• Constructs for printing lists and arrays

Pretty-printing occurs in two stages:

• Construct a Pretty.doc[1] object that encodes all of the elements to be printed along with
alignment speci�ers and optional and mandatory newlines

• Format the Pretty.doc[1] to a certain width and emit it as a string, to an output stream or
pass it to a user-de�ned function

1

The formatting algorithm is not optimal but it does a pretty good job while still operating in
linear time. The original version was based on a pretty printer by Philip Wadler which turned out
to not scale to large jobs.

API

type doc

The type of unformated documents. Elements of this type can be constructed in two ways.
Either with a number of constructor shown below, or using the Pretty.dprintf[1] function
with a printf-like interface. The Pretty.dprintf[1] method is slightly slower so we do not
use it for large jobs such as the output routines for a compiler. But we use it for small jobs
such as logging and error messages.

Constructors for the doc type.

val nil : doc

Constructs an empty document

val (++) : doc -> doc -> doc

Concatenates two documents. This is an in�x operator that associates to the left.

val concat : doc -> doc -> doc

val text : string -> doc

A document that prints the given string

val num : int -> doc

A document that prints an integer in decimal form

val real : float -> doc

A document that prints a real number

val chr : char -> doc

A document that prints a character. This is just like Pretty.text[1] with a one-character
string.

val line : doc

A document that consists of a mandatory newline. This is just like (text "\n"). The new
line will be indented to the current indentation level, unless you use Pretty.leftflush[1]
right after this.

val leftflush : doc

Use after a Pretty.line[1] to prevent the indentation. Whatever follows next will be
�ushed left. Indentation resumes on the next line.

val break : doc

A document that consists of either a space or a line break. Also called an optional line
break. Such a break will be taken only if necessary to �t the document in a given width. If
the break is not taken a space is printed instead.

2

val align : doc

Mark the current column as the current indentation level. Does not print anything. All
taken line breaks will align to this column. The previous alignment level is saved on a stack.

val unalign : doc

Reverts to the last saved indentation level.

val mark : doc

Mark the beginning of a markup section. The width of a markup section is considered 0 for
the purpose of computing identation

val unmark : doc

The end of a markup section

Syntactic sugar

val indent : int -> doc -> doc

Indents the document. Same as ((text " ") ++ align ++ doc ++ unalign), with the
speci�ed number of spaces.

val markup : doc -> doc

Prints a document as markup. The marked document cannot contain line breaks or
alignment constructs.

val seq : sep:doc -> doit:('a -> doc) -> elements:'a list -> doc

Formats a sequence. sep is a separator, doit is a function that converts an element to a
document.

val docList : ?sep:doc -> ('a -> doc) -> unit -> 'a list -> doc

An alternative function for printing a list. The unit argument is there to make this function
more easily usable with the Pretty.dprintf[1] interface. The �rst argument is a separator,
by default a comma.

val d_list : string -> (unit -> 'a -> doc) -> unit -> 'a list -> doc

sm: Yet another list printer. This one accepts the same kind of printing function that
Pretty.dprintf[1] does, and itself works in the dprintf context. Also accepts a string as the
separator since that's by far the most common.

val docArray : ?sep:doc ->

(int -> 'a -> doc) -> unit -> 'a array -> doc

Formats an array. A separator and a function that prints an array element. The default
separator is a comma.

val docOpt : ('a -> doc) -> unit -> 'a option -> doc

Prints an 'a option with None or Some

val d_int32 : int32 -> doc

3

Print an int32

val f_int32 : unit -> int32 -> doc

val d_int64 : int64 -> doc

val f_int64 : unit -> int64 -> doc

module MakeMapPrinter :

functor (Map : sig

type key

type 'a t

val fold : (key -> 'a -> 'b -> 'b) ->

'a t -> 'b -> 'b

end) -> sig

val docMap :

?sep:Pretty.doc ->

(Map.key -> 'a -> Pretty.doc) -> unit -> 'a Map.t -> Pretty.doc

Format a map, analogous to docList.

val d_map :

?dmaplet:(Pretty.doc -> Pretty.doc -> Pretty.doc) ->

string ->

(unit -> Map.key -> Pretty.doc) ->

(unit -> 'a -> Pretty.doc) -> unit -> 'a Map.t -> Pretty.doc

Format a map, analogous to d_list.

end

Format maps.

module MakeSetPrinter :

functor (Set : sig

type elt

type t

val fold : (elt -> 'a -> 'a) ->

t -> 'a -> 'a

end) -> sig

val docSet :

?sep:Pretty.doc -> (Set.elt -> Pretty.doc) -> unit -> Set.t -> Pretty.doc

Format a set, analogous to docList.

val d_set :

string -> (unit -> Set.elt -> Pretty.doc) -> unit -> Set.t -> Pretty.doc

4

Format a set, analogous to d_list.

end

Format sets.

val insert : unit -> doc -> doc

A function that is useful with the printf-like interface

val dprintf : ('a, unit, doc, doc) format4 -> 'a

This function provides an alternative method for constructing doc objects. The �rst
argument for this function is a format string argument (of type ('a, unit, doc) format; if
you insist on understanding what that means see the module Printf). The format string is
like that for the printf function in C, except that it understands a few more formatting
controls, all starting with the @ character.

See the gprintf function if you want to pipe the result of dprintf into some other functions.

The following special formatting characters are understood (these do not correspond to
arguments of the function):

• @[Inserts an Pretty.align[1]. Every format string must have matching
Pretty.align[1] and Pretty.unalign[1].

• @] Inserts an Pretty.unalign[1].

• @! Inserts a Pretty.line[1]. Just like "\n"

• @? Inserts a Pretty.break[1].

• @< Inserts a Pretty.mark[1].

• @> Inserts a Pretty.unmark[1].

• @^Inserts a Pretty.leftflush[1] Should be used immediately after @! or "\n".

• @@ : inserts a @ character

In addition to the usual printf % formatting characters the following two new characters
are supported:

• %t Corresponds to an argument of type unit -> doc. This argument is invoked to
produce a document

• %a Corresponds to two arguments. The �rst of type unit -> 'a -> doc and the
second of type 'a. (The extra unit is do to the peculiarities of the built-in support for
format strings in Ocaml. It turns out that it is not a major problem.) Here is an
example of how you use this:

dprintf "Name=%s, SSN=%7d, Children=@[%a@]\n"

pers.name pers.ssn (docList (chr ',' ++ break) text)

pers.children

The result of dprintf is a Pretty.doc[1]. You can format the document and emit it using
the functions Pretty.fprint[1] and Pretty.sprint[1].

val gprintf : (doc -> 'a) -> ('b, unit, doc, 'a) format4 -> 'b

5

Like Pretty.dprintf[1] but more general. It also takes a function that is invoked on the
constructed document but before any formatting is done. The type of the format argument
means that 'a is the type of the parameters of this function, unit is the type of the �rst
argument to %a and %t formats, doc is the type of the intermediate result, and 'b is the
type of the result of gprintf.

val fprint : Pervasives.out_channel -> width:int -> doc -> unit

Format the document to the given width and emit it to the given channel

val sprint : width:int -> doc -> string

Format the document to the given width and emit it as a string

val fprintf :

Pervasives.out_channel -> ('a, unit, doc) Pervasives.format -> 'a

Like Pretty.dprintf[1] followed by Pretty.fprint[1]

val printf : ('a, unit, doc) Pervasives.format -> 'a

Like Pretty.fprintf[1] applied to stdout

val eprintf : ('a, unit, doc) Pervasives.format -> 'a

Like Pretty.fprintf[1] applied to stderr

val withPrintDepth : int -> (unit -> unit) -> unit

Invokes a thunk, with printDepth temporarily set to the speci�ed value

The following variables can be used to control the operation of the printer

val printDepth : int Pervasives.ref

Speci�es the nesting depth of the align/unalign pairs at which everything is replaced with
ellipsis

val printIndent : bool Pervasives.ref

If false then does not indent

val fastMode : bool Pervasives.ref

If set to true then optional breaks are taken only when the document has exceeded the
given width. This means that the printout will looked more ragged but it will be faster

val flushOften : bool Pervasives.ref

If true the it �ushes after every print

val countNewLines : int Pervasives.ref

Keep a running count of the taken newlines. You can read and write this from the client
code if you want

val auto_printer : string -> 'a

A function that when used at top-level in a module will direct the pa_prtype module
generate automatically the printing functions for a type

6

2 Module Errormsg : Utility functions for error-reporting

val logChannel : Pervasives.out_channel Pervasives.ref

A channel for printing log messages

val debugFlag : bool Pervasives.ref

If set then print debugging info

val verboseFlag : bool Pervasives.ref

val warnFlag : bool Pervasives.ref

Set to true if you want to see all warnings.

exception Error

Error reporting functions raise this exception

val error : ('a, unit, Pretty.doc, unit) format4 -> 'a

Prints an error message of the form Error: Use in conjunction with s, for example:
E.s (E.error ...).

val bug : ('a, unit, Pretty.doc, unit) format4 -> 'a

Similar to error except that its output has the form Bug: ...

val unimp : ('a, unit, Pretty.doc, unit) format4 -> 'a

Similar to error except that its output has the form Unimplemented: ...

val s : 'a -> 'b

Stop the execution by raising an Error.

val hadErrors : bool Pervasives.ref

This is set whenever one of the above error functions are called. It must be cleared manually

val warn : ('a, unit, Pretty.doc, unit) format4 -> 'a

Like Errormsg.error[2] but does not raise the Errormsg.Error[2] exception. Return type is
unit.

val warnOpt : ('a, unit, Pretty.doc, unit) format4 -> 'a

Like Errormsg.warn[2] but optional. Printed only if the Errormsg.warnFlag[2] is set

val log : ('a, unit, Pretty.doc, unit) format4 -> 'a

Print something to logChannel

val logg : ('a, unit, Pretty.doc, unit) format4 -> 'a

same as Errormsg.log[2] but do not wrap lines

val null : ('a, unit, Pretty.doc, unit) format4 -> 'a

7

Do not actually print (i.e. print to /dev/null)

val pushContext : (unit -> Pretty.doc) -> unit

Registers a context printing function

val popContext : unit -> unit

Removes the last registered context printing function

val showContext : unit -> unit

Show the context stack to stderr

val withContext : (unit -> Pretty.doc) -> ('a -> 'b) -> 'a -> 'b

To ensure that the context is registered and removed properly, use the function below

val newline : unit -> unit

val newHline : unit -> unit

val getPosition : unit -> int * string * int

val getHPosition : unit -> int * string

high-level position

val setHLine : int -> unit

val setHFile : string -> unit

val setCurrentLine : int -> unit

val setCurrentFile : string -> unit

type location = {

file : string ;

The �le name

line : int ;

The line number

hfile : string ;

The high-level �le name, or "" if not present

hline : int ;

The high-level line number, or 0 if not present

}

Type for source-�le locations

val d_loc : unit -> location -> Pretty.doc

val d_hloc : unit -> location -> Pretty.doc

val getLocation : unit -> location

val parse_error : string -> 'a

val locUnknown : location

An unknown location for use when you need one but you don't have one

8

val readingFromStdin : bool Pervasives.ref

Records whether the stdin is open for reading the goal *

val startParsing : ?useBasename:bool -> string -> Lexing.lexbuf

val startParsingFromString :

?file:string -> ?line:int -> string -> Lexing.lexbuf

val finishParsing : unit -> unit

3 Module Clist : Utilities for managing "concatenable lists" (clists).

We often need to concatenate sequences, and using lists for this purpose is expensive. This module
provides routines to manage such lists more e�ciently. In this model, we never do cons or append
explicitly. Instead we maintain the elements of the list in a special data structure. Routines are
provided to convert to/from ordinary lists, and carry out common list operations.

type 'a clist =

| CList of 'a list

The only representation for the empty list. Try to use sparingly.

| CConsL of 'a * 'a clist

Do not use this a lot because scanning it is not tail recursive

| CConsR of 'a clist * 'a

| CSeq of 'a clist * 'a clist

We concatenate only two of them at this time. Neither is the empty clist. To be sure
always use append to make these

