(** This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ Copyright (C) 2011-2013 Sylvie Boldo #
# Copyright (C) 2011-2013 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details. *) (** * IEEE-754 encoding of binary floating-point data *) Require Import Fcore. Require Import Fcore_digits. Require Import Fcalc_digits. Require Import Fappli_IEEE. Section Binary_Bits. (** Number of bits for the fraction and exponent *) Variable mw ew : Z. Hypothesis Hmw : (0 < mw)%Z. Hypothesis Hew : (0 < ew)%Z. Let emax := Zpower 2 (ew - 1). Let prec := (mw + 1)%Z. Let emin := (3 - emax - prec)%Z. Let binary_float := binary_float prec emax. Let Hprec : (0 < prec)%Z. unfold prec. apply Zle_lt_succ. now apply Zlt_le_weak. Qed. Let Hm_gt_0 : (0 < 2^mw)%Z. apply (Zpower_gt_0 radix2). now apply Zlt_le_weak. Qed. Let He_gt_0 : (0 < 2^ew)%Z. apply (Zpower_gt_0 radix2). now apply Zlt_le_weak. Qed. Hypothesis Hmax : (prec < emax)%Z. Definition join_bits (s : bool) m e := (((if s then Zpower 2 ew else 0) + e) * Zpower 2 mw + m)%Z. Definition split_bits x := let mm := Zpower 2 mw in let em := Zpower 2 ew in (Zle_bool (mm * em) x, Zmod x mm, Zmod (Zdiv x mm) em)%Z. Theorem split_join_bits : forall s m e, (0 <= m < Zpower 2 mw)%Z -> (0 <= e < Zpower 2 ew)%Z -> split_bits (join_bits s m e) = (s, m, e). Proof. intros s m e Hm He. unfold split_bits, join_bits. apply f_equal2. apply f_equal2. (* *) case s. apply Zle_bool_true. apply Zle_0_minus_le. ring_simplify. apply Zplus_le_0_compat. apply Zmult_le_0_compat. apply He. now apply Zlt_le_weak. apply Hm. apply Zle_bool_false. apply Zplus_lt_reg_l with (2^mw * (-e))%Z. replace (2 ^ mw * - e + ((0 + e) * 2 ^ mw + m))%Z with (m * 1)%Z by ring. rewrite <- Zmult_plus_distr_r. apply Zlt_le_trans with (2^mw * 1)%Z. now apply Zmult_lt_compat_r. apply Zmult_le_compat_l. clear -He. omega. now apply Zlt_le_weak. (* *) rewrite Zplus_comm. rewrite Z_mod_plus_full. now apply Zmod_small. (* *) rewrite Z_div_plus_full_l. rewrite Zdiv_small with (1 := Hm). rewrite Zplus_0_r. case s. replace (2^ew + e)%Z with (e + 1 * 2^ew)%Z by ring. rewrite Z_mod_plus_full. now apply Zmod_small. now apply Zmod_small. now apply Zgt_not_eq. Qed. Theorem join_split_bits : forall x, (0 <= x < Zpower 2 (mw + ew + 1))%Z -> let '(s, m, e) := split_bits x in join_bits s m e = x. Proof. intros x Hx. unfold split_bits, join_bits. pattern x at 4 ; rewrite Z_div_mod_eq_full with x (2^mw)%Z. apply (f_equal (fun v => (v + _)%Z)). rewrite Zmult_comm. apply f_equal. pattern (x / (2^mw))%Z at 2 ; rewrite Z_div_mod_eq_full with (x / (2^mw))%Z (2^ew)%Z. apply (f_equal (fun v => (v + _)%Z)). replace (x / 2 ^ mw / 2 ^ ew)%Z with (if Zle_bool (2 ^ mw * 2 ^ ew) x then 1 else 0)%Z. case Zle_bool. now rewrite Zmult_1_r. now rewrite Zmult_0_r. rewrite Zdiv_Zdiv. apply sym_eq. case Zle_bool_spec ; intros Hs. apply Zle_antisym. cut (x / (2^mw * 2^ew) < 2)%Z. clear ; omega. apply Zdiv_lt_upper_bound. try apply Hx. (* 8.2/8.3 compatibility *) now apply Zmult_lt_0_compat. rewrite <- Zpower_exp ; try ( apply Zle_ge ; apply Zlt_le_weak ; assumption ). change 2%Z at 1 with (Zpower 2 1). rewrite <- Zpower_exp. now rewrite Zplus_comm. discriminate. apply Zle_ge. now apply Zplus_le_0_compat ; apply Zlt_le_weak. apply Zdiv_le_lower_bound. try apply Hx. (* 