(** This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ Copyright (C) 2009-2018 Sylvie Boldo #
# Copyright (C) 2009-2018 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details. *) (** * Floating-point format with gradual underflow *) Require Import Raux Defs Round_pred Generic_fmt Float_prop. Require Import FLX FIX Ulp Round_NE. Require Import Psatz. Section RND_FLT. Variable beta : radix. Notation bpow e := (bpow beta e). Variable emin prec : Z. Context { prec_gt_0_ : Prec_gt_0 prec }. Inductive FLT_format (x : R) : Prop := FLT_spec (f : float beta) : x = F2R f -> (Z.abs (Fnum f) < Zpower beta prec)%Z -> (emin <= Fexp f)%Z -> FLT_format x. Definition FLT_exp e := Z.max (e - prec) emin. (** Properties of the FLT format *) Global Instance FLT_exp_valid : Valid_exp FLT_exp. Proof. intros k. unfold FLT_exp. generalize (prec_gt_0 prec). repeat split ; intros ; zify ; lia. Qed. Theorem generic_format_FLT : forall x, FLT_format x -> generic_format beta FLT_exp x. Proof. clear prec_gt_0_. intros x [[mx ex] H1 H2 H3]. simpl in H2, H3. rewrite H1. apply generic_format_F2R. intros Zmx. unfold cexp, FLT_exp. rewrite mag_F2R with (1 := Zmx). apply Z.max_lub with (2 := H3). apply Zplus_le_reg_r with (prec - ex)%Z. ring_simplify. now apply mag_le_Zpower. Qed. Theorem FLT_format_generic : forall x, generic_format beta FLT_exp x -> FLT_format x. Proof. intros x. unfold generic_format. set (ex := cexp beta FLT_exp x). set (mx := Ztrunc (scaled_mantissa beta FLT_exp x)). intros Hx. rewrite Hx. eexists ; repeat split ; simpl. apply lt_IZR. rewrite IZR_Zpower. 2: now apply Zlt_le_weak. apply Rmult_lt_reg_r with (bpow ex). apply bpow_gt_0. rewrite <- bpow_plus. change (F2R (Float beta (Z.abs mx) ex) < bpow (prec + ex))%R. rewrite F2R_Zabs. rewrite <- Hx. destruct (Req_dec x 0) as [Hx0|Hx0]. rewrite Hx0, Rabs_R0. apply bpow_gt_0. unfold cexp in ex. destruct (mag beta x) as (ex', He). simpl in ex. specialize (He Hx0). apply Rlt_le_trans with (1 := proj2 He). apply bpow_le. cut (ex' - prec <= ex)%Z. lia. unfold ex, FLT_exp. apply Z.le_max_l. apply Z.le_max_r. Qed. Theorem generic_format_FLT_bpow : forall e, (emin <= e)%Z -> generic_format beta FLT_exp (bpow e). Proof. intros e He. apply generic_format_bpow; unfold FLT_exp. apply Z.max_case; try assumption. unfold Prec_gt_0 in prec_gt_0_; lia. Qed. Theorem FLT_format_bpow : forall e, (emin <= e)%Z -> FLT_format (bpow e). Proof. intros e He. apply FLT_format_generic. now apply generic_format_FLT_bpow. Qed. Theorem FLT_format_satisfies_any : satisfies_any FLT_format. Proof. refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLT_exp)). intros x. split. apply FLT_format_generic. apply generic_format_FLT. Qed. Theorem cexp_FLT_FLX : forall x, (bpow (emin + prec - 1) <= Rabs x)%R -> cexp beta FLT_exp x = cexp beta (FLX_exp prec) x. Proof. intros x Hx. assert (Hx0: x <> 0%R). intros H1; rewrite H1, Rabs_R0 in Hx. contradict Hx; apply Rlt_not_le, bpow_gt_0. unfold cexp. apply Zmax_left. destruct (mag beta x) as (ex, He). unfold FLX_exp. simpl. specialize (He Hx0). cut (emin + prec - 1 < ex)%Z. lia. apply (lt_bpow beta). apply Rle_lt_trans with (1 := Hx). apply