The clist datatype. A clist can be an ordinary list, or a clist preceded or followed by an
element, or two clists implicitly appended together

val toList : 'a clist -> 'a list

Convert a clist to an ordinary list

val fromList : 'a list -> 'a clist

Convert an ordinary list to a clist

val single : 'a -> 'a clist

Create a clist containing one element

val empty : 'a clist

The empty clist

val append : 'a clist -> 'a clist -> 'a clist

Append two clists

val checkBeforeAppend : 'a clist -> 'a clist -> bool

9

A useful check to assert before an append. It checks that the two lists are not identically the
same (Except if they are both empty)

val length : 'a clist -> int

Find the length of a clist

val map : ('a -> 'b) -> 'a clist -> 'b clist

Map a function over a clist. Returns another clist

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b clist -> 'a

A version of fold_left that works on clists

val iter : ('a -> unit) -> 'a clist -> unit

A version of iter that works on clists

val rev : ('a -> 'a) -> 'a clist -> 'a clist

Reverse a clist. The �rst function reverses an element.

val docCList :

Pretty.doc -> ('a -> Pretty.doc) -> unit -> 'a clist -> Pretty.doc

A document for printing a clist (similar to docList)

4 Module Stats : Utilities for maintaining timing statistics

val reset : bool -> unit

Resets all the timings. Invoke with "true" if you want to switch to using the hardware
performance counters from now on. You get an exception if there are not performance
counters available

exception NoPerfCount

val has_performance_counters : unit -> bool

Check if we have performance counters

val sample_pentium_perfcount_20 : unit -> int

Sample the current cycle count, in megacycles.

val sample_pentium_perfcount_10 : unit -> int

Sample the current cycle count, in kilocycles.

val time : string -> ('a -> 'b) -> 'a -> 'b

Time a function and associate the time with the given string. If some timing information is
already associated with that string, then accumulate the times. If this function is invoked
within another timed function then you can have a hierarchy of timings

10

val repeattime : float -> string -> ('a -> 'b) -> 'a -> 'b

repeattime is like time but runs the function several times until the total running time is
greater or equal to the �rst argument. The total time is then divided by the number of times
the function was run.

val print : Pervasives.out_channel -> string -> unit

Print the current stats preceeded by a message

val lastTime : float Pervasives.ref

Time a function and set lastTime to the time it took

val timethis : ('a -> 'b) -> 'a -> 'b

5 Module Cil : CIL API Documentation.

An html version of this document can be found at http://manju.cs.berkeley.edu/cil.

val initCIL : unit -> unit

Call this function to perform some initialization. Call if after you have set Cil.msvcMode[5].

val cilVersion : string

This are the CIL version numbers. A CIL version is a number of the form M.m.r (major,
minor and release)

val cilVersionMajor : int

val cilVersionMinor : int

val cilVersionRevision : int

This module de�nes the abstract syntax of CIL. It also provides utility functions for traversing
the CIL data structures, and pretty-printing them. The parser for both the GCC and MSVC front-
ends can be invoked as Frontc.parse: string -> unit -> Cil.file[5]. This function must be
given the name of a preprocessed C �le and will return the top-level data structure that describes
a whole source �le. By default the parsing and elaboration into CIL is done as for GCC source. If
you want to use MSVC source you must set the Cil.msvcMode[5] to true and must also invoke the
function Frontc.setMSVCMode: unit -> unit.

The Abstract Syntax of CIL

The top-level representation of a CIL source �le (and the result of the parsing and elabora-
tion). Its main contents is the list of global declarations and de�nitions. You can iterate over the
globals in a Cil.file[5] using the following iterators: Cil.mapGlobals[5], Cil.iterGlobals[5] and
Cil.foldGlobals[5]. You can also use the Cil.dummyFile[5] when you need a Cil.file[5] as a
placeholder. For each global item CIL stores the source location where it appears (using the type
Cil.location[5])

type file = {

mutable fileName : string ;

The complete �le name

mutable globals : global list ;

11

List of globals as they will appear in the printed �le

mutable globinit : fundec option ;

An optional global initializer function. This is a function where you can put stu� that
must be executed before the program is started. This function, is conceptually at the
end of the �le, although it is not part of the globals list. Use Cil.getGlobInit[5] to
create/get one.

mutable globinitcalled : bool ;

Whether the global initialization function is called in main. This should always be
false if there is no global initializer. When you create a global initialization CIL will
try to insert code in main to call it. This will not happen if your �le does not contain a
function called "main"

}

Top-level representation of a C source �le

type comment = location * string

Globals. The main type for representing global declarations and de�nitions. A list of these
form a CIL �le. The order of globals in the �le is generally important.

type global =

| GType of typeinfo * location

A typedef. All uses of type names (through the TNamed constructor) must be preceded
in the �le by a de�nition of the name. The string is the de�ned name and always
not-empty.

| GCompTag of compinfo * location

De�nes a struct/union tag with some �elds. There must be one of these for each
struct/union tag that you use (through the TComp constructor) since this is the only
context in which the �elds are printed. Consequently nested structure tag de�nitions
must be broken into individual de�nitions with the innermost structure de�ned �rst.

| GCompTagDecl of compinfo * location

Declares a struct/union tag. Use as a forward declaration. This is printed without the
�elds.

| GEnumTag of enuminfo * location

Declares an enumeration tag with some �elds. There must be one of these for each
enumeration tag that you use (through the TEnum constructor) since this is the only
context in which the items are printed.

| GEnumTagDecl of enuminfo * location

Declares an enumeration tag. Use as a forward declaration. This is printed without
the items.

| GVarDecl of varinfo * location

A variable declaration (not a de�nition). If the variable has a function type then this
is a prototype. There can be several declarations and at most one de�nition for a given
variable. If both forms appear then they must share the same varinfo structure. A
prototype shares the varinfo with the fundec of the de�nition. Either has storage
Extern or there must be a de�nition in this �le

12

| GVar of varinfo * initinfo * location

A variable de�nition. Can have an initializer. The initializer is updateable so that you
can change it without requiring to recreate the list of globals. There can be at most
one de�nition for a variable in an entire program. Cannot have storage Extern or
function type.

| GFun of fundec * location

A function de�nition.

| GAsm of string * location

Global asm statement. These ones can contain only a template

| GPragma of attribute * location

Pragmas at top level. Use the same syntax as attributes

| GText of string

Some text (printed verbatim) at top level. E.g., this way you can put comments in the
output.

A global declaration or de�nition

Types. A C type is represented in CIL using the type Cil.typ[5]. Among types we dif-
ferentiate the integral types (with di�erent kinds denoting the sign and precision), �oating point
types, enumeration types, array and pointer types, and function types. Every type is associated
with a list of attributes, which are always kept in sorted order. Use Cil.addAttribute[5] and
Cil.addAttributes[5] to construct list of attributes. If you want to inspect a type, you should use
Cil.unrollType[5] or Cil.unrollTypeDeep[5] to see through the uses of named types.

CIL is con�gured at build-time with the sizes and alignments of the underlying compiler (GCC
or MSVC). CIL contains functions that can compute the size of a type (in bits) Cil.bitsSizeOf[5],
the alignment of a type (in bytes) Cil.alignOf_int[5], and can convert an o�set into a start and
width (both in bits) using the function Cil.bitsOffset[5]. At the moment these functions do not
take into account the packed attributes and pragmas.

type typ =

| TVoid of attributes

Void type. Also prede�ned as Cil.voidType[5]

| TInt of ikind * attributes

An integer type. The kind speci�es the sign and width. Several useful variants are
prede�ned as Cil.intType[5], Cil.uintType[5], Cil.longType[5], Cil.charType[5].

| TFloat of fkind * attributes

A �oating-point type. The kind speci�es the precision. You can also use the
prede�ned constant Cil.doubleType[5].

| TPtr of typ * attributes

Pointer type. Several useful variants are prede�ned as Cil.charPtrType[5],
Cil.charConstPtrType[5] (pointer to a constant character), Cil.voidPtrType[5],
Cil.intPtrType[5]

| TArray of typ * exp option * attributes

Array type. It indicates the base type and the array length.

13

| TFun of typ * (string * typ * attributes) list option * bool

* attributes

Function type. Indicates the type of the result, the name, type and name attributes of
the formal arguments (None if no arguments were speci�ed, as in a function whose
de�nition or prototype we have not seen; Some [] means void). Use
Cil.argsToList[5] to obtain a list of arguments. The boolean indicates if it is a
variable-argument function. If this is the type of a varinfo for which we have a function
declaration then the information for the formals must match that in the function's
sformals. Use Cil.setFormals[5], or Cil.setFunctionType[5], or
Cil.makeFormalVar[5] for this purpose.

| TNamed of typeinfo * attributes

| TComp of compinfo * attributes

The most delicate issue for C types is that recursion that is possible by using
structures and pointers. To address this issue we have a more complex representation
for structured types (struct and union). Each such type is represented using the
Cil.compinfo[5] type. For each composite type the Cil.compinfo[5] structure must
be declared at top level using GCompTag and all references to it must share the same
copy of the structure. The attributes given are those pertaining to this use of the type
and are in addition to the attributes that were given at the de�nition of the type and
which are stored in the Cil.compinfo[5].

| TEnum of enuminfo * attributes

A reference to an enumeration type. All such references must share the enuminfo
among them and with a GEnumTag global that precedes all uses. The attributes refer to
this use of the enumeration and are in addition to the attributes of the enumeration
itself, which are stored inside the enuminfo

| TBuiltin_va_list of attributes

This is the same as the gcc's type with the same name

There are a number of functions for querying the kind of a type. These are Cil.isIntegralType[5],
Cil.isArithmeticType[5], Cil.isPointerType[5], Cil.isFunctionType[5], Cil.isArrayType[5].

There are two easy ways to scan a type. First, you can use the Cil.existsType[5] to return
a boolean answer about a type. This function is controlled by a user-provided function that is
queried for each type that is used to construct the current type. The function can specify whether
to terminate the scan with a boolean result or to continue the scan for the nested types.

The other method for scanning types is provided by the visitor interface (see Cil.cilVisitor[5]).
If you want to compare types (or to use them as hash-values) then you should use instead

type signatures (represented as Cil.typsig[5]). These contain the same information as types but
canonicalized such that simple Ocaml structural equality will tell whether two types are equal. Use
Cil.typeSig[5] to compute the signature of a type. If you want to ignore certain type attributes
then use Cil.typeSigWithAttrs[5].

type ikind =

| IChar

char

| ISChar

signed char

14

| IUChar

unsigned char

| IInt

int

| IUInt

unsigned int

| IShort

short

| IUShort

unsigned short

| ILong

long

| IULong

unsigned long

| ILongLong

long long (or _int64 on Microsoft Visual C)

| IULongLong

unsigned long long (or unsigned _int64 on Microsoft Visual C)

Various kinds of integers

type fkind =

| FFloat

float

| FDouble

double

| FLongDouble

long double

Various kinds of �oating-point numbers

Attributes.

type attribute =

| Attr of string * attrparam list

An attribute has a name and some optional parameters. The name should not start or
end with underscore. When CIL parses attribute names it will strip leading and ending
underscores (to ensure that the multitude of GCC attributes such as const, __const
and __const__ all mean the same thing.)

type attributes = attribute list

Attributes are lists sorted by the attribute name. Use the functions Cil.addAttribute[5]
and Cil.addAttributes[5] to insert attributes in an attribute list and maintain the
sortedness.

