(** This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ Copyright (C) 2009-2018 Sylvie Boldo #
# Copyright (C) 2009-2018 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details. *) (** * Floating-point format with gradual underflow *) Require Import Raux Defs Round_pred Generic_fmt Float_prop. Require Import FLX FIX Ulp Round_NE. Require Import Psatz. Section RND_FLT. Variable beta : radix. Notation bpow e := (bpow beta e). Variable emin prec : Z. Context { prec_gt_0_ : Prec_gt_0 prec }. Inductive FLT_format (x : R) : Prop := FLT_spec (f : float beta) : x = F2R f -> (Z.abs (Fnum f) < Zpower beta prec)%Z -> (emin <= Fexp f)%Z -> FLT_format x. Definition FLT_exp e := Z.max (e - prec) emin. (** Properties of the FLT format *) Global Instance FLT_exp_valid : Valid_exp FLT_exp. Proof. intros k. unfold FLT_exp. generalize (prec_gt_0 prec). repeat split ; intros ; zify ; omega. Qed. Theorem generic_format_FLT : forall x, FLT_format x -> generic_format beta FLT_exp x. Proof. clear prec_gt_0_. intros x [[mx ex] H1 H2 H3]. simpl in H2, H3. rewrite H1. apply generic_format_F2R. intros Zmx. unfold cexp, FLT_exp. rewrite mag_F2R with (1 := Zmx). apply Z.max_lub with (2 := H3). apply Zplus_le_reg_r with (prec - ex)%Z. ring_simplify. now apply mag_le_Zpower. Qed. Theorem FLT_format_generic : forall x, generic_format beta FLT_exp x -> FLT_format x. Proof. intros x. unfold generic_format. set (ex := cexp beta FLT_exp x). set (mx := Ztrunc (scaled_mantissa beta FLT_exp x)). intros Hx. rewrite Hx. eexists ; repeat split ; simpl. apply lt_IZR. rewrite IZR_Zpower. 2: now apply Zlt_le_weak. apply Rmult_lt_reg_r with (bpow ex). apply bpow_gt_0. rewrite <- bpow_plus. change (F2R (Float beta (Z.abs mx) ex) < bpow (prec + ex))%R. rewrite F2R_Zabs. rewrite <- Hx. destruct (Req_dec x 0) as [Hx0|Hx0]. rewrite Hx0, Rabs_R0. apply bpow_gt_0. unfold cexp in ex. destruct (mag beta x) as (ex', He). simpl in ex. specialize (He Hx0). apply Rlt_le_trans with (1 := proj2 He). apply bpow_le. cut (ex' - prec <= ex)%Z. omega. unfold ex, FLT_exp. apply Z.le_max_l. apply Z.le_max_r. Qed. Theorem FLT_format_bpow : forall e, (emin <= e)%Z -> generic_format beta FLT_exp (bpow e). Proof. intros e He. apply generic_format_bpow; unfold FLT_exp. apply Z.max_case; try assumption. unfold Prec_gt_0 in prec_gt_0_; omega. Qed. Theorem FLT_format_satisfies_any : satisfies_any FLT_format. Proof. refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FLT_exp)). intros x. split. apply FLT_format_generic. apply generic_format_FLT. Qed. Theorem cexp_FLT_FLX : forall x, (bpow (emin + prec - 1) <= Rabs x)%R -> cexp beta FLT_exp x = cexp beta (FLX_exp prec) x. Proof. intros x Hx. assert (Hx0: x <> 0%R). intros H1; rewrite H1, Rabs_R0 in Hx. contradict Hx; apply Rlt_not_le, bpow_gt_0. unfold cexp. apply Zmax_left. destruct (mag beta x) as (ex, He). unfold FLX_exp. simpl. specialize (He Hx0). cut (emin + prec - 1 < ex)%Z. omega. apply (lt_bpow beta). apply Rle_lt_trans with (1 := Hx). apply He. Qed. (** Links between FLT and FLX *) Theorem generic_format_FLT_FLX : forall x : R, (bpow (emin + prec - 1) <= Rabs x)%R -> generic_format beta (FLX_exp prec) x -> generic_format beta FLT_exp x. Proof. intros x Hx H. destruct (Req_dec x 0) as [Hx0|Hx0]. rewrite Hx0. apply generic_format_0. unfold generic_format, scaled_mantissa. now rewrite cexp_FLT_FLX. Qed. Theorem generic_format_FLX_FLT : forall x : R, generic_format beta FLT_exp x -> generic_format beta (FLX_exp prec) x. Proof. clear prec_gt_0_. intros