8.2/8.3 compatibility *) now apply Zmult_lt_0_compat. now rewrite Zmult_1_l. apply Zdiv_small. now split. now apply Zlt_le_weak. now apply Zlt_le_weak. now apply Zgt_not_eq. now apply Zgt_not_eq. Qed. Theorem split_bits_inj : forall x y, (0 <= x < Zpower 2 (mw + ew + 1))%Z -> (0 <= y < Zpower 2 (mw + ew + 1))%Z -> split_bits x = split_bits y -> x = y. Proof. intros x y Hx Hy. generalize (join_split_bits x Hx) (join_split_bits y Hy). destruct (split_bits x) as ((sx, mx), ex). destruct (split_bits y) as ((sy, my), ey). intros Jx Jy H. revert Jx Jy. inversion_clear H. intros Jx Jy. now rewrite <- Jx. Qed. Definition bits_of_binary_float (x : binary_float) := match x with | B754_zero sx => join_bits sx 0 0 | B754_infinity sx => join_bits sx 0 (Zpower 2 ew - 1) | B754_nan sx (exist plx _) => join_bits sx (Zpos plx) (Zpower 2 ew - 1) | B754_finite sx mx ex _ => if Zle_bool (Zpower 2 mw) (Zpos mx) then join_bits sx (Zpos mx - Zpower 2 mw) (ex - emin + 1) else join_bits sx (Zpos mx) 0 end. Definition split_bits_of_binary_float (x : binary_float) := match x with | B754_zero sx => (sx, 0, 0)%Z | B754_infinity sx => (sx, 0, Zpower 2 ew - 1)%Z | B754_nan sx (exist plx _) => (sx, Zpos plx, Zpower 2 ew - 1)%Z | B754_finite sx mx ex _ => if Zle_bool (Zpower 2 mw) (Zpos mx) then (sx, Zpos mx - Zpower 2 mw, ex - emin + 1)%Z else (sx, Zpos mx, 0)%Z end. Theorem split_bits_of_binary_float_correct : forall x, split_bits (bits_of_binary_float x) = split_bits_of_binary_float x. Proof. intros [sx|sx|sx [plx Hplx]|sx mx ex Hx] ; try ( simpl ; apply split_join_bits ; split ; try apply Zle_refl ; try apply Zlt_pred ; trivial ; omega ). simpl. apply split_join_bits; split; try (zify; omega). destruct (digits2_Pnat_correct plx). rewrite Zpower_nat_Z in H0. eapply Zlt_le_trans. apply H0. change 2%Z with (radix_val radix2). apply Zpower_le. rewrite Z.ltb_lt in Hplx. unfold prec in *. zify; omega. (* *) unfold bits_of_binary_float, split_bits_of_binary_float. assert (Hf: (emin <= ex /\ Zdigits radix2 (Zpos mx) <= prec)%Z). destruct (andb_prop _ _ Hx) as (Hx', _). unfold canonic_mantissa in Hx'. rewrite Z_of_nat_S_digits2_Pnat in Hx'. generalize (Zeq_bool_eq _ _ Hx'). unfold FLT_exp. change (Fcalc_digits.radix2) with radix2. unfold emin. clear ; zify ; omega. destruct (Zle_bool_spec (2^mw) (Zpos mx)) as [H|H] ; apply split_join_bits ; try now split. (* *) split. clear -He_gt_0 H ; omega. cut (Zpos mx < 2 * 2^mw)%Z. clear ; omega. replace (2 * 2^mw)%Z with (2^prec)%Z. apply (Zpower_gt_Zdigits radix2 _ (Zpos mx)). apply Hf. unfold prec. rewrite Zplus_comm. apply Zpower_exp ; apply Zle_ge. discriminate. now apply Zlt_le_weak. (* *) split. generalize (proj1 Hf). clear ; omega. destruct (andb_prop _ _ Hx) as (_, Hx'). unfold emin. replace (2^ew)%Z with (2 * emax)%Z. generalize (Zle_bool_imp_le _ _ Hx'). clear ; omega. apply sym_eq. rewrite (Zsucc_pred ew). unfold Zsucc. rewrite Zplus_comm. apply Zpower_exp ; apply Zle_ge. discriminate. now apply Zlt_0_le_0_pred. Qed. Theorem bits_of_binary_float_range: forall x, (0 <= bits_of_binary_float x < 2^(mw+ew+1))%Z. Proof. intros. Local Open Scope Z_scope. assert (J: forall s m e, 0 <= m < 2^mw -> 0 <= e < 2^ew -> 0 <= join_bits s m e < 2^(mw+ew+1)). { intros. unfold join_bits. set (se := (if s then 2 ^ ew