15

type attrparam =

| AInt of int

An integer constant

| AStr of string

A string constant

| ACons of string * attrparam list

Constructed attributes. These are printed foo(a1,a2,...,an). The list of
parameters can be empty and in that case the parentheses are not printed.

| ASizeOf of typ

A way to talk about types

| ASizeOfE of attrparam

| ASizeOfS of typsig

Replacement for ASizeOf in type signatures. Only used for attributes inside typsigs.

| AAlignOf of typ

| AAlignOfE of attrparam

| AAlignOfS of typsig

| AUnOp of unop * attrparam

| ABinOp of binop * attrparam * attrparam

| ADot of attrparam * string

a.foo *

The type of parameters of attributes

Structures. The Cil.compinfo[5] describes the de�nition of a structure or union type. Each
such Cil.compinfo[5] must be de�ned at the top-level using the GCompTag constructor and must be
shared by all references to this type (using either the TComp type constructor or from the de�nition
of the �elds.

If all you need is to scan the de�nition of each composite type once, you can do that by scanning
all top-level GCompTag.

Constructing a Cil.compinfo[5] can be tricky since it must contain �elds that might refer
to the host Cil.compinfo[5] and furthermore the type of the �eld might need to refer to the
Cil.compinfo[5] for recursive types. Use the Cil.mkCompInfo[5] function to create a Cil.compinfo[5].
You can easily fetch the Cil.fieldinfo[5] for a given �eld in a structure with Cil.getCompField[5].

type compinfo = {

mutable cstruct : bool ;

True if struct, False if union

mutable cname : string ;

The name. Always non-empty. Use Cil.compFullName[5] to get the full name of a
comp (along with the struct or union)

mutable ckey : int ;

A unique integer. This is assigned by Cil.mkCompInfo[5] using a global variable in the
Cil module. Thus two identical structs in two di�erent �les might have di�erent keys.
Use Cil.copyCompInfo[5] to copy structures so that a new key is assigned.

16

mutable cfields : fieldinfo list ;

Information about the �elds. Notice that each �eldinfo has a pointer back to the host
compinfo. This means that you should not share �eldinfo's between two compinfo's

mutable cattr : attributes ;

The attributes that are de�ned at the same time as the composite type. These
attributes can be supplemented individually at each reference to this compinfo using
the TComp type constructor.

mutable cdefined : bool ;

This boolean �ag can be used to distinguish between structures that have not been
de�ned and those that have been de�ned but have no �elds (such things are allowed in
gcc).

mutable creferenced : bool ;

True if used. Initially set to false.

}

The de�nition of a structure or union type. Use Cil.mkCompInfo[5] to make one and use
Cil.copyCompInfo[5] to copy one (this ensures that a new key is assigned and that the �elds
have the right pointers to parents.).

Structure �elds. The Cil.fieldinfo[5] structure is used to describe a structure or union
�eld. Fields, just like variables, can have attributes associated with the �eld itself or associated
with the type of the �eld (stored along with the type of the �eld).

type fieldinfo = {

mutable fcomp : compinfo ;

The host structure that contains this �eld. There can be only one compinfo that
contains the �eld.

mutable fname : string ;

The name of the �eld. Might be the value of Cil.missingFieldName[5] in which case
it must be a bit�eld and is not printed and it does not participate in initialization

mutable ftype : typ ;

The type

mutable fbitfield : int option ;

If a bit�eld then ftype should be an integer type and the width of the bit�eld must be
0 or a positive integer smaller or equal to the width of the integer type. A �eld of
width 0 is used in C to control the alignment of �elds.

mutable fattr : attributes ;

The attributes for this �eld (not for its type)

mutable floc : location ;

The location where this �eld is de�ned

}

Information about a struct/union �eld

17

Enumerations. Information about an enumeration. This is shared by all references to an
enumeration. Make sure you have a GEnumTag for each of of these.

type enuminfo = {

mutable ename : string ;

The name. Always non-empty.

mutable eitems : (string * exp * location) list ;

Items with names and values. This list should be non-empty. The item values must be
compile-time constants.

mutable eattr : attributes ;

The attributes that are de�ned at the same time as the enumeration type. These
attributes can be supplemented individually at each reference to this enuminfo using
the TEnum type constructor.

mutable ereferenced : bool ;

True if used. Initially set to false

}

Information about an enumeration

Enumerations. Information about an enumeration. This is shared by all references to an
enumeration. Make sure you have a GEnumTag for each of of these.

type typeinfo = {

mutable tname : string ;

The name. Can be empty only in a GType when introducing a composite or
enumeration tag. If empty cannot be referred to from the �le

mutable ttype : typ ;

The actual type. This includes the attributes that were present in the typedef

mutable treferenced : bool ;

True if used. Initially set to false

}

Information about a de�ned type

Variables. Each local or global variable is represented by a unique Cil.varinfo[5] structure.
A global Cil.varinfo[5] can be introduced with the GVarDecl or GVar or GFun globals. A local
varinfo can be introduced as part of a function de�nition Cil.fundec[5].

All references to a given global or local variable must refer to the same copy of the varinfo.
Each varinfo has a globally unique identi�er that can be used to index maps and hashtables (the
name can also be used for this purpose, except for locals from di�erent functions). This identi�er
is constructor using a global counter.

It is very important that you construct varinfo structures using only one of the following
functions:

• Cil.makeGlobalVar[5] : to make a global variable

• Cil.makeTempVar[5] : to make a temporary local variable whose name will be generated so
that to avoid con�ict with other locals.

18

• Cil.makeLocalVar[5] : like Cil.makeTempVar[5] but you can specify the exact name to be
used.

• Cil.copyVarinfo[5]: make a shallow copy of a varinfo assigning a new name and a new unique
identi�er

A varinfo is also used in a function type to denote the list of formals.

type varinfo = {

mutable vname : string ;

The name of the variable. Cannot be empty. It is primarily your responsibility to
ensure the uniqueness of a variable name. For local variables Cil.makeTempVar[5]
helps you ensure that the name is unique.

mutable vtype : typ ;

The declared type of the variable.

mutable vattr : attributes ;

A list of attributes associated with the variable.

mutable vstorage : storage ;

The storage-class

mutable vglob : bool ;

True if this is a global variable

mutable vinline : bool ;

Whether this varinfo is for an inline function.

mutable vdecl : location ;

Location of variable declaration.

mutable vid : int ;

A unique integer identi�er. This �eld will be set for you if you use one of the
Cil.makeFormalVar[5], Cil.makeLocalVar[5], Cil.makeTempVar[5],
Cil.makeGlobalVar[5], or Cil.copyVarinfo[5].

mutable vaddrof : bool ;

True if the address of this variable is taken. CIL will set these �ags when it parses C,
but you should make sure to set the �ag whenever your transformation create AddrOf
expression.

mutable vreferenced : bool ;

True if this variable is ever referenced. This is computed by removeUnusedVars. It is
safe to just initialize this to False

}

Information about a variable.

type storage =

| NoStorage

The default storage. Nothing is printed

19

| Static

| Register

| Extern

Storage-class information

Expressions. The CIL expression language contains only the side-e�ect free expressions of
C. They are represented as the type Cil.exp[5]. There are several interesting aspects of CIL
expressions:

Integer and �oating point constants can carry their textual representation. This way the integer
15 can be printed as 0xF if that is how it occurred in the source.

CIL uses 64 bits to represent the integer constants and also stores the width of the integer
type. Care must be taken to ensure that the constant is representable with the given width.
Use the functions Cil.kinteger[5], Cil.kinteger64[5] and Cil.integer[5] to construct constant
expressions. CIL prede�nes the constants Cil.zero[5], Cil.one[5] and Cil.mone[5] (for -1).

Use the functions Cil.isConstant[5] and Cil.isInteger[5] to test if an expression is a constant
and a constant integer respectively.

CIL keeps the type of all unary and binary expressions. You can think of that type qualifying the
operator. Furthermore there are di�erent operators for arithmetic and comparisons on arithmetic
types and on pointers.

Another unusual aspect of CIL is that the implicit conversion between an expression of array
type and one of pointer type is made explicit, using the StartOf expression constructor (which is
not printed). If you apply the AddrOf}constructor to an lvalue of type T then you will be getting
an expression of type TPtr(T).

You can �nd the type of an expression with Cil.typeOf[5].
You can perform constant folding on expressions using the function Cil.constFold[5].

type exp =

| Const of constant

Constant

| Lval of lval

Lvalue

| SizeOf of typ

sizeof(<type>). Has unsigned int type (ISO 6.5.3.4). This is not turned into a
constant because some transformations might want to change types

| SizeOfE of exp

sizeof(<expression>)

| SizeOfStr of string

sizeof(string_literal). We separate this case out because this is the only instance in
which a string literal should not be treated as having type pointer to character.

| AlignOf of typ

This corresponds to the GCC __alignof_. Has unsigned int type

| AlignOfE of exp

| UnOp of unop * exp * typ

Unary operation. Includes the type of the result.

20

| BinOp of binop * exp * exp * typ

Binary operation. Includes the type of the result. The arithmetic conversions are
made explicit for the arguments.

| CastE of typ * exp

Use Cil.mkCast[5] to make casts.

| AddrOf of lval

Always use Cil.mkAddrOf[5] to construct one of these. Apply to an lvalue of type T
yields an expression of type TPtr(T)

| StartOf of lval

Conversion from an array to a pointer to the beginning of the array. Given an lval of
type TArray(T) produces an expression of type TPtr(T). In C this operation is
implicit, the StartOf operator is not printed. We have it in CIL because it makes the
typing rules simpler.

Expressions (Side-e�ect free)

Constants.

type constant =

| CInt64 of int64 * ikind * string option

Integer constant. Give the ikind (see ISO9899 6.1.3.2) and the textual representation,
if available. (This allows us to print a constant as, for example, 0xF instead of 15.)
Use Cil.integer[5] or Cil.kinteger[5] to create these. Watch out for integers that
cannot be represented on 64 bits. OCAML does not give Over�ow exceptions.

| CStr of string

| CWStr of int64 list

| CChr of char

Character constant. This has type int, so use charConstToInt to read the value in case
sign-extension is needed.

| CReal of float * fkind * string option

Floating point constant. Give the fkind (see ISO 6.4.4.2) and also the textual
representation, if available.

| CEnum of exp * string * enuminfo

An enumeration constant with the given value, name, from the given enuminfo. This
is used only if Cil.lowerConstants[5] is true (default). Use Cil.constFoldVisitor[5]
to replace these with integer constants.

Literal constants

type unop =

| Neg

Unary minus

| BNot

Bitwise complement (�)

| LNot

21

Logical Not (!)

Unary operators

type binop =

| PlusA

arithmetic +

| PlusPI

pointer + integer

| IndexPI

pointer + integer but only when it arises from an expression e[i] when e is a pointer
and not an array. This is semantically the same as PlusPI but CCured uses this as a
hint that the integer is probably positive.

| MinusA

arithmetic -

| MinusPI

pointer - integer

| MinusPP

pointer - pointer

| Mult

| Div

/

| Mod

%

| Shiftlt

shift left

| Shiftrt

shift right

| Lt

< (arithmetic comparison)

| Gt

> (arithmetic comparison)

| Le

≤ (arithmetic comparison)

| Ge

> (arithmetic comparison)

| Eq

== (arithmetic comparison)

| Ne

22

!= (arithmetic comparison)

| BAnd

bitwise and

| BXor

exclusive-or

| BOr

inclusive-or

| LAnd

logical and. Unlike other expressions this one does not always evaluate both operands.
If you want to use these, you must set Cil.useLogicalOperators[5].

| LOr

logical or. Unlike other expressions this one does not always evaluate both operands.
If you want to use these, you must set Cil.useLogicalOperators[5].

Binary operations

Lvalues. Lvalues are the sublanguage of expressions that can appear at the left of an assignment
or as operand to the address-of operator. In C the syntax for lvalues is not always a good indication
of the meaning of the lvalue. For example the C value

a[0][1][2]

might involve 1, 2 or 3 memory reads when used in an expression context, depending on the declared
type of the variable a. If a has type int [4][4][4] then we have one memory read from somewhere
inside the area that stores the array a. On the other hand if a has type int *** then the expression
really means * (* (* (a + 0) + 1) + 2), in which case it is clear that it involves three separate
memory operations.

