(** This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ Copyright (C) 2011 Sylvie Boldo #
# Copyright (C) 2011 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details. *) Require Import ZArith. Require Import ZOdiv. Section Zmissing. (** About Z *) Theorem Zopp_le_cancel : forall x y : Z, (-y <= -x)%Z -> Zle x y. Proof. intros x y Hxy. apply Zplus_le_reg_r with (-x - y)%Z. now ring_simplify. Qed. Theorem Zgt_not_eq : forall x y : Z, (y < x)%Z -> (x <> y)%Z. Proof. intros x y H Hn. apply Zlt_irrefl with x. now rewrite Hn at 1. Qed. End Zmissing. Section Proof_Irrelevance. Scheme eq_dep_elim := Induction for eq Sort Type. Definition eqbool_dep P (h1 : P true) b := match b return P b -> Prop with | true => fun (h2 : P true) => h1 = h2 | false => fun (h2 : P false) => False end. Lemma eqbool_irrelevance : forall (b : bool) (h1 h2 : b = true), h1 = h2. Proof. assert (forall (h : true = true), refl_equal true = h). apply (eq_dep_elim bool true (eqbool_dep _ _) (refl_equal _)). intros b. case b. intros h1 h2. now rewrite <- (H h1). intros h. discriminate h. Qed. End Proof_Irrelevance. Section Even_Odd. (** Zeven, used for rounding to nearest, ties to even *) Definition Zeven (n : Z) := match n with | Zpos (xO _) => true | Zneg (xO _) => true | Z0 => true | _ => false end. Theorem Zeven_mult : forall x y, Zeven (x * y) = orb (Zeven x) (Zeven y). Proof. now intros [|[xp|xp|]|[xp|xp|]] [|[yp|yp|]|[yp|yp|]]. Qed. Theorem Zeven_opp : forall x, Zeven (- x) = Zeven x. Proof. now intros [|[n|n|]|[n|n|]]. Qed. Theorem Zeven_ex : forall x, exists p, x = (2 * p + if Zeven x then 0 else 1)%Z. Proof. intros [|[n|n|]|[n|n|]]. now exists Z0. now exists (Zpos n). now exists (Zpos n). now exists Z0. exists (Zneg n - 1)%Z. change (2 * Zneg n - 1 = 2 * (Zneg n - 1) + 1)%Z. ring. now exists (Zneg n). now exists (-1)%Z. Qed. Theorem Zeven_2xp1 : forall n, Zeven (2 * n + 1) = false. Proof. intros n. destruct (Zeven_ex (2 * n + 1)) as (p, Hp). revert Hp. case (Zeven (2 * n + 1)) ; try easy. intros H. apply False_ind. omega. Qed. Theorem Zeven_plus : forall x y, Zeven (x + y) = Bool.eqb (Zeven x) (Zeven y). Proof. intros x y. destruct (Zeven_ex x) as (px, Hx). rewrite Hx at 1. destruct (Zeven_ex y) as (py, Hy). rewrite Hy at 1. replace (2 * px + (if Zeven x then 0 else 1) + (2 * py + (if Zeven y then 0 else 1)))%Z with (2 * (px + py) + ((if Zeven x then 0 else 1) + (if Zeven y then 0 else 1)))%Z by ring. case (Zeven x) ; case (Zeven y). rewrite Zplus_0_r. now rewrite Zeven_mult. apply Zeven_2xp1. apply Zeven_2xp1. replace (2 * (px + py) + (1 + 1))%Z with (2 * (px + py + 1))%Z by ring. now rewrite Zeven_mult. Qed. End Even_Odd. Section Zpower. Theorem Zpower_plus : forall n k1 k2, (0 <= k1)%Z -> (0 <= k2)%Z -> Zpower n (k1 + k2) = (Zpower n k1 * Zpower n k2)%Z. Proof. intros n k1 k2 H1 H2. now apply Zpower_exp ; apply Zle_ge. Qed. Theorem Zpower_Zpower_nat : forall b e, (0 <= e)%Z -> Zpower b e = Zpower_nat b (Zabs_nat e). Proof. intros b [|e|e] He. apply refl_equal. apply Zpower_pos_nat. elim He. apply refl_equal. Qed. Theorem Zpower_nat_S : forall b e, Zpower_nat b (S e) = (b * Zpower_nat b e)%Z. Proof. intros b e. rewrite (Zpower_nat_is_exp 1 e). apply (f_equal (fun x => x * _)%Z). apply Zmult_1_r. Qed. Theorem Zpower_pos_gt_0 : forall b p, (0 < b)%Z -> (0 < Zpower_pos b p)%Z. Proof. intros b p Hb. rewrite Zpower_pos_nat. induction (nat_of_P p). easy. rewrite Zpower_nat_S. now apply Zmult_lt_0_compat. Qed. Theorem Zeven_Zpower : forall b e, (0 < e)%Z -> Zeven (Zpower b e) = Zeven b. Proof. intros b e He. case_eq (Zeven b) ; intros Hb. (* b even *) replace e with (e - 1 + 1)%Z by ring. rewrite Zpower_exp. rewrite