else 0) + e). assert (0 <= se < 2^(ew+1)). { rewrite (Zpower_plus radix2) by omega. change (radix2^1) with 2. simpl. unfold se. destruct s; omega. } assert (0 <= se * 2^mw <= (2^(ew+1) - 1) * 2^mw). { split. apply Zmult_gt_0_le_0_compat; omega. apply Zmult_le_compat_r; omega. } rewrite Z.mul_sub_distr_r in H2. replace (mw + ew + 1) with ((ew + 1) + mw) by omega. rewrite (Zpower_plus radix2) by omega. simpl. omega. } assert (D: forall p n, Z.of_nat (S (digits2_Pnat p)) <= n -> 0 <= Z.pos p < 2^n). { intros. generalize (digits2_Pnat_correct p). simpl. rewrite ! Zpower_nat_Z. intros [A B]. split. zify; omega. eapply Zlt_le_trans. eassumption. apply (Zpower_le radix2); auto. } destruct x; unfold bits_of_binary_float. - apply J; omega. - apply J; omega. - destruct n as [pl pl_range]. apply Z.ltb_lt in pl_range. apply J. apply D. unfold prec, Z_of_nat' in pl_range; omega. omega. - unfold bounded in e0. apply Bool.andb_true_iff in e0; destruct e0 as [A B]. apply Z.leb_le in B. unfold canonic_mantissa, FLT_exp in A. apply Zeq_bool_eq in A. assert (G: Z.of_nat (S (digits2_Pnat m)) <= prec) by (zify; omega). assert (M: emin <= e) by (unfold emin; zify; omega). generalize (Zle_bool_spec (2^mw) (Z.pos m)); intro SPEC; inversion SPEC. + apply J. * split. omega. generalize (D _ _ G). unfold prec. rewrite (Zpower_plus radix2) by omega. change (radix2^1) with 2. simpl radix_val. omega. * split. omega. unfold emin. replace (2^ew) with (2 * emax). omega. symmetry. replace ew with (1 + (ew - 1)) by omega. apply (Zpower_plus radix2); omega. + apply J. zify; omega. omega. Local Close Scope Z_scope. Qed. Definition binary_float_of_bits_aux x := let '(sx, mx, ex) := split_bits x in if Zeq_bool ex 0 then match mx with | Z0 => F754_zero sx | Zpos px => F754_finite sx px emin | Zneg _ => F754_nan false xH (* dummy *) end else if Zeq_bool ex (Zpower 2 ew - 1) then match mx with | Z0 => F754_infinity sx | Zpos plx => F754_nan sx plx | Zneg _ => F754_nan false xH (* dummy *) end else match (mx + Zpower 2 mw)%Z with | Zpos px => F754_finite sx px (ex + emin - 1) | _ => F754_nan false xH (* dummy *) end. Lemma binary_float_of_bits_aux_correct : forall x, valid_binary prec emax (binary_float_of_bits_aux x) = true. Proof. intros x. unfold binary_float_of_bits_aux, split_bits. case Zeq_bool_spec ; intros He1. case_eq (x mod 2^mw)%Z ; try easy. (* subnormal *) intros px Hm. assert (Zdigits radix2 (Zpos px) <= mw)%Z. apply Zdigits_le_Zpower. simpl. rewrite <- Hm. eapply Z_mod_lt. now apply Zlt_gt. apply bounded_canonic_lt_emax ; try assumption. unfold canonic, canonic_exp. fold emin. rewrite ln_beta_F2R_Zdigits. 2: discriminate. unfold Fexp, FLT_exp. apply sym_eq. apply Zmax_right. clear -H Hprec. unfold prec ; omega. apply Rnot_le_lt. intros H0. refine (_ (ln_beta_le radix2 _ _ _ H0)). rewrite ln_beta_bpow. rewrite ln_beta_F2R_Zdigits. 