An lvalue denotes the contents of a range of memory addresses. This range is denoted as a
host object along with an o�set within the object. The host object can be of two kinds: a local
or global variable, or an object whose address is in a pointer expression. We distinguish the two
cases so that we can tell quickly whether we are accessing some component of a variable directly
or we are accessing a memory location through a pointer. To make it easy to tell what an lvalue
means CIL represents lvalues as a host object and an o�set (see Cil.lval[5]). The host object
(represented as Cil.lhost[5]) can be a local or global variable or can be the object pointed-to by a
pointer expression. The o�set (represented as Cil.offset[5]) is a sequence of �eld or array index
designators.

Both the typing rules and the meaning of an lvalue is very precisely speci�ed in CIL.
The following are a few useful function for operating on lvalues:

• Cil.mkMem[5] - makes an lvalue of Mem kind. Use this to ensure that certain equivalent forms
of lvalues are canonized. For example, *&x = x.

• Cil.typeOfLval[5] - the type of an lvalue

• Cil.typeOffset[5] - the type of an o�set, given the type of the host.

• Cil.addOffset[5] and Cil.addOffsetLval[5] - extend sequences of o�sets.

23

• Cil.removeOffset[5] and Cil.removeOffsetLval[5] - shrink sequences of o�sets.

The following equivalences hold

Mem(AddrOf(Mem a, aoff)), off = Mem a, aoff + off

Mem(AddrOf(Var v, aoff)), off = Var v, aoff + off

AddrOf (Mem a, NoOffset) = a

type lval = lhost * offset

An lvalue

type lhost =

| Var of varinfo

The host is a variable.

| Mem of exp

The host is an object of type T when the expression has pointer TPtr(T).

The host part of an Cil.lval[5].

type offset =

| NoOffset

No o�set. Can be applied to any lvalue and does not change either the starting
address or the type. This is used when the lval consists of just a host or as a
terminator in a list of other kinds of o�sets.

| Field of fieldinfo * offset

A �eld o�set. Can be applied only to an lvalue that denotes a structure or a union
that contains the mentioned �eld. This advances the o�set to the beginning of the
mentioned �eld and changes the type to the type of the mentioned �eld.

| Index of exp * offset

An array index o�set. Can be applied only to an lvalue that denotes an array. This
advances the starting address of the lval to the beginning of the mentioned array
element and changes the denoted type to be the type of the array element

The o�set part of an Cil.lval[5]. Each o�set can be applied to certain kinds of lvalues and
its e�ect is that it advances the starting address of the lvalue and changes the denoted type,
essentially focusing to some smaller lvalue that is contained in the original one.

Initializers. A special kind of expressions are those that can appear as initializers for global
variables (initialization of local variables is turned into assignments). The initializers are represented
as type Cil.init[5]. You can create initializers with Cil.makeZeroInit[5] and you can conveniently
scan compound initializers them with Cil.foldLeftCompound[5] or with Cil.foldLeftCompoundAll[5].

type init =

| SingleInit of exp

A single initializer

| CompoundInit of typ * (offset * init) list

24

Used only for initializers of structures, unions and arrays. The o�sets are all of the
form Field(f, NoOffset) or Index(i, NoOffset) and specify the �eld or the index
being initialized. For structures all �elds must have an initializer (except the unnamed
bit�elds), in the proper order. This is necessary since the o�sets are not printed. For
unions there must be exactly one initializer. If the initializer is not for the �rst �eld
then a �eld designator is printed, so you better be on GCC since MSVC does not
understand this. For arrays, however, we allow you to give only a pre�x of the
initializers. You can scan an initializer list with Cil.foldLeftCompound[5] or with
Cil.foldLeftCompoundAll[5].

Initializers for global variables.

type initinfo = {

mutable init : init option ;

}

We want to be able to update an initializer in a global variable, so we de�ne it as a mutable
�eld

Function de�nitions. A function de�nition is always introduced with a GFun constructor at
the top level. All the information about the function is stored into a Cil.fundec[5]. Some of the
information (e.g. its name, type, storage, attributes) is stored as a Cil.varinfo[5] that is a �eld of
the fundec. To refer to the function from the expression language you must use the varinfo.

The function de�nition contains, in addition to the body, a list of all the local variables and
separately a list of the formals. Both kind of variables can be referred to in the body of the
function. The formals must also be shared with the formals that appear in the function type. For
that reason, to manipulate formals you should use the provided functions Cil.makeFormalVar[5]
and Cil.setFormals[5] and Cil.makeFormalVar[5].

type fundec = {

mutable svar : varinfo ;

Holds the name and type as a variable, so we can refer to it easily from the program.
All references to this function either in a function call or in a prototype must point to
the same varinfo.

mutable sformals : varinfo list ;

Formals. These must be in the same order and with the same information as the
formal information in the type of the function. Use Cil.setFormals[5] or
Cil.setFunctionType[5] or Cil.makeFormalVar[5] to set these formals and ensure
that they are re�ected in the function type. Do not make copies of these because the
body refers to them.

mutable slocals : varinfo list ;

Locals. Does NOT include the sformals. Do not make copies of these because the
body refers to them.

mutable smaxid : int ;

Max local id. Starts at 0. Used for creating the names of new temporary variables.
Updated by Cil.makeLocalVar[5] and Cil.makeTempVar[5]. You can also use
Cil.setMaxId[5] to set it after you have added the formals and locals.

mutable sbody : block ;

25

The function body.

mutable smaxstmtid : int option ;

max id of a (reachable) statement in this function, if we have computed it. range = 0
. . . (smaxstmtid-1). This is computed by Cil.computeCFGInfo[5].

mutable sallstmts : stmt list ;

After you call Cil.computeCFGInfo[5] this �eld is set to contain all statements in the
function

}

Function de�nitions.

type block = {

mutable battrs : attributes ;

Attributes for the block

mutable bstmts : stmt list ;

The statements comprising the block

}

A block is a sequence of statements with the control falling through from one element to the
next

Statements. CIL statements are the structural elements that make the CFG. They are rep-
resented using the type Cil.stmt[5]. Every statement has a (possibly empty) list of labels. The
Cil.stmtkind[5] �eld of a statement indicates what kind of statement it is.

Use Cil.mkStmt[5] to make a statement and the �ll-in the �elds.
CIL also comes with support for control-�ow graphs. The sid �eld in stmt can be used to give

unique numbers to statements, and the succs and preds �elds can be used to maintain a list of
successors and predecessors for every statement. The CFG information is not computed by default.
Instead you must explicitly use the functions Cil.prepareCFG[5] and Cil.computeCFGInfo[5] to do
it.

type stmt = {

mutable labels : label list ;

Whether the statement starts with some labels, case statements or default statements.

mutable skind : stmtkind ;

The kind of statement

mutable sid : int ;

A number (≥ 0) that is unique in a function. Filled in only after the CFG is computed.

mutable succs : stmt list ;

The successor statements. They can always be computed from the skind and the
context in which this statement appears. Filled in only after the CFG is computed.

mutable preds : stmt list ;

The inverse of the succs function.

}

26

Statements.

type label =

| Label of string * location * bool

A real label. If the bool is "true", the label is from the input source program. If the
bool is "false", the label was created by CIL or some other transformation

| Case of exp * location

A case statement. This expression is lowered into a constant if
Cil.lowerConstants[5] is set to true.

| Default of location

A default statement

Labels

type stmtkind =

| Instr of instr list

A group of instructions that do not contain control �ow. Control implicitly falls
through.

| Return of exp option * location

The return statement. This is a leaf in the CFG.

| Goto of stmt Pervasives.ref * location

A goto statement. Appears from actual goto's in the code or from goto's that have
been inserted during elaboration. The reference points to the statement that is the
target of the Goto. This means that you have to update the reference whenever you
replace the target statement. The target statement MUST have at least a label.

| Break of location

A break to the end of the nearest enclosing Loop or Switch

| Continue of location

A continue to the start of the nearest enclosing Loop

| If of exp * block * block * location

A conditional. Two successors, the "then" and the "else" branches. Both branches
fall-through to the successor of the If statement.

| Switch of exp * block * stmt list * location

A switch statement. The statements that implement the cases can be reached through
the provided list. For each such target you can �nd among its labels what cases it
implements. The statements that implement the cases are somewhere within the
provided block.

| Loop of block * location * stmt option * stmt option

A while(1) loop. The termination test is implemented in the body of a loop using a
Break statement. If prepareCFG has been called, the �rst stmt option will point to the
stmt containing the continue label for this loop and the second will point to the stmt
containing the break label for this loop.

27

| Block of block

Just a block of statements. Use it as a way to keep some block attributes local

| TryFinally of block * block * location

| TryExcept of block * (instr list * exp) * block * location

The various kinds of control-�ow statements statements

Instructions. An instruction Cil.instr[5] is a statement that has no local (intraprocedural)
control �ow. It can be either an assignment, function call, or an inline assembly instruction.

type instr =

| Set of lval * exp * location

An assignment. The type of the expression is guaranteed to be the same with that of
the lvalue

| Call of lval option * exp * exp list * location

A function call with the (optional) result placed in an lval. It is possible that the
returned type of the function is not identical to that of the lvalue. In that case a cast
is printed. The type of the actual arguments are identical to those of the declared
formals. The number of arguments is the same as that of the declared formals, except
for vararg functions. This construct is also used to encode a call to
"__builtin_va_arg". In this case the second argument (which should be a type T) is
encoded SizeOf(T)

| Asm of attributes * string list * (string * lval) list

* (string * exp) list * string list * location

There are for storing inline assembly. They follow the GCC speci�cation:

asm [volatile] ("...template..." "..template.."

: "c1" (o1), "c2" (o2), ..., "cN" (oN)

: "d1" (i1), "d2" (i2), ..., "dM" (iM)

: "r1", "r2", ..., "nL");

where the parts are

• volatile (optional): when present, the assembler instruction cannot be removed,
moved, or otherwise optimized

• template: a sequence of strings, with %0, %1, %2, etc. in the string to refer to the
input and output expressions. I think they're numbered consecutively, but the
docs don't specify. Each string is printed on a separate line. This is the only part
that is present for MSVC inline assembly.

• "ci" (oi): pairs of constraint-string and output-lval; the constraint speci�es that
the register used must have some property, like being a �oating-point register; the
constraint string for outputs also has "=" to indicate it is written, or "+" to
indicate it is both read and written; 'oi' is the name of a C lvalue (probably a
variable name) to be used as the output destination

• "dj" (ij): pairs of constraint and input expression; the constraint is similar to the
"ci"s. the 'ij' is an arbitrary C expression to be loaded into the corresponding
register

28

• "rk": registers to be regarded as "clobbered" by the instruction; "memory" may
be speci�ed for arbitrary memory e�ects

an example (from gcc manual):

asm volatile ("movc3 %0,%1,%2"

: /* no outputs */

: "g" (from), "g" (to), "g" (count)

: "r0", "r1", "r2", "r3", "r4", "r5");

Instructions.

type location = {

line : int ;

The line number. -1 means "do not know"

file : string ;

The name of the source �le

byte : int ;

The byte position in the source �le

}

Describes a location in a source �le.

type typsig =

| TSArray of typsig * int64 option * attribute list

| TSPtr of typsig * attribute list

| TSComp of bool * string * attribute list

| TSFun of typsig * typsig list * bool * attribute list

| TSEnum of string * attribute list

| TSBase of typ

Type signatures. Two types are identical i� they have identical signatures. These contain
the same information as types but canonicalized. For example, two function types that are
identical except for the name of the formal arguments are given the same signature. Also,
TNamed constructors are unrolled.