He. Qed. (** FLT is a nice format: it has a monotone exponent... *) Global Instance FLT_exp_monotone : Monotone_exp FLT_exp. Proof. intros ex ey. unfold FLT_exp. zify ; lia. Qed. (** and it allows a rounding to nearest, ties to even. *) Global Instance exists_NE_FLT : (Z.even beta = false \/ (1 < prec)%Z) -> Exists_NE beta FLT_exp. Proof. intros [H|H]. now left. right. intros e. unfold FLT_exp. destruct (Zmax_spec (e - prec) emin) as [(H1,H2)|(H1,H2)] ; rewrite H2 ; clear H2. generalize (Zmax_spec (e + 1 - prec) emin). generalize (Zmax_spec (e - prec + 1 - prec) emin). lia. generalize (Zmax_spec (e + 1 - prec) emin). generalize (Zmax_spec (emin + 1 - prec) emin). lia. Qed. (** Links between FLT and FLX *) Theorem generic_format_FLT_FLX : forall x : R, (bpow (emin + prec - 1) <= Rabs x)%R -> generic_format beta (FLX_exp prec) x -> generic_format beta FLT_exp x. Proof. intros x Hx H. destruct (Req_dec x 0) as [Hx0|Hx0]. rewrite Hx0. apply generic_format_0. unfold generic_format, scaled_mantissa. now rewrite cexp_FLT_FLX. Qed. Theorem generic_format_FLX_FLT : forall x : R, generic_format beta FLT_exp x -> generic_format beta (FLX_exp prec) x. Proof. clear prec_gt_0_. intros x Hx. unfold generic_format in Hx; rewrite Hx. apply generic_format_F2R. intros _. rewrite <- Hx. unfold cexp, FLX_exp, FLT_exp. apply Z.le_max_l. Qed. Theorem round_FLT_FLX : forall rnd x, (bpow (emin + prec - 1) <= Rabs x)%R -> round beta FLT_exp rnd x = round beta (FLX_exp prec) rnd x. Proof. intros rnd x Hx. unfold round, scaled_mantissa. rewrite cexp_FLT_FLX ; trivial. Qed. (** Links between FLT and FIX (underflow) *) Theorem cexp_FLT_FIX : forall x, x <> 0%R -> (Rabs x < bpow (emin + prec))%R -> cexp beta FLT_exp x = cexp beta (FIX_exp emin) x. Proof. intros x Hx0 Hx. unfold cexp. apply Zmax_right. unfold FIX_exp. destruct (mag beta x) as (ex, Hex). simpl. cut (ex - 1 < emin + prec)%Z. lia. apply (lt_bpow beta). apply Rle_lt_trans with (2 := Hx). now apply Hex. Qed. Theorem generic_format_FIX_FLT : forall x : R, generic_format beta FLT_exp x -> generic_format beta (FIX_exp emin) x. Proof. clear prec_gt_0_. intros x Hx. rewrite Hx. apply generic_format_F2R. intros _. rewrite <- Hx. apply Z.le_max_r. Qed. Theorem generic_format_FLT_FIX : forall x : R, (Rabs x <= bpow (emin + prec))%R -> generic_format beta (FIX_exp emin) x -> generic_format beta FLT_exp x. Proof with auto with typeclass_instances. apply generic_inclusion_le... intros e He. unfold FIX_exp. apply Z.max_lub. lia. apply Z.le_refl. Qed. Lemma negligible_exp_FLT : exists n, negligible_exp FLT_exp = Some n /\ (n <= emin)%Z. Proof. case (negligible_exp_spec FLT_exp). { intro H; exfalso; specialize (H emin); revert H. apply Zle_not_lt, Z.le_max_r. } intros n Hn; exists n; split; [now simpl|]. destruct (Z.max_spec (n - prec) emin) as [(Hm, Hm')|(Hm, Hm')]. { now revert Hn; unfold FLT_exp; rewrite Hm'. } revert Hn prec_gt_0_; unfold FLT_exp, Prec_gt_0; rewrite Hm'; lia. Qed. Theorem generic_format_FLT_1 : (emin <= 0)%Z -> generic_format beta FLT_exp 1. Proof. intros Hemin. now apply (generic_format_FLT_bpow 0). Qed. Theorem ulp_FLT_0 : ulp beta FLT_exp 0 = bpow emin. Proof. unfold ulp. rewrite Req_bool_true by easy. case negligible_exp_spec. - intros T. elim Zle_not_lt with (2 := T emin). apply Z.le_max_r. - intros n Hn. apply f_equal. assert (H: FLT_exp emin = emin). apply Z.max_r. generalize (prec_gt_0 prec). clear ; lia. rewrite <- H. apply fexp_negligible_exp_eq. apply FLT_exp_valid. exact Hn. rewrite H. apply Z.le_refl. Qed. Theorem ulp_FLT_small : forall x, (Rabs x < bpow (emin + prec))%R -> ulp beta FLT_exp x = bpow emin. Proof. intros x Hx. destruct (Req_dec x 0%R) as [Zx|Zx]. { rewrite Zx. apply ulp_FLT_0. } rewrite ulp_neq_0 by easy. apply f_equal. apply Z.max_r. destruct (mag beta x) as [e He]. simpl. cut (e - 1 < emin + prec)%Z. lia. apply lt_bpow with beta. apply Rle_lt_trans with (2 := Hx). now apply He. Qed. Theorem ulp_FLT_le : forall x, (bpow (emin + prec - 1) <= Rabs x)%R -> (ulp beta FLT_exp x <= Rabs x * bpow (1 - prec))%R. Proof. intros x Hx. assert (Zx : (x <> 0)%R). intros Z; contradict Hx; apply Rgt_not_le, Rlt_gt. rewrite Z, Rabs_R0; apply bpow_gt_0. rewrite ulp_neq_0 with (1 := Zx). unfold cexp, FLT_exp. destruct (mag beta x) as (e,He). apply Rle_trans with (bpow (e-1)*bpow (1-prec))%R. rewrite <- bpow_plus. right; apply f_equal. replace (e - 1 + (1 - prec))%Z with (e - prec)%Z by ring. apply Z.max_l; simpl. assert (emin+prec-1 < e)%Z; try lia. apply lt_bpow with beta. apply Rle_lt_trans with (1:=Hx). now apply He. apply Rmult_le_compat_r. apply bpow_ge_0. now apply He. Qed. Theorem ulp_FLT_gt : forall x, (Rabs x * bpow (-prec) < ulp beta FLT_exp x)%R. Proof. intros x; case (Req_dec x 0); intros Hx. rewrite Hx, ulp_FLT_small, Rabs_R0, Rmult_0_l; try apply bpow_gt_0. rewrite Rabs_R0; apply bpow_gt_0. rewrite ulp_neq_0; try exact Hx. unfold cexp, FLT_exp. apply Rlt_le_trans with (bpow (mag beta x)*bpow (-prec))%R. apply Rmult_lt_compat_r. apply bpow_gt_0. now apply bpow_mag_gt. rewrite <- bpow_plus. apply bpow_le. apply Z.le_max_l. Qed. Lemma ulp_FLT_exact_shift : forall x e, (x <> 0)%R -> (emin + prec <= mag beta x)%Z -> (emin + prec - mag beta x <= e)%Z -> (ulp beta FLT_exp (x * bpow e) = ulp beta FLT_exp x * bpow e)%R. Proof. intros x e Nzx Hmx He. unfold ulp; rewrite Req_bool_false; [|now intro H; apply Nzx, (Rmult_eq_reg_r (bpow e)); [rewrite Rmult_0_l|apply Rgt_not_eq, Rlt_gt, bpow_gt_0]]. rewrite (Req_bool_false _ _ Nzx), <- bpow_plus; f_equal; unfold cexp, FLT_exp. rewrite (mag_mult_bpow _ _ _ Nzx), !Z.max_l; lia. Qed. Lemma succ_FLT_exact_shift_pos : forall x e, (0 < x)%R -> (emin + prec <= mag beta x)%Z -> (emin + prec - mag beta x <= e)%Z -> (succ beta FLT_exp (x * bpow e) = succ beta FLT_exp x * bpow e)%R. Proof. intros x e Px Hmx He. rewrite succ_eq_pos; [|now apply Rlt_le, Rmult_lt_0_compat, bpow_gt_0]. rewrite (succ_eq_pos _ _ _ (Rlt_le _ _ Px)). now rewrite Rmult_plus_distr_r; f_equal; apply ulp_FLT_exact_shift; [lra| |]. Qed. Lemma succ_FLT_exact_shift : forall x e, (x <> 0)%R -> (emin + prec + 1 <= mag beta x)%Z -> (emin + prec - mag beta x + 1 <= e)%Z -> (succ beta FLT_exp (x * bpow e) = succ beta FLT_exp x * bpow e)%R. Proof. intros x e Nzx Hmx He. destruct (Rle_or_lt 0 x) as [Px|Nx]. { now apply