2: discriminate. unfold emin, prec. apply Zlt_not_le. cut (0 < emax)%Z. clear -H Hew ; omega. apply (Zpower_gt_0 radix2). clear -Hew ; omega. apply bpow_gt_0. simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega. case Zeq_bool_spec ; intros He2. case_eq (x mod 2 ^ mw)%Z; try easy. (* nan *) intros plx Eqplx. apply Z.ltb_lt. rewrite Z_of_nat_S_digits2_Pnat. assert (forall a b, a <= b -> a < b+1)%Z by (intros; omega). apply H. clear H. apply Zdigits_le_Zpower. simpl. rewrite <- Eqplx. edestruct Z_mod_lt; eauto. change 2%Z with (radix_val radix2). apply Z.lt_gt, Zpower_gt_0. omega. simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega. case_eq (x mod 2^mw + 2^mw)%Z ; try easy. simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega. (* normal *) intros px Hm. assert (prec = Zdigits radix2 (Zpos px)). (* . *) rewrite Zdigits_ln_beta. 2: discriminate. apply sym_eq. apply ln_beta_unique. rewrite <- Z2R_abs. unfold Zabs. replace (prec - 1)%Z with mw by ( unfold prec ; ring ). rewrite <- Z2R_Zpower with (1 := Zlt_le_weak _ _ Hmw). rewrite <- Z2R_Zpower. 2: now apply Zlt_le_weak. rewrite <- Hm. split. apply Z2R_le. change (radix2^mw)%Z with (0 + 2^mw)%Z. apply Zplus_le_compat_r. eapply Z_mod_lt. now apply Zlt_gt. apply Z2R_lt. unfold prec. rewrite Zpower_exp. 2: now apply Zle_ge ; apply Zlt_le_weak. 2: discriminate. rewrite <- Zplus_diag_eq_mult_2. apply Zplus_lt_compat_r. eapply Z_mod_lt. now apply Zlt_gt. (* . *) apply bounded_canonic_lt_emax ; try assumption. unfold canonic, canonic_exp. rewrite ln_beta_F2R_Zdigits. 2: discriminate. unfold Fexp, FLT_exp. rewrite <- H. set (ex := ((x / 2^mw) mod 2^ew)%Z). replace (prec + (ex + emin - 1) - prec)%Z with (ex + emin - 1)%Z by ring. apply sym_eq. apply Zmax_left. revert He1. fold ex. cut (0 <= ex)%Z. unfold emin. clear ; intros H1 H2 ; omega. eapply Z_mod_lt. apply Zlt_gt. apply (Zpower_gt_0 radix2). now apply Zlt_le_weak. apply Rnot_le_lt. intros H0. refine (_ (ln_beta_le radix2 _ _ _ H0)). rewrite ln_beta_bpow. rewrite ln_beta_F2R_Zdigits. 2: discriminate. rewrite <- H. apply Zlt_not_le. unfold emin. apply Zplus_lt_reg_r with (emax - 1)%Z. ring_simplify. revert He2. set (ex := ((x / 2^mw) mod 2^ew)%Z). cut (ex < 2^ew)%Z. replace (2^ew)%Z with (2 * emax)%Z. clear ; intros H1 H2 ; omega. replace ew with (1 + (ew - 1))%Z by ring. rewrite Zpower_exp. apply refl_equal. discriminate. clear -Hew ; omega. eapply Z_mod_lt. apply Zlt_gt. apply (Zpower_gt_0 radix2). now apply Zlt_le_weak. apply bpow_gt_0. simpl. intros. rewrite Z.ltb_lt. unfold prec. zify; omega. Qed. Definition binary_float_of_bits x := FF2B prec emax _ (binary_float_of_bits_aux_correct x). Theorem binary_float_of_bits_of_binary_float : forall x, binary_float_of_bits (bits_of_binary_float x) = x. Proof. intros x. apply B2FF_inj. unfold binary_float_of_bits. rewrite B2FF_FF2B. unfold binary_float_of_bits_aux. rewrite split_bits_of_binary_float_correct. destruct x as [sx|sx|sx [plx Hplx]|sx mx ex Bx]. apply refl_equal. (* *) simpl. rewrite Zeq_bool_false. now rewrite Zeq_bool_true. cut (1 < 2^ew)%Z. clear ; omega. now apply (Zpower_gt_1 radix2). (* *) simpl. rewrite Zeq_bool_false. rewrite Zeq_bool_true; auto. cut (1 < 2^ew)%Z. clear ; omega. now apply (Zpower_gt_1 radix2). (* *) unfold split_bits_of_binary_float. case Zle_bool_spec ; intros Hm. (* . *) rewrite Zeq_bool_false. rewrite Zeq_bool_false. now ring_simplify (Zpos mx - 2 ^ mw + 2 ^ mw)%Z (ex - emin + 1 + emin - 1)%Z. destruct (andb_prop _ _ Bx) as (_, H1). generalize (Zle_bool_imp_le _ _ H1). unfold emin. replace (2^ew)%Z with (2 * emax)%Z. clear ; omega. replace ew with (1 + (ew - 1))%Z by ring. rewrite Zpower_exp. apply refl_equal. discriminate. clear -Hew ; omega. destruct (andb_prop _ _ Bx) as (H1, _). generalize (Zeq_bool_eq _ _ H1). rewrite Z_of_nat_S_digits2_Pnat. unfold FLT_exp, emin. change Fcalc_digits.radix2 with radix2. generalize (Zdigits radix2 (Zpos mx)). clear. intros ; zify ; omega. (* . *) rewrite Zeq_bool_true. 2: apply refl_equal. simpl. apply f_equal. destruct (andb_prop _ _ Bx) as (H1, _). generalize (Zeq_bool_eq _ _ H1). rewrite Z_of_nat_S_digits2_Pnat. unfold FLT_exp, emin, prec. change Fcalc_digits.radix2 with radix2. generalize (Zdigits_le_Zpower radix2 _ (Zpos mx) Hm). generalize (Zdigits radix2 (Zpos mx)). clear. intros ; zify ; omega. Qed. Theorem bits_of_binary_float_of_bits : forall x, (0 <= x < 2^(mw+ew+1))%Z -> bits_of_binary_float (binary_float_of_bits x) = x. Proof. intros x Hx. unfold binary_float_of_bits, bits_of_binary_float. set (Cx := binary_float_of_bits_aux_correct x). clearbody Cx. rewrite match_FF2B. revert Cx. generalize (join_split_bits x Hx). unfold binary_float_of_bits_aux. case_eq (split_bits x). intros (sx, mx) ex Sx. assert (Bm: (0 <= mx < 2^mw)%Z). inversion_clear Sx. apply Z_mod_lt. now apply Zlt_gt. case Zeq_bool_spec ; intros He1. (* subnormal *) case_eq mx. intros Hm Jx _. now rewrite He1 in Jx. intros px Hm Jx _. rewrite Zle_bool_false. now rewrite <- He1. now rewrite <- Hm. intros px Hm _ _. apply False_ind. apply Zle_not_lt with (1 := proj1 Bm). now rewrite Hm. case Zeq_bool_spec ; intros He2. (* infinity/nan *) case_eq mx; intros Hm. now rewrite He2. now rewrite He2. intros. zify; omega. (* normal *) case_eq (mx + 2 ^ mw)%Z. intros Hm. apply False_ind. clear -Bm Hm ; omega. intros p Hm Jx Cx. rewrite <- Hm. rewrite Zle_bool_true. now ring_simplify (mx + 2^mw - 2^mw)%Z (ex + emin - 1 - emin + 1)%Z. now apply (Zplus_le_compat_r 0). intros p Hm. apply False_ind. clear -Bm Hm ; zify ; omega. Qed. End Binary_Bits. (** Specialization for IEEE single precision operations *) Section B32_Bits. Definition binary32 := binary_float 24 128. Let Hprec : (0 < 24)%Z. apply refl_equal. Qed. Let Hprec_emax : (24 < 128)%Z. apply refl_equal. Qed. Definition b32_opp := Bopp 24 128. Definition b32_plus := Bplus _ _ Hprec Hprec_emax. Definition b32_minus := Bminus _ _ Hprec Hprec_emax. Definition b32_mult := Bmult _ _ Hprec Hprec_emax. Definition b32_div := Bdiv _ _ Hprec Hprec_emax. Definition b32_sqrt := Bsqrt _ _ Hprec Hprec_emax. Definition b32_of_bits : Z -> binary32 := binary_float_of_bits 23 8 (refl_equal _) (refl_equal _) (refl_equal _). Definition bits_of_b32 : binary32 -> Z := bits_of_binary_float 23 8. End B32_Bits. (** Specialization for IEEE double precision operations *) Section B64_Bits. Definition binary64 := binary_float 53 1024. Let Hprec : (0 < 53)%Z. apply refl_equal. Qed. Let Hprec_emax : (53 < 1024)%Z. apply refl_equal. Qed. Definition b64_opp := Bopp 53 1024. Definition b64_plus := Bplus _ _ Hprec Hprec_emax. Definition b64_minus := Bminus _ _ Hprec Hprec_emax. Definition b64_mult := Bmult _ _ Hprec Hprec_emax. Definition b64_div := Bdiv _ _ Hprec Hprec_emax. Definition b64_sqrt := Bsqrt _ _ Hprec Hprec_emax. Definition b64_of_bits : Z -> binary64 := binary_float_of_bits 52 11 (refl_equal _) (refl_equal _) (refl_equal _). Definition bits_of_b64 : binary64 -> Z := bits_of_binary_float 52 11. End B64_Bits.