Lowering Options

val lowerConstants : bool Pervasives.ref

Do lower constants (default true)

val insertImplicitCasts : bool Pervasives.ref

Do insert implicit casts (default true)

type featureDescr = {

fd_enabled : bool Pervasives.ref ;

The enable �ag. Set to default value

fd_name : string ;

29

This is used to construct an option "�doxxx" and "�dontxxx" that enable and disable
the feature

fd_description : string ;

fd_extraopt : (string * Arg.spec * string) list ;

Additional command line options

fd_doit : file -> unit ;

This performs the transformation

fd_post_check : bool ;

}

To be able to add/remove features easily, each feature should be package as an interface with
the following interface. These features should be

val compareLoc : location -> location -> int

Comparison function for locations. * Compares �rst by �lename, then line, then byte

Values for manipulating globals

val emptyFunction : string -> fundec

Make an empty function

val setFormals : fundec -> varinfo list -> unit

Update the formals of a fundec and make sure that the function type has the same
information. Will copy the name as well into the type.

val setFunctionType : fundec -> typ -> unit

Set the types of arguments and results as given by the function type passed as the second
argument. Will not copy the names from the function type to the formals

val setFunctionTypeMakeFormals : fundec -> typ -> unit

Set the type of the function and make formal arguments for them

val setMaxId : fundec -> unit

Update the smaxid after you have populated with locals and formals (unless you constructed
those using Cil.makeLocalVar[5] or Cil.makeTempVar[5].

val dummyFunDec : fundec

A dummy function declaration handy when you need one as a placeholder. It contains inside
a dummy varinfo.

val dummyFile : file

A dummy �le

val saveBinaryFile : file -> string -> unit

Write a Cil.file[5] in binary form to the �lesystem. The �le can be read back in later
using Cil.loadBinaryFile[5], possibly saving parsing time. The second argument is the
name of the �le that should be created.

30

val saveBinaryFileChannel : file -> Pervasives.out_channel -> unit

Write a Cil.file[5] in binary form to the �lesystem. The �le can be read back in later
using Cil.loadBinaryFile[5], possibly saving parsing time. Does not close the channel.

val loadBinaryFile : string -> file

Read a Cil.file[5] in binary form from the �lesystem. The �rst argument is the name of a
�le previously created by Cil.saveBinaryFile[5].

val getGlobInit : ?main_name:string -> file -> fundec

Get the global initializer and create one if it does not already exist. When it creates a global
initializer it attempts to place a call to it in the main function named by the optional
argument (default "main")

val iterGlobals : file -> (global -> unit) -> unit

Iterate over all globals, including the global initializer

val foldGlobals : file -> ('a -> global -> 'a) -> 'a -> 'a

Fold over all globals, including the global initializer

val mapGlobals : file -> (global -> global) -> unit

Map over all globals, including the global initializer and change things in place

val new_sid : unit -> int

val prepareCFG : fundec -> unit

Prepare a function for CFG information computation by Cil.computeCFGInfo[5]. This
function converts all Break, Switch, Default and Continue Cil.stmtkind[5]s and
Cil.label[5]s into Ifs and Gotos, giving the function body a very CFG-like character. This
function modi�es its argument in place.

val computeCFGInfo : fundec -> bool -> unit

Compute the CFG information for all statements in a fundec and return a list of the
statements. The input fundec cannot have Break, Switch, Default, or Continue
Cil.stmtkind[5]s or Cil.label[5]s. Use Cil.prepareCFG[5] to transform them away. The
second argument should be true if you wish a global statement number, false if you wish a
local (per-function) statement numbering. The list of statements is set in the sallstmts �eld
of a fundec.

NOTE: unless you want the simpler control-�ow graph provided by prepareCFG, or you
need the function's smaxstmtid and sallstmt �elds �lled in, we recommend you use
Cfg.computeFileCFG instead of this function to compute control-�ow information.
Cfg.computeFileCFG is newer and will handle switch, break, and continue correctly.

val copyFunction : fundec -> string -> fundec

Create a deep copy of a function. There should be no sharing between the copy and the
original function

31

val pushGlobal :

global ->

types:global list Pervasives.ref ->

variables:global list Pervasives.ref -> unit

CIL keeps the types at the beginning of the �le and the variables at the end of the �le. This
function will take a global and add it to the corresponding stack. Its operation is actually
more complicated because if the global declares a type that contains references to variables
(e.g. in sizeof in an array length) then it will also add declarations for the variables to the
types stack

val invalidStmt : stmt

An empty statement. Used in pretty printing

val gccBuiltins : (string, typ * typ list * bool) Hashtbl.t

A list of the GCC built-in functions. Maps the name to the result and argument types, and
whether it is vararg

val msvcBuiltins : (string, typ * typ list * bool) Hashtbl.t

A list of the MSVC built-in functions. Maps the name to the result and argument types, and
whether it is vararg

Values for manipulating initializers

val makeZeroInit : typ -> init

Make a initializer for zero-ing a data type

val foldLeftCompound :

doinit:(offset -> init -> typ -> 'a -> 'a) ->

ct:typ -> initl:(offset * init) list -> acc:'a -> 'a

Fold over the list of initializers in a Compound. doinit is called on every present initializer,
even if it is of compound type. In the case of arrays there might be missing zero-initializers
at the end of the list. These are not scanned. This is much like List.fold_left except we
also pass the type of the initializer

val foldLeftCompoundAll :

doinit:(offset -> init -> typ -> 'a -> 'a) ->

ct:typ -> initl:(offset * init) list -> acc:'a -> 'a

Fold over the list of initializers in a Compound, like Cil.foldLeftCompound[5] but in the
case of an array it scans even missing zero initializers at the end of the array

Values for manipulating types

val voidType : typ

void

val isVoidType : typ -> bool

val isVoidPtrType : typ -> bool

val intType : typ

32

int

val uintType : typ

unsigned int

val longType : typ

long

val ulongType : typ

unsigned long

val charType : typ

char

val charPtrType : typ

char *

val wcharKind : ikind Pervasives.ref

wchar_t (depends on architecture) and is set when you call Cil.initCIL[5].

val wcharType : typ Pervasives.ref

val charConstPtrType : typ

char const *

val voidPtrType : typ

void *

val intPtrType : typ

int *

val uintPtrType : typ

unsigned int *

val doubleType : typ

double

val upointType : typ Pervasives.ref

val typeOfSizeOf : typ Pervasives.ref

val isSigned : ikind -> bool

Returns true if and only if the given integer type is signed.

val mkCompInfo :

bool ->

string ->

(compinfo ->

(string * typ * int option * attributes * location) list) ->

attributes -> compinfo

33

Creates a a (potentially recursive) composite type. The arguments are: (1) a boolean
indicating whether it is a struct or a union, (2) the name (always non-empty), (3) a function
that when given a representation of the structure type constructs the type of the �elds
recursive type (the �rst argument is only useful when some �elds need to refer to the type of
the structure itself), and (4) a list of attributes to be associated with the composite type.
The resulting compinfo has the �eld "cde�ned" only if the list of �elds is non-empty.

val copyCompInfo : compinfo -> string -> compinfo

Makes a shallow copy of a Cil.compinfo[5] changing the name and the key.

val missingFieldName : string

This is a constant used as the name of an unnamed bit�eld. These �elds do not participate
in initialization and their name is not printed.

val compFullName : compinfo -> string

Get the full name of a comp

val isCompleteType : typ -> bool

Returns true if this is a complete type. This means that sizeof(t) makes sense. Incomplete
types are not yet de�ned structures and empty arrays.

val unrollType : typ -> typ

Unroll a type until it exposes a non TNamed. Will collect all attributes appearing in TNamed!!!

val unrollTypeDeep : typ -> typ

Unroll all the TNamed in a type (even under type constructors such as TPtr, TFun or
TArray. Does not unroll the types of �elds in TComp types. Will collect all attributes

val separateStorageModifiers :

attribute list -> attribute list * attribute list

Separate out the storage-modi�er name attributes

val isIntegralType : typ -> bool

True if the argument is an integral type (i.e. integer or enum)

val isArithmeticType : typ -> bool

True if the argument is an arithmetic type (i.e. integer, enum or �oating point

val isPointerType : typ -> bool

True if the argument is a pointer type

val isFunctionType : typ -> bool

True if the argument is a function type

val argsToList :

(string * typ * attributes) list option ->

(string * typ * attributes) list

34

Obtain the argument list ([] if None)

val isArrayType : typ -> bool

True if the argument is an array type

exception LenOfArray

Raised when Cil.lenOfArray[5] fails either because the length is None or because it is a
non-constant expression

val lenOfArray : exp option -> int

Call to compute the array length as present in the array type, to an integer. Raises
Cil.LenOfArray[5] if not able to compute the length, such as when there is no length or the
length is not a constant.

val getCompField : compinfo -> string -> fieldinfo

Return a named �eldinfo in compinfo, or raise Not_found

type existsAction =

| ExistsTrue

| ExistsFalse

| ExistsMaybe

A datatype to be used in conjunction with existsType

val existsType : (typ -> existsAction) -> typ -> bool

Scans a type by applying the function on all elements. When the function returns
ExistsTrue, the scan stops with true. When the function returns ExistsFalse then the
current branch is not scanned anymore. Care is taken to apply the function only once on
each composite type, thus avoiding circularity. When the function returns ExistsMaybe then
the types that construct the current type are scanned (e.g. the base type for TPtr and
TArray, the type of �elds for a TComp, etc).

val splitFunctionType :

typ ->

typ * (string * typ * attributes) list option * bool *

attributes

Given a function type split it into return type, arguments, is_vararg and attributes. An
error is raised if the type is not a function type

Same as Cil.splitFunctionType[5] but takes a varinfo. Prints a nicer error message if the
varinfo is not for a function

val splitFunctionTypeVI :

varinfo ->

typ * (string * typ * attributes) list option * bool *

attributes

Type signatures

Type signatures. Two types are identical i� they have identical signatures. These contain the
same information as types but canonicalized. For example, two function types that are identical

35

except for the name of the formal arguments are given the same signature. Also, TNamed constructors
are unrolled. You shoud use Util.equals to compare type signatures because they might still
contain circular structures (through attributes, and sizeof)

val d_typsig : unit -> typsig -> Pretty.doc

Print a type signature

val typeSig : typ -> typsig

Compute a type signature

val typeSigWithAttrs :

?ignoreSign:bool ->

(attributes -> attributes) -> typ -> typsig

Like Cil.typeSig[5] but customize the incorporation of attributes. Use �ignoreSign:true to
convert all signed integer types to unsigned, so that signed and unsigned will compare the
same.

val setTypeSigAttrs : attributes -> typsig -> typsig

Replace the attributes of a signature (only at top level)

val typeSigAttrs : typsig -> attributes

Get the top-level attributes of a signature

LVALUES

val makeVarinfo : bool -> string -> typ -> varinfo

Make a varinfo. Use this (rarely) to make a raw varinfo. Use other functions to make locals
(Cil.makeLocalVar[5] or Cil.makeFormalVar[5] or Cil.makeTempVar[5]) and globals
(Cil.makeGlobalVar[5]). Note that this function will assign a new identi�er. The �rst
argument speci�es whether the varinfo is for a global.

val makeFormalVar : fundec -> ?where:string -> string -> typ -> varinfo

Make a formal variable for a function. Insert it in both the sformals and the type of the
function. You can optionally specify where to insert this one. If where = "^" then it is
inserted �rst. If where = "$" then it is inserted last. Otherwise where must be the name of a
formal after which to insert this. By default it is inserted at the end.

val makeLocalVar : fundec -> ?insert:bool -> string -> typ -> varinfo

Make a local variable and add it to a function's slocals (only if insert = true, which is the
default). Make sure you know what you are doing if you set insert=false.

val makeTempVar : fundec -> ?name:string -> typ -> varinfo

Make a temporary variable and add it to a function's slocals. The name of the temporary
variable will be generated based on the given name hint so that to avoid con�icts with other
locals.

val makeGlobalVar : string -> typ -> varinfo

Make a global variable. Your responsibility to make sure that the name is unique

36

val copyVarinfo : varinfo -> string -> varinfo

Make a shallow copy of a varinfo and assign a new identi�er

val newVID : unit -> int

Generate a new variable ID. This will be di�erent than any variable ID that is generated by
Cil.makeLocalVar[5] and friends

val addOffsetLval : offset -> lval -> lval

Add an o�set at the end of an lvalue. Make sure the type of the lvalue and the o�set are
compatible.