succ_FLT_exact_shift_pos; [lra|lia|lia]. } unfold succ. rewrite Rle_bool_false; [|assert (H := bpow_gt_0 beta e); nra]. rewrite Rle_bool_false; [|now simpl]. rewrite Ropp_mult_distr_l_reverse, <-Ropp_mult_distr_l_reverse; f_equal. unfold pred_pos. rewrite mag_mult_bpow; [|lra]. replace (_ - 1)%Z with (mag beta (- x) - 1 + e)%Z; [|ring]; rewrite bpow_plus. unfold Req_bool; rewrite Rcompare_mult_r; [|now apply bpow_gt_0]. fold (Req_bool (-x) (bpow (mag beta (-x) - 1))); case Req_bool. { rewrite mag_opp; unfold FLT_exp; do 2 (rewrite Z.max_l; [|lia]). replace (_ - _)%Z with (mag beta x - 1 - prec + e)%Z; [|ring]. rewrite bpow_plus; ring. } rewrite ulp_FLT_exact_shift; [ring|lra| |]; rewrite mag_opp; lia. Qed. Theorem ulp_FLT_pred_pos : forall x, generic_format beta FLT_exp x -> (0 <= x)%R -> ulp beta FLT_exp (pred beta FLT_exp x) = ulp beta FLT_exp x \/ (x = bpow (mag beta x - 1) /\ ulp beta FLT_exp (pred beta FLT_exp x) = (ulp beta FLT_exp x / IZR beta)%R). Proof. intros x Fx [Hx|Hx] ; cycle 1. { rewrite <- Hx. rewrite pred_0. rewrite ulp_opp. left. apply ulp_ulp_0. apply FLT_exp_valid. typeclasses eauto. } assert (Hp: (0 <= pred beta FLT_exp x)%R). { apply pred_ge_gt ; try easy. apply FLT_exp_valid. apply generic_format_0. } destruct (Rle_or_lt (bpow (emin + prec)) x) as [Hs|Hs]. - unfold ulp. rewrite Req_bool_false ; cycle 1. { intros Zp. apply Rle_not_lt with (1 := Hs). generalize (f_equal (succ beta FLT_exp) Zp). rewrite succ_pred. rewrite succ_0, ulp_FLT_0. intros H. rewrite H. apply bpow_lt. generalize (prec_gt_0 prec). lia. apply FLT_exp_valid. exact Fx. } rewrite Req_bool_false by now apply Rgt_not_eq. unfold cexp. destruct (mag beta x) as [e He]. simpl. specialize (He (Rgt_not_eq _ _ Hx)). rewrite Rabs_pos_eq in He by now apply Rlt_le. destruct (proj1 He) as [Hb|Hb]. + left. apply (f_equal (fun v => bpow (FLT_exp v))). apply mag_unique. rewrite Rabs_pos_eq by easy. split. * apply pred_ge_gt ; try easy. apply FLT_exp_valid. apply generic_format_FLT_bpow. apply Z.lt_le_pred. apply lt_bpow with beta. apply Rle_lt_trans with (2 := proj2 He). apply Rle_trans with (2 := Hs). apply bpow_le. generalize (prec_gt_0 prec). lia. * apply pred_lt_le. now apply Rgt_not_eq. now apply Rlt_le. + right. split. easy. replace (FLT_exp _) with (FLT_exp e + -1)%Z. rewrite bpow_plus. now rewrite <- (Zmult_1_r beta). rewrite <- Hb. unfold FLT_exp at 1 2. replace (mag_val _ _ (mag _ _)) with (e - 1)%Z. rewrite <- Hb in Hs. apply le_bpow in Hs. zify ; lia. apply eq_sym, mag_unique. rewrite Hb. rewrite Rabs_pos_eq by easy. split ; cycle 1. { apply pred_lt_id. now apply Rgt_not_eq. } apply pred_ge_gt. apply FLT_exp_valid. apply generic_format_FLT_bpow. cut (emin + 1 < e)%Z. lia. apply lt_bpow with beta. apply Rle_lt_trans with (2 := proj2 He). apply Rle_trans with (2 := Hs). apply bpow_le. generalize (prec_gt_0 prec). lia. exact Fx. apply Rlt_le_trans with (2 := proj1 He). apply bpow_lt. apply Z.lt_pred_l. - left. rewrite (ulp_FLT_small x). apply ulp_FLT_small. rewrite Rabs_pos_eq by easy. apply pred_lt_le. now apply Rgt_not_eq. now apply Rlt_le. rewrite Rabs_pos_eq by now apply Rlt_le. exact Hs. Qed. End RND_FLT.