(** This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ Copyright (C) 2010-2018 Sylvie Boldo #
# Copyright (C) 2010-2018 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details. *) (** * Helper function and theorem for computing the rounded quotient of two floating-point numbers. *) From Coq Require Import Lia. Require Import Raux Defs Generic_fmt Float_prop Digits Bracket. Set Implicit Arguments. Set Strongly Strict Implicit. Section Fcalc_div. Variable beta : radix. Notation bpow e := (bpow beta e). Variable fexp : Z -> Z. (** Computes a mantissa of precision p, the corresponding exponent, and the position with respect to the real quotient of the input floating-point numbers. The algorithm performs the following steps: - Shift dividend mantissa so that it has at least p2 + p digits. - Perform the Euclidean division. - Compute the position according to the division remainder. Complexity is fine as long as p1 <= 2p and p2 <= p. *) Lemma mag_div_F2R : forall m1 e1 m2 e2, (0 < m1)%Z -> (0 < m2)%Z -> let e := ((Zdigits beta m1 + e1) - (Zdigits beta m2 + e2))%Z in (e <= mag beta (F2R (Float beta m1 e1) / F2R (Float beta m2 e2)) <= e + 1)%Z. Proof. intros m1 e1 m2 e2 Hm1 Hm2. rewrite <- (mag_F2R_Zdigits beta m1 e1) by now apply Zgt_not_eq. rewrite <- (mag_F2R_Zdigits beta m2 e2) by now apply Zgt_not_eq. apply mag_div. now apply F2R_neq_0, Zgt_not_eq. now apply F2R_neq_0, Zgt_not_eq. Qed. Definition Fdiv_core m1 e1 m2 e2 e := let (m1', m2') := if Zle_bool e (e1 - e2)%Z then (m1 * Zpower beta (e1 - e2 - e), m2)%Z else (m1, m2 * Zpower beta (e - (e1 - e2)))%Z in let '(q, r) := Z.div_eucl m1' m2' in (q, new_location m2' r loc_Exact). Theorem Fdiv_core_correct : forall m1 e1 m2 e2 e, (0 < m1)%Z -> (0 < m2)%Z -> let '(m, l) := Fdiv_core m1 e1 m2 e2 e in inbetween_float beta m e (F2R (Float beta m1 e1) / F2R (Float beta m2 e2)) l. Proof. intros m1 e1 m2 e2 e Hm1 Hm2. unfold Fdiv_core. match goal with |- context [if ?b then ?b1 else ?b2] => set (m12 := if b then b1 else b2) end. case_eq m12 ; intros m1' m2' Hm. assert ((F2R (Float beta m1 e1) / F2R (Float beta m2 e2) = IZR m1' / IZR m2' * bpow e)%R /\ (0 < m2')%Z) as [Hf Hm2']. { unfold F2R, Zminus ; simpl. destruct (Zle_bool e (e1 - e2)) eqn:He' ; injection Hm ; intros ; subst. - split ; try easy. apply Zle_bool_imp_le in He'. rewrite mult_IZR, IZR_Zpower by lia. unfold Zminus ; rewrite 2!bpow_plus, 2!bpow_opp. field. repeat split ; try apply Rgt_not_eq, bpow_gt_0. now apply IZR_neq, Zgt_not_eq. - apply Z.leb_gt in He'. split ; cycle 1. { apply Z.mul_pos_pos with (1 := Hm2). apply Zpower_gt_0 ; lia. } rewrite mult_IZR, IZR_Zpower by lia. unfold Zminus ; rewrite bpow_plus, bpow_opp, bpow_plus, bpow_opp. field. repeat split ; try apply Rgt_not_eq, bpow_gt_0. now apply IZR_neq, Zgt_not_eq. } clearbody m12 ; clear Hm Hm1 Hm2. generalize (Z_div_mod m1' m2' (Z.lt_gt _ _ Hm2')). destruct (Z.div_eucl m1' m2') as (q, r). intros (Hq, Hr). rewrite Hf. unfold inbetween_float, F2R. simpl. rewrite Hq, 2!plus_IZR, mult_IZR. apply inbetween_mult_compat. apply bpow_gt_0. destruct (Z_lt_le_dec 1 m2') as [Hm2''|Hm2'']. - replace 1%R with (IZR m2' * /IZR m2')%R. apply new_location_correct ; try easy. apply Rinv_0_lt_compat. now apply IZR_lt. constructor. field. now apply IZR_neq, Zgt_not_eq. field. now apply IZR_neq, Zgt_not_eq. - assert (r = 0 /\ m2' = 1)%Z as [-> ->] by (clear -Hr Hm2'' ; lia). unfold Rdiv. rewrite Rmult_1_l, Rplus_0_r, Rinv_1, Rmult_1_r. now constructor. Qed. Definition Fdiv (x y : float beta) := let (m1, e1) := x in let (m2, e2) := y in let e' := ((Zdigits beta m1 + e1) - (Zdigits beta m2 + e2))%Z in let e := Z.min (Z.min (fexp e') (fexp (e' + 1))) (e1 - e2) in let '(m, l) := Fdiv_core m1 e1 m2 e2 e in (m, e, l). Theorem Fdiv_correct : forall x y, (0 < F2R x)%R -> (0 < F2R y)%R -> let '(m, e, l) := Fdiv x y in (e <= cexp beta fexp (F2R x / F2R y))%Z /\ inbetween_float beta m e (F2R x / F2R y) l. Proof. intros [m1 e1] [m2 e2] Hm1 Hm2. apply gt_0_F2R in Hm1. apply gt_0_F2R in Hm2. unfold Fdiv. generalize (mag_div_F2R m1 e1 m2 e2 Hm1 Hm2). set (e := Zminus _ _). set (e' := Z.min (Z.min (fexp e) (fexp (e + 1))) (e1 - e2)). intros [H1 H2]. generalize (Fdiv_core_correct m1 e1 m2 e2 e' Hm1 Hm2). destruct Fdiv_core as [m' l]. apply conj. apply Z.le_trans with (1 := Z.le_min_l _ _). unfold cexp. destruct (Zle_lt_or_eq _ _ H1) as [H|H]. - replace (fexp (mag _ _)) with (fexp (e + 1)). apply Z.le_min_r. clear -H1 H2 H ; apply f_equal ; lia. - replace (fexp (mag _ _)) with (fexp e). apply Z.le_min_l. clear -H1 H2 H ; apply f_equal ; lia. Qed. End Fcalc_div.