val addOffset : offset -> offset -> offset

addOffset o1 o2 adds o1 to the end of o2.

val removeOffsetLval : lval -> lval * offset

Remove ONE o�set from the end of an lvalue. Returns the lvalue with the trimmed o�set
and the �nal o�set. If the �nal o�set is NoOffset then the original lval did not have an
o�set.

val removeOffset : offset -> offset * offset

Remove ONE o�set from the end of an o�set sequence. Returns the trimmed o�set and the
�nal o�set. If the �nal o�set is NoOffset then the original lval did not have an o�set.

val typeOfLval : lval -> typ

Compute the type of an lvalue

val typeOffset : typ -> offset -> typ

Compute the type of an o�set from a base type

Values for manipulating expressions

val zero : exp

0

val one : exp

1

val mone : exp

-1

val kinteger64 : ikind -> int64 -> exp

Construct an integer of a given kind, using OCaml's int64 type. If needed it will truncate
the integer to be within the representable range for the given kind.

val kinteger : ikind -> int -> exp

Construct an integer of a given kind. Converts the integer to int64 and then uses kinteger64.
This might truncate the value if you use a kind that cannot represent the given integer. This
can only happen for one of the Char or Short kinds

37

val integer : int -> exp

Construct an integer of kind IInt. You can use this always since the OCaml integers are 31
bits and are guaranteed to �t in an IInt

val isInteger : exp -> int64 option

True if the given expression is a (possibly cast'ed) character or an integer constant

val isConstant : exp -> bool

True if the expression is a compile-time constant

val isZero : exp -> bool

True if the given expression is a (possibly cast'ed) integer or character constant with value
zero

val charConstToInt : char -> constant

Given the character c in a (CChr c), sign-extend it to 32 bits. (This is the o�cial way of
interpreting character constants, according to ISO C 6.4.4.4.10, which says that character
constants are chars cast to ints) Returns CInt64(sign-extened c, IInt, None)

val constFold : bool -> exp -> exp

Do constant folding on an expression. If the �rst argument is true then will also compute
compiler-dependent expressions such as sizeof

val constFoldBinOp : bool -> binop -> exp -> exp -> typ -> exp

Do constant folding on a binary operation. The bulk of the work done by constFold is done
here. If the �rst argument is true then will also compute compiler-dependent expressions
such as sizeof

val increm : exp -> int -> exp

Increment an expression. Can be arithmetic or pointer type

val var : varinfo -> lval

Makes an lvalue out of a given variable

val mkAddrOf : lval -> exp

Make an AddrOf. Given an lvalue of type T will give back an expression of type ptr(T). It
optimizes somewhat expressions like "& v" and "& v0"

val mkAddrOrStartOf : lval -> exp

Like mkAddrOf except if the type of lval is an array then it uses StartOf. This is the right
operation for getting a pointer to the start of the storage denoted by lval.

val mkMem : addr:exp -> off:offset -> lval

Make a Mem, while optimizing AddrOf. The type of the addr must be TPtr(t) and the type
of the resulting lval is t. Note that in CIL the implicit conversion between an array and the
pointer to the �rst element does not apply. You must do the conversion yourself using
StartOf

38

val mkString : string -> exp

Make an expression that is a string constant (of pointer type)

val mkCastT : e:exp -> oldt:typ -> newt:typ -> exp

Construct a cast when having the old type of the expression. If the new type is the same as
the old type, then no cast is added.

val mkCast : e:exp -> newt:typ -> exp

Like Cil.mkCastT[5] but uses typeOf to get oldt

val stripCasts : exp -> exp

Removes casts from this expression, but ignores casts within other expression constructs. So
we delete the (A) and (B) casts from "(A)(B)(x + (C)y)", but leave the (C) cast.

val typeOf : exp -> typ

Compute the type of an expression

val parseInt : string -> exp

Convert a string representing a C integer literal to an expression. Handles the pre�xes 0x
and 0 and the su�xes L, U, UL, LL, ULL

Values for manipulating statements

val mkStmt : stmtkind -> stmt

Construct a statement, given its kind. Initialize the sid �eld to -1, and labels, succs and
preds to the empty list

val mkBlock : stmt list -> block

Construct a block with no attributes, given a list of statements

val mkStmtOneInstr : instr -> stmt

Construct a statement consisting of just one instruction

val compactStmts : stmt list -> stmt list

Try to compress statements so as to get maximal basic blocks

val mkEmptyStmt : unit -> stmt

Returns an empty statement (of kind Instr)

val dummyInstr : instr

A instr to serve as a placeholder

val dummyStmt : stmt

A statement consisting of just dummyInstr

val mkWhile : guard:exp -> body:stmt list -> stmt list

Make a while loop. Can contain Break or Continue

39

val mkForIncr :

iter:varinfo ->

first:exp ->

stopat:exp -> incr:exp -> body:stmt list -> stmt list

Make a for loop for(i=start; i<past; i += incr) { . . . }. The body can contain Break but not
Continue. Can be used with i a pointer or an integer. Start and done must have the same
type but incr must be an integer

val mkFor :

start:stmt list ->

guard:exp -> next:stmt list -> body:stmt list -> stmt list

Make a for loop for(start; guard; next) { . . . }. The body can contain Break but not
Continue !!!

Values for manipulating attributes

type attributeClass =

| AttrName of bool

Attribute of a name. If argument is true and we are on MSVC then the attribute is
printed using __declspec as part of the storage speci�er

| AttrFunType of bool

Attribute of a function type. If argument is true and we are on MSVC then the
attribute is printed just before the function name

| AttrType

Attribute of a type

Various classes of attributes

val attributeHash : (string, attributeClass) Hashtbl.t

This table contains the mapping of prede�ned attributes to classes. Extend this table with
more attributes as you need. This table is used to determine how to associate attributes
with names or types

val partitionAttributes :

default:attributeClass ->

attributes ->

attribute list * attribute list * attribute list

Partition the attributes into classes:name attributes, function type, and type attributes

val addAttribute : attribute -> attributes -> attributes

Add an attribute. Maintains the attributes in sorted order of the second argument

val addAttributes : attribute list -> attributes -> attributes

Add a list of attributes. Maintains the attributes in sorted order. The second argument
must be sorted, but not necessarily the �rst

val dropAttribute : string -> attributes -> attributes

40

Remove all attributes with the given name. Maintains the attributes in sorted order.

val dropAttributes : string list -> attributes -> attributes

Remove all attributes with names appearing in the string list. Maintains the attributes in
sorted order

val filterAttributes : string -> attributes -> attributes

Retains attributes with the given name

val hasAttribute : string -> attributes -> bool

True if the named attribute appears in the attribute list. The list of attributes must be
sorted.

val typeAttrs : typ -> attribute list

Returns all the attributes contained in a type. This requires a traversal of the type
structure, in case of composite, enumeration and named types

val setTypeAttrs : typ -> attributes -> typ

val typeAddAttributes : attribute list -> typ -> typ

Add some attributes to a type

val typeRemoveAttributes : string list -> typ -> typ

Remove all attributes with the given names from a type. Note that this does not remove
attributes from typedef and tag de�nitions, just from their uses

The visitor

type 'a visitAction =

| SkipChildren

Do not visit the children. Return the node as it is.

| DoChildren

Continue with the children of this node. Rebuild the node on return if any of the
children changes (use == test)

| ChangeTo of 'a

Replace the expression with the given one

| ChangeDoChildrenPost of 'a * ('a -> 'a)

First consider that the entire exp is replaced by the �rst parameter. Then continue
with the children. On return rebuild the node if any of the children has changed and
then apply the function on the node

Di�erent visiting actions. 'a will be instantiated with exp, instr, etc.

class type cilVisitor =

object

method vvdec : Cil.varinfo -> Cil.varinfo Cil.visitAction

41

Invoked for each variable declaration. The subtrees to be traversed are those
corresponding to the type and attributes of the variable. Note that variable
declarations are all the GVar, GVarDecl, GFun, all the varinfo in formals of function
types, and the formals and locals for function de�nitions. This means that the list of
formals in a function de�nition will be traversed twice, once as part of the function type
and second as part of the formals in a function de�nition.

method vvrbl : Cil.varinfo -> Cil.varinfo Cil.visitAction

Invoked on each variable use. Here only the SkipChildren and ChangeTo actions make
sense since there are no subtrees. Note that the type and attributes of the variable are
not traversed for a variable use

method vexpr : Cil.exp -> Cil.exp Cil.visitAction

Invoked on each expression occurrence. The subtrees are the subexpressions, the types
(for a Cast or SizeOf expression) or the variable use.

method vlval : Cil.lval -> Cil.lval Cil.visitAction

Invoked on each lvalue occurrence

method voffs : Cil.offset -> Cil.offset Cil.visitAction

Invoked on each o�set occurrence that is *not* as part of an initializer list speci�cation,
i.e. in an lval or recursively inside an o�set.

method vinitoffs : Cil.offset -> Cil.offset Cil.visitAction

Invoked on each o�set appearing in the list of a CompoundInit initializer.

method vinst : Cil.instr -> Cil.instr list Cil.visitAction

Invoked on each instruction occurrence. The ChangeTo action can replace this
instruction with a list of instructions

method vstmt : Cil.stmt -> Cil.stmt Cil.visitAction

Control-�ow statement. The default DoChildren action does not create a new
statement when the components change. Instead it updates the contents of the original
statement. This is done to preserve the sharing with Goto and Case statements that
point to the original statement. If you use the ChangeTo action then you should take
care of preserving that sharing yourself.

method vblock : Cil.block -> Cil.block Cil.visitAction

Block.

method vfunc : Cil.fundec -> Cil.fundec Cil.visitAction

Function de�nition. Replaced in place.

method vglob : Cil.global -> Cil.global list Cil.visitAction

42

Global (vars, types, etc.)

method vinit : Cil.init -> Cil.init Cil.visitAction

Initializers for globals

method vtype : Cil.typ -> Cil.typ Cil.visitAction

Use of some type. Note that for structure/union and enumeration types the de�nition
of the composite type is not visited. Use vglob to visit it.

method vattr : Cil.attribute -> Cil.attribute list Cil.visitAction

Attribute. Each attribute can be replaced by a list

method vattrparam : Cil.attrparam -> Cil.attrparam Cil.visitAction

Attribute parameters.

method queueInstr : Cil.instr list -> unit

Add here instructions while visiting to queue them to preceede the current statement or
instruction being processed. Use this method only when you are visiting an expression
that is inside a function body, or a statement, because otherwise there will no place for
the visitor to place your instructions.

method unqueueInstr : unit -> Cil.instr list

Gets the queue of instructions and resets the queue. This is done automatically for you
when you visit statments.

end

A visitor interface for traversing CIL trees. Create instantiations of this type by specializing
the class Cil.nopCilVisitor[5]. Each of the specialized visiting functions can also call the
queueInstr to specify that some instructions should be inserted before the current
instruction or statement. Use syntax like self#queueInstr to call a method associated with
the current object.

class nopCilVisitor : cilVisitor

Default Visitor. Traverses the CIL tree without modifying anything

val visitCilFile : cilVisitor -> file -> unit

Visit a �le. This will will re-cons all globals TWICE (so that it is tail-recursive). Use
Cil.visitCilFileSameGlobals[5] if your visitor will not change the list of globals.

val visitCilFileSameGlobals : cilVisitor -> file -> unit

A visitor for the whole �le that does not change the globals (but maybe changes things
inside the globals). Use this function instead of Cil.visitCilFile[5] whenever appropriate
because it is more e�cient for long �les.

