(** This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ Copyright (C) 2009-2018 Sylvie Boldo #
# Copyright (C) 2009-2018 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details. *) (** * Floating-point format with abrupt underflow *) From Coq Require Import Lia. Require Import Raux Defs Round_pred Generic_fmt. Require Import Float_prop Ulp FLX. Section RND_FTZ. Variable beta : radix. Notation bpow e := (bpow beta e). Variable emin prec : Z. Context { prec_gt_0_ : Prec_gt_0 prec }. Inductive FTZ_format (x : R) : Prop := FTZ_spec (f : float beta) : x = F2R f -> (x <> 0%R -> Zpower beta (prec - 1) <= Z.abs (Fnum f) < Zpower beta prec)%Z -> (emin <= Fexp f)%Z -> FTZ_format x. Definition FTZ_exp e := if Zlt_bool (e - prec) emin then (emin + prec - 1)%Z else (e - prec)%Z. (** Properties of the FTZ format *) Global Instance FTZ_exp_valid : Valid_exp FTZ_exp. Proof. intros k. unfold FTZ_exp. generalize (Zlt_cases (k - prec) emin). case (Zlt_bool (k - prec) emin) ; intros H1. split ; intros H2. lia. split. generalize (Zlt_cases (emin + prec + 1 - prec) emin). case (Zlt_bool (emin + prec + 1 - prec) emin) ; intros H3. lia. generalize (Zlt_cases (emin + prec - 1 + 1 - prec) emin). generalize (prec_gt_0 prec). case (Zlt_bool (emin + prec - 1 + 1 - prec) emin) ; lia. intros l H3. generalize (Zlt_cases (l - prec) emin). case (Zlt_bool (l - prec) emin) ; lia. split ; intros H2. generalize (Zlt_cases (k + 1 - prec) emin). case (Zlt_bool (k + 1 - prec) emin) ; lia. generalize (prec_gt_0 prec). split ; intros ; lia. Qed. Theorem FLXN_format_FTZ : forall x, FTZ_format x -> FLXN_format beta prec x. Proof. intros x [[xm xe] Hx1 Hx2 Hx3]. eexists. exact Hx1. exact Hx2. Qed. Theorem generic_format_FTZ : forall x, FTZ_format x -> generic_format beta FTZ_exp x. Proof. intros x Hx. cut (generic_format beta (FLX_exp prec) x). apply generic_inclusion_mag. intros Zx. destruct Hx as [[xm xe] Hx1 Hx2 Hx3]. simpl in Hx2, Hx3. specialize (Hx2 Zx). assert (Zxm: xm <> Z0). contradict Zx. rewrite Hx1, Zx. apply F2R_0. unfold FTZ_exp, FLX_exp. rewrite Zlt_bool_false. apply Z.le_refl. rewrite Hx1, mag_F2R with (1 := Zxm). cut (prec - 1 < mag beta (IZR xm))%Z. clear -Hx3 ; lia. apply mag_gt_Zpower with (1 := Zxm). apply Hx2. apply generic_format_FLXN. now apply FLXN_format_FTZ. Qed. Theorem FTZ_format_generic : forall x, generic_format beta FTZ_exp x -> FTZ_format x. Proof. intros x Hx. destruct (Req_dec x 0) as [->|Hx3]. exists (Float beta 0 emin). apply sym_eq, F2R_0. intros H. now elim H. apply Z.le_refl. unfold generic_format, scaled_mantissa, cexp, FTZ_exp in Hx. destruct (mag beta x) as (ex, Hx4). simpl in Hx. specialize (Hx4 Hx3). generalize (Zlt_cases (ex - prec) emin) Hx. clear Hx. case (Zlt_bool (ex - prec) emin) ; intros Hx5 Hx2. elim Rlt_not_ge with (1 := proj2 Hx4). apply Rle_ge. rewrite Hx2, <- F2R_Zabs. rewrite <- (Rmult_1_l (bpow ex)). unfold F2R. simpl. apply Rmult_le_compat. now apply IZR_le. apply bpow_ge_0. apply IZR_le. apply (Zlt_le_succ 0). apply lt_IZR. apply Rmult_lt_reg_r with (bpow (emin + prec - 1)). apply bpow_gt_0. rewrite Rmult_0_l. change (0 < F2R (Float beta (Z.abs (Ztrunc (x * bpow (- (emin + prec - 1))))) (emin + prec - 1)))%R. rewrite F2R_Zabs, <- Hx2. now apply Rabs_pos_lt. apply bpow_le. lia. rewrite Hx2. eexists ; repeat split ; simpl. apply le_IZR. rewrite IZR_Zpower. apply Rmult_le_reg_r with (bpow (ex - prec)). apply bpow_gt_0. rewrite <- bpow_plus. replace (prec - 1 + (ex - prec))%Z with (ex - 1)%Z by ring. change (bpow (ex - 1) <= F2R (Float beta (Z.abs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)))%R. rewrite F2R_Zabs, <- Hx2. apply Hx4. apply Zle_minus_le_0. now apply (Zlt_le_succ 0). apply lt_IZR. rewrite IZR_Zpower. apply Rmult_lt_reg_r with (bpow (ex - prec)). apply bpow_gt_0. rewrite <- bpow_plus. replace (prec + (ex - prec))%Z with ex by ring. change (F2R (Float beta (Z.abs (Ztrunc (x * bpow (- (ex - prec))))) (ex - prec)) < bpow ex)%R. rewrite F2R_Zabs, <- Hx2. apply Hx4. now apply Zlt_le_weak. now apply Z.ge_le. Qed. Theorem FTZ_format_satisfies_any : satisfies_any FTZ_format. Proof. refine (satisfies_any_eq _ _ _ (generic_format_satisfies_any beta FTZ_exp)). intros x. split. apply FTZ_format_generic. apply generic_format_FTZ. Qed. Theorem FTZ_format_FLXN : forall x : R, (bpow (emin + prec - 1) <= Rabs x)%R -> FLXN_format beta prec x -> FTZ_format x. Proof. intros x Hx Fx. apply FTZ_format_generic. apply generic_format_FLXN in Fx. revert Hx Fx. apply generic_inclusion_ge. intros e He. unfold FTZ_exp. rewrite Zlt_bool_false. apply Z.le_refl. lia. Qed. Theorem ulp_FTZ_0 : ulp beta FTZ_exp 0 = bpow (emin+prec-1). Proof with auto with typeclass_instances. unfold ulp; rewrite Req_bool_true; trivial. case (negligible_exp_spec FTZ_exp). intros T; specialize (T (emin-1)%Z); contradict T. apply Zle_not_lt; unfold FTZ_exp; unfold Prec_gt_0 in prec_gt_0_. rewrite Zlt_bool_true; lia. assert (V:(FTZ_exp (emin+prec-1) = emin+prec-1)%Z). unfold FTZ_exp; rewrite Zlt_bool_true; lia. intros n H2; rewrite <-V. apply f_equal, fexp_negligible_exp_eq... lia. Qed. Section FTZ_round. (** Rounding with FTZ *) Variable rnd : R -> Z. Context { valid_rnd : Valid_rnd rnd }. Definition Zrnd_FTZ x := if Rle_bool 1 (Rabs x) then rnd x else Z0. Global Instance valid_rnd_FTZ : Valid_rnd Zrnd_FTZ. Proof with auto with typeclass_instances. split. (* *) intros x y Hxy. unfold Zrnd_FTZ. case Rle_bool_spec ; intros Hx ; case Rle_bool_spec ; intros Hy. 4: easy. (* 1 <= |x| *) now apply Zrnd_le. rewrite <- (Zrnd_IZR rnd 0). apply Zrnd_le... apply Rle_trans with (-1)%R. 2: now apply IZR_le. destruct (Rabs_ge_inv _ _ Hx) as [Hx1|Hx1]. exact Hx1. elim Rle_not_lt with (1 := Hx1). apply Rle_lt_trans with (2 := Hy). apply Rle_trans with (1 := Hxy). apply RRle_abs. (* |x| < 1 *) rewrite <- (Zrnd_IZR rnd 0). apply Zrnd_le... apply Rle_trans with 1%R. now apply IZR_le. destruct (Rabs_ge_inv _ _ Hy) as [Hy1|Hy1]. elim Rle_not_lt with (1 := Hy1). apply Rlt_le_trans with (2 := Hxy). apply (Rabs_def2 _ _ Hx). exact Hy1. (* *) intros n. unfold Zrnd_FTZ. rewrite Zrnd_IZR... case Rle_bool_spec. easy. rewrite <- abs_IZR. intros H. generalize (lt_IZR _ 1 H). clear. now case n ; trivial ; simpl ; intros [p|p|]. Qed. Theorem round_FTZ_FLX : forall x : R, (bpow (emin + prec - 1) <= Rabs x)%R -> round beta FTZ_exp Zrnd_FTZ x = round beta (FLX_exp prec) rnd x. Proof. intros x Hx. unfold round, scaled_mantissa, cexp. destruct (mag beta x) as (ex, He). simpl. assert (Hx0: x <> 0%R). intros Hx0. apply Rle_not_lt with (1 := Hx). rewrite Hx0, Rabs_R0. apply bpow_gt_0. specialize (He Hx0). assert (He': (emin + prec <= ex)%Z). apply (bpow_lt_bpow beta). apply Rle_lt_trans with (1 := Hx). apply He. replace (FTZ_exp ex) with (FLX_exp prec ex). unfold Zrnd_FTZ. rewrite Rle_bool_true. apply refl_equal. rewrite Rabs_mult. rewrite (Rabs_pos_eq (bpow (- FLX_exp prec ex))). change 1%R with (bpow 0). rewrite <- (Zplus_opp_r (FLX_exp prec ex)). rewrite bpow_plus. apply Rmult_le_compat_r. apply bpow_ge_0. apply Rle_trans with (2 := proj1 He). apply bpow_le. unfold FLX_exp. generalize (prec_gt_0 prec). clear -He' ; lia. apply bpow_ge_0. unfold FLX_exp, FTZ_exp. rewrite Zlt_bool_false. apply refl_equal. clear -He' ; lia. Qed. Theorem round_FTZ_small : forall x : R, (Rabs x < bpow (emin + prec - 1))%R -> round beta FTZ_exp Zrnd_FTZ x = 0%R. Proof with auto with typeclass_instances. intros x Hx. destruct (Req_dec x 0) as [Hx0|Hx0]. rewrite Hx0. apply round_0... unfold round, scaled_mantissa, cexp. destruct (mag beta x) as (ex, He). simpl. specialize (He Hx0). unfold Zrnd_FTZ. rewrite Rle_bool_false. apply F2R_0. rewrite Rabs_mult. rewrite (Rabs_pos_eq (bpow (- FTZ_exp ex))). change 1%R with (bpow 0). rewrite <- (Zplus_opp_r (FTZ_exp ex)). rewrite bpow_plus. apply Rmult_lt_compat_r. apply bpow_gt_0. apply Rlt_le_trans with (1 := Hx). apply bpow_le. unfold FTZ_exp. generalize (Zlt_cases (ex - prec) emin). case Zlt_bool. intros _. apply Z.le_refl. intros He'. elim Rlt_not_le with (1 := Hx). apply Rle_trans with (2 := proj1 He). apply bpow_le. lia. apply bpow_ge_0. Qed. End FTZ_round. End RND_FTZ.