x Hx. unfold generic_format in Hx; rewrite Hx. apply generic_format_F2R. intros _. rewrite <- Hx. unfold cexp, FLX_exp, FLT_exp. apply Z.le_max_l. Qed. Theorem round_FLT_FLX : forall rnd x, (bpow (emin + prec - 1) <= Rabs x)%R -> round beta FLT_exp rnd x = round beta (FLX_exp prec) rnd x. Proof. intros rnd x Hx. unfold round, scaled_mantissa. rewrite cexp_FLT_FLX ; trivial. Qed. (** Links between FLT and FIX (underflow) *) Theorem cexp_FLT_FIX : forall x, x <> 0%R -> (Rabs x < bpow (emin + prec))%R -> cexp beta FLT_exp x = cexp beta (FIX_exp emin) x. Proof. intros x Hx0 Hx. unfold cexp. apply Zmax_right. unfold FIX_exp. destruct (mag beta x) as (ex, Hex). simpl. cut (ex - 1 < emin + prec)%Z. omega. apply (lt_bpow beta). apply Rle_lt_trans with (2 := Hx). now apply Hex. Qed. Theorem generic_format_FIX_FLT : forall x : R, generic_format beta FLT_exp x -> generic_format beta (FIX_exp emin) x. Proof. clear prec_gt_0_. intros x Hx. rewrite Hx. apply generic_format_F2R. intros _. rewrite <- Hx. apply Z.le_max_r. Qed. Theorem generic_format_FLT_FIX : forall x : R, (Rabs x <= bpow (emin + prec))%R -> generic_format beta (FIX_exp emin) x -> generic_format beta FLT_exp x. Proof with auto with typeclass_instances. apply generic_inclusion_le... intros e He. unfold FIX_exp. apply Z.max_lub. omega. apply Z.le_refl. Qed. Lemma negligible_exp_FLT : exists n, negligible_exp FLT_exp = Some n /\ (n <= emin)%Z. Proof. case (negligible_exp_spec FLT_exp). { intro H; exfalso; specialize (H emin); revert H. apply Zle_not_lt, Z.le_max_r. } intros n Hn; exists n; split; [now simpl|]. destruct (Z.max_spec (n - prec) emin) as [(Hm, Hm')|(Hm, Hm')]. { now revert Hn; unfold FLT_exp; rewrite Hm'. } revert Hn prec_gt_0_; unfold FLT_exp, Prec_gt_0; rewrite Hm'; lia. Qed. Theorem generic_format_FLT_1 (Hemin : (emin <= 0)%Z) : generic_format beta FLT_exp 1. Proof. unfold generic_format, scaled_mantissa, cexp, F2R; simpl. rewrite Rmult_1_l, (mag_unique beta 1 1). { unfold FLT_exp. destruct (Z.max_spec_le (1 - prec) emin) as [(H,Hm)|(H,Hm)]; rewrite Hm; (rewrite <- IZR_Zpower; [|unfold Prec_gt_0 in prec_gt_0_; omega]); (rewrite Ztrunc_IZR, IZR_Zpower, <-bpow_plus; [|unfold Prec_gt_0 in prec_gt_0_; omega]); now replace (_ + _)%Z with Z0 by ring. } rewrite Rabs_R1; simpl; split; [now right|]. rewrite IZR_Zpower_pos; simpl; rewrite Rmult_1_r; apply IZR_lt. apply (Z.lt_le_trans _ 2); [omega|]; apply Zle_bool_imp_le, beta. Qed. Theorem ulp_FLT_small: forall x, (Rabs x < bpow (emin+prec))%R -> ulp beta FLT_exp x = bpow emin. Proof with auto with typeclass_instances. intros x Hx. unfold ulp; case Req_bool_spec; intros Hx2. (* x = 0 *) case (negligible_exp_spec FLT_exp). intros T; specialize (T (emin-1)%Z); contradict T. apply Zle_not_lt; unfold FLT_exp. apply Z.le_trans with (2:=Z.le_max_r _ _); omega. assert (V:FLT_exp emin = emin). unfold FLT_exp; apply Z.max_r. unfold Prec_gt_0 in prec_gt_0_; omega. intros n H2; rewrite <-V. apply f_equal, fexp_negligible_exp_eq... omega. (* x <> 0 *) apply f_equal; unfold cexp, FLT_exp. apply Z.max_r. assert (mag beta x-1 < emin+prec)%Z;[idtac|omega]. destruct (mag beta x) as (e,He); simpl. apply lt_bpow with beta. apply Rle_lt_trans with (2:=Hx). now apply He. Qed. Theorem ulp_FLT_le : forall x, (bpow (emin + prec - 1) <= Rabs x)%R -> (ulp beta FLT_exp x <= Rabs x * bpow (1 - prec))%R. Proof. intros x Hx. assert (Zx : (x <> 0)%R). intros Z; contradict Hx; apply Rgt_not_le, Rlt_gt. rewrite Z, Rabs_R0; apply bpow_gt_0. rewrite ulp_neq_0 with (1 := Zx). unfold cexp, FLT_exp. destruct (mag beta x) as (e,He). apply Rle_trans with (bpow (e-1)*bpow (1-prec))%R. rewrite <- bpow_plus. right; apply f_equal. replace (e - 1 + (1 - prec))%Z with (e - prec)%Z by ring. apply Z.max_l. assert (emin+prec-1 < e)%Z; try omega. apply lt_bpow with beta. apply Rle_lt_trans with (1:=Hx). now apply He. apply Rmult_le_compat_r. apply bpow_ge_0. now apply He. Qed. Theorem ulp_FLT_gt : forall x, (Rabs x * bpow (-prec) < ulp beta FLT_exp x)%R. Proof. intros x; case (Req_dec x 0); intros Hx. rewrite Hx, ulp_FLT_small, Rabs_R0, Rmult_0_l; try apply bpow_gt_0. rewrite Rabs_R0; apply bpow_gt_0. rewrite ulp_neq_0; try exact Hx. unfold cexp, FLT_exp. apply Rlt_le_trans with (bpow (mag beta x)*bpow (-prec))%R. apply Rmult_lt_compat_r. apply bpow_gt_0. now apply bpow_mag_gt. rewrite <- bpow_plus. apply bpow_le. apply Z.le_max_l. Qed. Lemma ulp_FLT_exact_shift : forall x e, (x <> 0)%R -> (emin + prec <= mag beta x)%Z -> (emin + prec - mag beta x <= e)%Z -> (ulp beta FLT_exp (x * bpow e) = ulp beta FLT_exp x * bpow e)%R. Proof. intros x e Nzx Hmx He. unfold ulp; rewrite Req_bool_false; [|now intro H; apply Nzx, (Rmult_eq_reg_r (bpow e)); [rewrite Rmult_0_l|apply Rgt_not_eq, Rlt_gt, bpow_gt_0]]. rewrite (Req_bool_false _ _ Nzx), <- bpow_plus; f_equal; unfold cexp, FLT_exp. rewrite (mag_mult_bpow _ _ _ Nzx), !Z.max_l; omega. Qed. Lemma succ_FLT_exact_shift_pos : forall x e, (0 < x)%R -> (emin + prec <= mag beta x)%Z -> (emin + prec - mag beta x <= e)%Z -> (succ beta FLT_exp (x * bpow e) = succ beta FLT_exp x * bpow e)%R. Proof. intros x e Px Hmx He. rewrite succ_eq_pos; [|now apply Rlt_le, Rmult_lt_0_compat, bpow_gt_0]. rewrite (succ_eq_pos _ _ _ (Rlt_le _ _ Px)). now rewrite Rmult_plus_distr_r; f_equal; apply ulp_FLT_exact_shift; [lra| |]. Qed. Lemma succ_FLT_exact_shift : forall x e, (x <> 0)%R -> (emin + prec + 1 <= mag beta x)%Z -> (emin + prec - mag beta x + 1 <= e)%Z -> (succ beta FLT_exp (x * bpow e) = succ beta FLT_exp x * bpow e)%R. Proof. intros x e Nzx Hmx He. destruct (Rle_or_lt 0 x) as [Px|Nx]. { now apply succ_FLT_exact_shift_pos; [lra|lia|lia]. } unfold succ. rewrite Rle_bool_false; [|assert (H := bpow_gt_0 beta e); nra]. rewrite Rle_bool_false; [|now simpl]. rewrite Ropp_mult_distr_l_reverse, <-Ropp_mult_distr_l_reverse; f_equal. unfold pred_pos. rewrite mag_mult_bpow; [|lra]. replace (_ - 1)%Z with (mag beta (- x) - 1 + e)%Z; [|ring]; rewrite bpow_plus. unfold Req_bool; rewrite Rcompare_mult_r; [|now apply bpow_gt_0]. fold (Req_bool (-x) (bpow (mag beta (-x) - 1))); case Req_bool. { rewrite mag_opp; unfold FLT_exp; do 2 (rewrite Z.max_l; [|lia]). replace (_ - _)%Z with (mag beta x - 1 - prec + e)%Z; [|ring]. rewrite bpow_plus; ring. } rewrite ulp_FLT_exact_shift; [ring|lra| |]; rewrite mag_opp; lia. Qed. (** FLT is a nice format: it has a monotone exponent... *) Global Instance FLT_exp_monotone : Monotone_exp FLT_exp. Proof. intros ex ey. unfold FLT_exp. zify ; omega. Qed. (** and it allows a rounding to nearest, ties to even. *) Hypothesis NE_prop : Z.even beta = false \/ (1 < prec)%Z. Global Instance exists_NE_FLT : Exists_NE beta FLT_exp. Proof. destruct NE_prop as [H|H]. now left. right. intros e. unfold FLT_exp. destruct (Zmax_spec (e - prec) emin) as [(H1,H2)|(H1,H2)] ; rewrite H2 ; clear H2. generalize (Zmax_spec (e + 1 - prec) emin). generalize (Zmax_spec (e - prec + 1 - prec) emin). omega. generalize (Zmax_spec (e + 1 - prec) emin). generalize (Zmax_spec (emin + 1 - prec) emin). omega. Qed. End RND_FLT.