val visitCilGlobal : cilVisitor -> global -> global list

43

Visit a global

val visitCilFunction : cilVisitor -> fundec -> fundec

Visit a function de�nition

val visitCilExpr : cilVisitor -> exp -> exp

val visitCilLval : cilVisitor -> lval -> lval

Visit an lvalue

val visitCilOffset : cilVisitor -> offset -> offset

Visit an lvalue or recursive o�set

val visitCilInitOffset : cilVisitor -> offset -> offset

Visit an initializer o�set

val visitCilInstr : cilVisitor -> instr -> instr list

Visit an instruction

val visitCilStmt : cilVisitor -> stmt -> stmt

Visit a statement

val visitCilBlock : cilVisitor -> block -> block

Visit a block

val visitCilType : cilVisitor -> typ -> typ

Visit a type

val visitCilVarDecl : cilVisitor -> varinfo -> varinfo

Visit a variable declaration

val visitCilInit : cilVisitor -> init -> init

Visit an initializer

val visitCilAttributes : cilVisitor -> attribute list -> attribute list

Visit a list of attributes

Utility functions

val msvcMode : bool Pervasives.ref

Whether the pretty printer should print output for the MS VC compiler. Default is GCC.
After you set this function you should call Cil.initCIL[5].

val useLogicalOperators : bool Pervasives.ref

Whether to use the logical operands LAnd and LOr. By default, do not use them because
they are unlike other expressions and do not evaluate both of their operands

val constFoldVisitor : bool -> cilVisitor

44

A visitor that does constant folding. Pass as argument whether you want machine speci�c
simpli�cations to be done, or not.

type lineDirectiveStyle =

| LineComment

| LinePreprocessorInput

| LinePreprocessorOutput

Styles of printing line directives

val lineDirectiveStyle : lineDirectiveStyle option Pervasives.ref

How to print line directives

val print_CIL_Input : bool Pervasives.ref

Whether we print something that will only be used as input to our own parser. In that case
we are a bit more liberal in what we print

val printCilAsIs : bool Pervasives.ref

Whether to print the CIL as they are, without trying to be smart and print nicer code.
Normally this is false, in which case the pretty printer will turn the while(1) loops of CIL
into nicer loops, will not print empty "else" blocks, etc. These is one case howewer in which
if you turn this on you will get code that does not compile: if you use varargs the
__builtin_va_arg function will be printed in its internal form.

val lineLength : int Pervasives.ref

The length used when wrapping output lines. Setting this variable to a large integer will
prevent wrapping and make #line directives more accurate.

val forgcc : string -> string

Return the string 's' if we're printing output for gcc, suppres it if we're printing for CIL to
parse back in. the purpose is to hide things from gcc that it complains about, but still be
able to do lossless transformations when CIL is the consumer

Debugging support

val currentLoc : location Pervasives.ref

A reference to the current location. If you are careful to set this to the current location then
you can use some built-in logging functions that will print the location.

val currentGlobal : global Pervasives.ref

A reference to the current global being visited

CIL has a fairly easy to use mechanism for printing error messages. This mechanism is built
on top of the pretty-printer mechanism (see Pretty.doc[1]) and the error-message modules (see
Errormsg.error[2]).

Here is a typical example for printing a log message:

ignore (Errormsg.log "Expression %a is not positive (at %s:%i)\n"

d_exp e loc.file loc.line)

45

and here is an example of how you print a fatal error message that stop the execution:

Errormsg.s (Errormsg.bug "Why am I here?")

Notice that you can use C format strings with some extension. The most useful extension is
"%a" that means to consumer the next two argument from the argument list and to apply the �rst
to unit and then to the second and to print the resulting Pretty.doc[1]. For each major type in
CIL there is a corresponding function that pretty-prints an element of that type:

val d_loc : unit -> location -> Pretty.doc

Pretty-print a location

val d_thisloc : unit -> Pretty.doc

Pretty-print the Cil.currentLoc[5]

val d_ikind : unit -> ikind -> Pretty.doc

Pretty-print an integer of a given kind

val d_fkind : unit -> fkind -> Pretty.doc

Pretty-print a �oating-point kind

val d_storage : unit -> storage -> Pretty.doc

Pretty-print storage-class information

val d_const : unit -> constant -> Pretty.doc

Pretty-print a constant

val derefStarLevel : int

val indexLevel : int

val arrowLevel : int

val addrOfLevel : int

val additiveLevel : int

val comparativeLevel : int

val bitwiseLevel : int

val getParenthLevel : exp -> int

Parentheses level. An expression "a op b" is printed parenthesized if its parentheses level is
≥ that that of its context. Identi�ers have the lowest level and weakly binding operators
(e.g. |) have the largest level. The correctness criterion is that a smaller level MUST
correspond to a stronger precedence!

class type cilPrinter =

object

method pVDecl : unit -> Cil.varinfo -> Pretty.doc

Invoked for each variable declaration. Note that variable declarations are all the GVar,
GVarDecl, GFun, all the varinfo in formals of function types, and the formals and
locals for function de�nitions.

46

method pVar : Cil.varinfo -> Pretty.doc

Invoked on each variable use.

method pLval : unit -> Cil.lval -> Pretty.doc

Invoked on each lvalue occurrence

method pOffset : Pretty.doc -> Cil.offset -> Pretty.doc

Invoked on each o�set occurrence. The second argument is the base.

method pInstr : unit -> Cil.instr -> Pretty.doc

Invoked on each instruction occurrence.

method pLabel : unit -> Cil.label -> Pretty.doc

Print a label.

method pStmt : unit -> Cil.stmt -> Pretty.doc

Control-�ow statement. This is used by Cil.printGlobal[5] and by
Cil.dumpGlobal[5].

method dStmt : Pervasives.out_channel -> int -> Cil.stmt -> unit

Dump a control-�ow statement to a �le with a given indentation. This is used by
Cil.dumpGlobal[5].

method dBlock : Pervasives.out_channel -> int -> Cil.block -> unit

Dump a control-�ow block to a �le with a given indentation. This is used by
Cil.dumpGlobal[5].

method pBlock : unit -> Cil.block -> Pretty.doc

method pBlock : unit -> Cil.block -> Pretty.doc

Print a block.

method pGlobal : unit -> Cil.global -> Pretty.doc

Global (vars, types, etc.). This can be slow and is used only by Cil.printGlobal[5]
but not by Cil.dumpGlobal[5].

method dGlobal : Pervasives.out_channel -> Cil.global -> unit

Dump a global to a �le with a given indentation. This is used by Cil.dumpGlobal[5]

method pFieldDecl : unit -> Cil.fieldinfo -> Pretty.doc

A �eld declaration

method pType : Pretty.doc option -> unit -> Cil.typ -> Pretty.doc

method pAttr : Cil.attribute -> Pretty.doc * bool

47

Attribute. Also return an indication whether this attribute must be printed inside the
__attribute__ list or not.

method pAttrParam : unit -> Cil.attrparam -> Pretty.doc

Attribute parameter

method pAttrs : unit -> Cil.attributes -> Pretty.doc

Attribute lists

method pLineDirective : ?forcefile:bool -> Cil.location -> Pretty.doc

Print a line-number. This is assumed to come always on an empty line. If the force�le
argument is present and is true then the �le name will be printed always. Otherwise
the �le name is printed only if it is di�erent from the last time time this function is
called. The last �le name is stored in a private �eld inside the cilPrinter object.

method pStmtKind : Cil.stmt -> unit -> Cil.stmtkind -> Pretty.doc

Print a statement kind. The code to be printed is given in the Cil.stmtkind[5]
argument. The initial Cil.stmt[5] argument records the statement which follows the
one being printed; Cil.defaultCilPrinterClass[5] uses this information to prettify
statement printing in certain special cases.

method pExp : unit -> Cil.exp -> Pretty.doc

Print expressions

method pInit : unit -> Cil.init -> Pretty.doc

Print initializers. This can be slow and is used by Cil.printGlobal[5] but not by
Cil.dumpGlobal[5].

method dInit : Pervasives.out_channel -> int -> Cil.init -> unit

Dump a global to a �le with a given indentation. This is used by Cil.dumpGlobal[5]

end

A printer interface for CIL trees. Create instantiations of this type by specializing the class
Cil.defaultCilPrinterClass[5].

class defaultCilPrinterClass : cilPrinter

val defaultCilPrinter : cilPrinter

class plainCilPrinterClass : cilPrinter

These are pretty-printers that will show you more details on the internal CIL representation,
without trying hard to make it look like C

val plainCilPrinter : cilPrinter

val printerForMaincil : cilPrinter Pervasives.ref

val printType : cilPrinter -> unit -> typ -> Pretty.doc

48

Print a type given a pretty printer

val printExp : cilPrinter -> unit -> exp -> Pretty.doc

Print an expression given a pretty printer

val printLval : cilPrinter -> unit -> lval -> Pretty.doc

Print an lvalue given a pretty printer

val printGlobal : cilPrinter -> unit -> global -> Pretty.doc

Print a global given a pretty printer

val printAttr : cilPrinter -> unit -> attribute -> Pretty.doc

Print an attribute given a pretty printer

val printAttrs : cilPrinter -> unit -> attributes -> Pretty.doc

Print a set of attributes given a pretty printer

val printInstr : cilPrinter -> unit -> instr -> Pretty.doc

Print an instruction given a pretty printer

val printStmt : cilPrinter -> unit -> stmt -> Pretty.doc

Print a statement given a pretty printer. This can take very long (or even over�ow the
stack) for huge statements. Use Cil.dumpStmt[5] instead.

val printBlock : cilPrinter -> unit -> block -> Pretty.doc

Print a block given a pretty printer. This can take very long (or even over�ow the stack) for
huge block. Use Cil.dumpBlock[5] instead.

val dumpStmt : cilPrinter -> Pervasives.out_channel -> int -> stmt -> unit

Dump a statement to a �le using a given indentation. Use this instead of Cil.printStmt[5]
whenever possible.

val dumpBlock : cilPrinter -> Pervasives.out_channel -> int -> block -> unit

Dump a block to a �le using a given indentation. Use this instead of Cil.printBlock[5]
whenever possible.

val printInit : cilPrinter -> unit -> init -> Pretty.doc

Print an initializer given a pretty printer. This can take very long (or even over�ow the
stack) for huge initializers. Use Cil.dumpInit[5] instead.

val dumpInit : cilPrinter -> Pervasives.out_channel -> int -> init -> unit

Dump an initializer to a �le using a given indentation. Use this instead of Cil.printInit[5]
whenever possible.

val d_type : unit -> typ -> Pretty.doc

Pretty-print a type using Cil.defaultCilPrinter[5]

49

val d_exp : unit -> exp -> Pretty.doc

Pretty-print an expression using Cil.defaultCilPrinter[5]

val d_lval : unit -> lval -> Pretty.doc

Pretty-print an lvalue using Cil.defaultCilPrinter[5]

val d_offset : Pretty.doc -> unit -> offset -> Pretty.doc

Pretty-print an o�set using Cil.defaultCilPrinter[5], given the pretty printing for the
base.

val d_init : unit -> init -> Pretty.doc

Pretty-print an initializer using Cil.defaultCilPrinter[5]. This can be extremely slow (or
even over�ow the stack) for huge initializers. Use Cil.dumpInit[5] instead.

val d_binop : unit -> binop -> Pretty.doc

Pretty-print a binary operator

val d_unop : unit -> unop -> Pretty.doc

Pretty-print a unary operator

val d_attr : unit -> attribute -> Pretty.doc

Pretty-print an attribute using Cil.defaultCilPrinter[5]

val d_attrparam : unit -> attrparam -> Pretty.doc

Pretty-print an argument of an attribute using Cil.defaultCilPrinter[5]

val d_attrlist : unit -> attributes -> Pretty.doc

Pretty-print a list of attributes using Cil.defaultCilPrinter[5]

val d_instr : unit -> instr -> Pretty.doc

Pretty-print an instruction using Cil.defaultCilPrinter[5]

val d_label : unit -> label -> Pretty.doc

Pretty-print a label using Cil.defaultCilPrinter[5]

val d_stmt : unit -> stmt -> Pretty.doc

Pretty-print a statement using Cil.defaultCilPrinter[5]. This can be extremely slow (or
even over�ow the stack) for huge statements. Use Cil.dumpStmt[5] instead.

val d_block : unit -> block -> Pretty.doc

Pretty-print a block using Cil.defaultCilPrinter[5]. This can be extremely slow (or even
over�ow the stack) for huge blocks. Use Cil.dumpBlock[5] instead.

val d_global : unit -> global -> Pretty.doc

Pretty-print the internal representation of a global using Cil.defaultCilPrinter[5]. This
can be extremely slow (or even over�ow the stack) for huge globals (such as arrays with lots
of initializers). Use Cil.dumpGlobal[5] instead.

50

val dn_exp : unit -> exp -> Pretty.doc

Versions of the above pretty printers, that don't print #line directives

val dn_lval : unit -> lval -> Pretty.doc

val dn_init : unit -> init -> Pretty.doc

val dn_type : unit -> typ -> Pretty.doc

val dn_global : unit -> global -> Pretty.doc

val dn_attrlist : unit -> attributes -> Pretty.doc

val dn_attr : unit -> attribute -> Pretty.doc

val dn_attrparam : unit -> attrparam -> Pretty.doc

val dn_stmt : unit -> stmt -> Pretty.doc

val dn_instr : unit -> instr -> Pretty.doc

val d_shortglobal : unit -> global -> Pretty.doc

Pretty-print a short description of the global. This is useful for error messages

val dumpGlobal : cilPrinter -> Pervasives.out_channel -> global -> unit

Pretty-print a global. Here you give the channel where the printout should be sent.

val dumpFile : cilPrinter -> Pervasives.out_channel -> string -> file -> unit

Pretty-print an entire �le. Here you give the channel where the printout should be sent.

val bug : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Like Errormsg.bug[2] except that Cil.currentLoc[5] is also printed

val unimp : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Like Errormsg.unimp[2] except that Cil.currentLoc[5]is also printed

val error : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Like Errormsg.error[2] except that Cil.currentLoc[5] is also printed

val errorLoc : location -> ('a, unit, Pretty.doc) Pervasives.format -> 'a

Like Cil.error[5] except that it explicitly takes a location argument, instead of using the
Cil.currentLoc[5]

val warn : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Like Errormsg.warn[2] except that Cil.currentLoc[5] is also printed

val warnOpt : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Like Errormsg.warnOpt[2] except that Cil.currentLoc[5] is also printed. This warning is
printed only of Errormsg.warnFlag[2] is set.

val warnContext : ('a, unit, Pretty.doc) Pervasives.format -> 'a

Like Errormsg.warn[2] except that Cil.currentLoc[5] and context is also printed

val warnContextOpt : ('a, unit, Pretty.doc) Pervasives.format -> 'a

51

Like Errormsg.warn[2] except that Cil.currentLoc[5] and context is also printed. This
warning is printed only of Errormsg.warnFlag[2] is set.

val warnLoc : location -> ('a, unit, Pretty.doc) Pervasives.format -> 'a

Like Cil.warn[5] except that it explicitly takes a location argument, instead of using the
Cil.currentLoc[5]

Sometimes you do not want to see the syntactic sugar that the above pretty-printing functions
add. In that case you can use the following pretty-printing functions. But note that the output of
these functions is not valid C

val d_plainexp : unit -> exp -> Pretty.doc

Pretty-print the internal representation of an expression

val d_plaininit : unit -> init -> Pretty.doc

Pretty-print the internal representation of an integer

val d_plainlval : unit -> lval -> Pretty.doc

Pretty-print the internal representation of an lvalue

Pretty-print the internal representation of an lvalue o�set val d_plaino�set: unit → o�set →
Pretty.doc

val d_plaintype : unit -> typ -> Pretty.doc

Pretty-print the internal representation of a type

ALPHA conversion has been moved to the Alpha module.

val uniqueVarNames : file -> unit

Assign unique names to local variables. This might be necessary after you transformed the
code and added or renamed some new variables. Names are not used by CIL internally, but
once you print the �le out the compiler downstream might be confused. You might have
added a new global that happens to have the same name as a local in some function.
Rename the local to ensure that there would never be confusioin. Or, viceversa, you might
have added a local with a name that con�icts with a global

Optimization Passes

val peepHole2 : (instr * instr -> instr list option) -> stmt list -> unit

A peephole optimizer that processes two adjacent statements and possibly replaces them
both. If some replacement happens, then the new statements are themselves subject to
optimization

val peepHole1 : (instr -> instr list option) -> stmt list -> unit

Similar to peepHole2 except that the optimization window consists of one statement, not two

Machine dependency

exception SizeOfError of string * typ

Raised when one of the bitsSizeOf functions cannot compute the size of a type. This can
happen because the type contains array-length expressions that we don't know how to
compute or because it is a type whose size is not de�ned (e.g. TFun or an unde�ned
compinfo). The string is an explanation of the error

52

val bitsSizeOf : typ -> int

The size of a type, in bits. Trailing padding is added for structs and arrays. Raises
Cil.SizeOfError[5] when it cannot compute the size. This function is architecture
dependent, so you should only call this after you call Cil.initCIL[5]. Remember that on
GCC sizeof(void) is 1!

val sizeOf : typ -> exp

val alignOf_int : typ -> int

The minimum alignment (in bytes) for a type. This function is architecture dependent, so
you should only call this after you call Cil.initCIL[5].

val bitsOffset : typ -> offset -> int * int

Give a type of a base and an o�set, returns the number of bits from the base address and
the width (also expressed in bits) for the subobject denoted by the o�set. Raises
Cil.SizeOfError[5] when it cannot compute the size. This function is architecture
dependent, so you should only call this after you call Cil.initCIL[5].

val char_is_unsigned : bool Pervasives.ref

Whether "char" is unsigned. Set after you call Cil.initCIL[5]

val little_endian : bool Pervasives.ref

Whether the machine is little endian. Set after you call Cil.initCIL[5]

val underscore_name : bool Pervasives.ref

Whether the compiler generates assembly labels by prepending "_" to the identi�er. That
is, will function foo() have the label "foo", or "_foo"? Set after you call Cil.initCIL[5]

val locUnknown : location

Represents a location that cannot be determined

val get_instrLoc : instr -> location

Return the location of an instruction

val get_globalLoc : global -> location

Return the location of a global, or locUnknown

val get_stmtLoc : stmtkind -> location

Return the location of a statement, or locUnknown

val dExp : Pretty.doc -> exp

Generate an Cil.exp[5] to be used in case of errors.

val dInstr : Pretty.doc -> location -> instr

Generate an Cil.instr[5] to be used in case of errors.

val dGlobal : Pretty.doc -> location -> global

53

Generate a Cil.global[5] to be used in case of errors.

val mapNoCopy : ('a -> 'a) -> 'a list -> 'a list

Like map but try not to make a copy of the list

val mapNoCopyList : ('a -> 'a list) -> 'a list -> 'a list

Like map but each call can return a list. Try not to make a copy of the list

val startsWith : string -> string -> bool

sm: return true if the �rst is a pre�x of the second string

An Interpreter for constructing CIL constructs

type formatArg =

| Fe of exp

| Feo of exp option

For array lengths

| Fu of unop

| Fb of binop

| Fk of ikind

| FE of exp list

For arguments in a function call

| Ff of (string * typ * attributes)

For a formal argument

| FF of (string * typ * attributes) list

For formal argument lists

| Fva of bool

For the ellipsis in a function type

| Fv of varinfo

| Fl of lval

| Flo of lval option

| Fo of offset

| Fc of compinfo

| Fi of instr

| FI of instr list

| Ft of typ

| Fd of int

| Fg of string

| Fs of stmt

| FS of stmt list

| FA of attributes

| Fp of attrparam

| FP of attrparam list

| FX of string

The type of argument for the interpreter

54

val d_formatarg : unit -> formatArg -> Pretty.doc

Pretty-prints a format arg

val lowerConstants : bool Pervasives.ref

Do lower constant expressions into constants (default true)

6 Module Formatcil : An Interpreter for constructing CIL con-
structs

val cExp : string -> (string * Cil.formatArg) list -> Cil.exp

Constructs an expression based on the program and the list of arguments. Each argument
consists of a name followed by the actual data. This argument will be placed instead of
occurrences of "%v:name" in the pattern (where the "v" is dependent on the type of the
data). The parsing of the string is memoized. * Only the �rst expression is parsed.

val cLval : string -> (string * Cil.formatArg) list -> Cil.lval

Constructs an lval based on the program and the list of arguments. Only the �rst lvalue is
parsed. The parsing of the string is memoized.

val cType : string -> (string * Cil.formatArg) list -> Cil.typ

Constructs a type based on the program and the list of arguments. Only the �rst type is
parsed. The parsing of the string is memoized.

val cInstr :

string -> Cil.location -> (string * Cil.formatArg) list -> Cil.instr

Constructs an instruction based on the program and the list of arguments. Only the �rst
instruction is parsed. The parsing of the string is memoized.

val cStmt :

string ->

(string -> Cil.typ -> Cil.varinfo) ->

Cil.location -> (string * Cil.formatArg) list -> Cil.stmt

val cStmts :

string ->

(string -> Cil.typ -> Cil.varinfo) ->

Cil.location -> (string * Cil.formatArg) list -> Cil.stmt list

Constructs a list of statements

val dExp : string -> Cil.exp -> Cil.formatArg list option

Deconstructs an expression based on the program. Produces an optional list of format
arguments. The parsing of the string is memoized.

val dLval : string -> Cil.lval -> Cil.formatArg list option

55

Deconstructs an lval based on the program. Produces an optional list of format arguments.
The parsing of the string is memoized.

val dType : string -> Cil.typ -> Cil.formatArg list option

Deconstructs a type based on the program. Produces an optional list of format arguments.
The parsing of the string is memoized.

val dInstr : string -> Cil.instr -> Cil.formatArg list option

Deconstructs an instruction based on the program. Produces an optional list of format
arguments. The parsing of the string is memoized.

val noMemoize : bool Pervasives.ref

If set then will not memoize the parsed patterns

val test : unit -> unit

Just a testing function

7 Module Alpha : ALPHA conversion

type 'a undoAlphaElement

This is the type of the elements that are recorded by the alpha conversion functions in order
to be able to undo changes to the tables they modify. Useful for implementing scoping

type 'a alphaTableData

This is the type of the elements of the alpha renaming table. These elements can carry some
data associated with each occurrence of the name.

val newAlphaName :

alphaTable:(string, 'a alphaTableData Pervasives.ref) Hashtbl.t ->

undolist:'a undoAlphaElement list Pervasives.ref option ->

lookupname:string -> data:'a -> string * 'a

Create a new name based on a given name. The new name is formed from a pre�x (obtained
from the given name by stripping a su�x consisting of _ followed by only digits), followed
by a special separator and then by a positive integer su�x. The �rst argument is a table
mapping name pre�xes to some data that speci�es what su�xes have been used and how to
create the new one. This function updates the table with the new largest su�x generated.
The "undolist" argument, when present, will be used by the function to record information
that can be used by Alpha.undoAlphaChanges[7] to undo those changes. Note that the undo
information will be in reverse order in which the action occurred. Returns the new name
and, if di�erent from the lookupname, the location of the previous occurrence. This function
knows about the location implicitly from the Cil.currentLoc[5].

val registerAlphaName :

alphaTable:(string, 'a alphaTableData Pervasives.ref) Hashtbl.t ->

undolist:'a undoAlphaElement list Pervasives.ref option ->

lookupname:string -> data:'a -> unit

56

Register a name with an alpha conversion table to ensure that when later we call
newAlphaName we do not end up generating this one

val docAlphaTable :

unit ->

(string, 'a alphaTableData Pervasives.ref) Hashtbl.t -> Pretty.doc

Split the name in preparation for newAlphaName. The pre�x returned is used to index into
the hashtable. The next result value is a separator (either empty or the separator chosen to
separate the original name from the index)

val getAlphaPrefix : lookupname:string -> string

val undoAlphaChanges :

alphaTable:(string, 'a alphaTableData Pervasives.ref) Hashtbl.t ->

undolist:'a undoAlphaElement list -> unit

Undo the changes to a table

57