Zeven_mult. replace (Zeven (b ^ 1)) with true. apply Bool.orb_true_r. unfold Zpower, Zpower_pos. simpl. now rewrite Zmult_1_r. omega. discriminate. (* b odd *) rewrite Zpower_Zpower_nat. induction (Zabs_nat e). easy. unfold Zpower_nat. simpl. rewrite Zeven_mult. now rewrite Hb. now apply Zlt_le_weak. Qed. Theorem Zeven_Zpower_odd : forall b e, (0 <= e)%Z -> Zeven b = false -> Zeven (Zpower b e) = false. Proof. intros b e He Hb. destruct (Z_le_lt_eq_dec _ _ He) as [He'|He']. rewrite <- Hb. now apply Zeven_Zpower. now rewrite <- He'. Qed. (** The radix must be greater than 1 *) Record radix := { radix_val :> Z ; radix_prop : Zle_bool 2 radix_val = true }. Theorem radix_val_inj : forall r1 r2, radix_val r1 = radix_val r2 -> r1 = r2. Proof. intros (r1, H1) (r2, H2) H. simpl in H. revert H1. rewrite H. intros H1. apply f_equal. apply eqbool_irrelevance. Qed. Variable r : radix. Theorem radix_gt_0 : (0 < r)%Z. Proof. apply Zlt_le_trans with 2%Z. easy. apply Zle_bool_imp_le. apply r. Qed. Theorem radix_gt_1 : (1 < r)%Z. Proof. destruct r as (v, Hr). simpl. apply Zlt_le_trans with 2%Z. easy. now apply Zle_bool_imp_le. Qed. Theorem Zpower_gt_1 : forall p, (0 < p)%Z -> (1 < Zpower r p)%Z. Proof. intros [|p|p] Hp ; try easy. simpl. rewrite Zpower_pos_nat. generalize (lt_O_nat_of_P p). induction (nat_of_P p). easy. intros _. rewrite Zpower_nat_S. assert (0 < Zpower_nat r n)%Z. clear. induction n. easy. rewrite Zpower_nat_S. apply Zmult_lt_0_compat with (2 := IHn). apply radix_gt_0. apply Zle_lt_trans with (1 * Zpower_nat r n)%Z. rewrite Zmult_1_l. now apply (Zlt_le_succ 0). apply Zmult_lt_compat_r with (1 := H). apply radix_gt_1. Qed. Theorem Zpower_gt_0 : forall p, (0 <= p)%Z -> (0 < Zpower r p)%Z. Proof. intros p Hp. rewrite Zpower_Zpower_nat with (1 := Hp). induction (Zabs_nat p). easy. rewrite Zpower_nat_S. apply Zmult_lt_0_compat with (2 := IHn). apply radix_gt_0. Qed. Theorem Zpower_ge_0 : forall e, (0 <= Zpower r e)%Z. Proof. intros [|e|e] ; try easy. apply Zlt_le_weak. now apply Zpower_gt_0. Qed. Theorem Zpower_le : forall e1 e2, (e1 <= e2)%Z -> (Zpower r e1 <= Zpower r e2)%Z. Proof. intros e1 e2 He. destruct (Zle_or_lt 0 e1)%Z as [H1|H1]. replace e2 with (e2 - e1 + e1)%Z by ring. rewrite Zpower_plus with (2 := H1). rewrite <- (Zmult_1_l (r ^ e1)) at 1. apply Zmult_le_compat_r. apply (Zlt_le_succ 0). apply Zpower_gt_0. now apply Zle_minus_le_0. apply Zpower_ge_0. now apply Zle_minus_le_0. clear He. destruct e1 as [|e1|e1] ; try easy. apply Zpower_ge_0. Qed. Theorem Zpower_lt : forall e1 e2, (0 <= e2)%Z -> (e1 < e2)%Z -> (Zpower r e1 < Zpower r e2)%Z. Proof. intros e1 e2 He2 He. destruct (Zle_or_lt 0 e1)%Z as [H1|H1]. replace e2 with (e2 - e1 + e1)%Z by ring. rewrite Zpower_plus with (2 := H1). rewrite Zmult_comm. rewrite <- (Zmult_1_r (r ^ e1)) at 1. apply Zmult_lt_compat2. split. now apply Zpower_gt_0. apply Zle_refl. split. easy. apply Zpower_gt_1. clear -He ; omega. apply Zle_minus_le_0. now apply Zlt_le_weak. revert H1. clear -He2. destruct e1 ; try easy. intros _. now apply Zpower_gt_0. Qed. Theorem Zpower_lt_Zpower : forall e1 e2, (Zpower r (e1 - 1) < Zpower r e2)%Z -> (e1 <= e2)%Z. Proof. intros e1 e2 He. apply Znot_gt_le. intros H. apply Zlt_not_le with (1 := He). apply Zpower_le. clear -H ; omega. Qed. End Zpower. Section Div_Mod. Theorem Zmod_mod_mult : forall n a b, (0 < a)%Z -> (0 <= b)%Z -> Zmod (Zmod n (a * b)) b = Zmod n b. Proof. intros n a [|b|b] Ha Hb. now rewrite 2!Zmod_0_r. rewrite (Zmod_eq n (a * Zpos b)). rewrite Zmult_assoc. unfold Zminus. rewrite Zopp_mult_distr_l. apply Z_mod_plus. easy. apply Zmult_gt_0_compat. now apply Zlt_gt. easy. now elim Hb. Qed. Theorem ZOmod_eq : forall a b, ZOmod a b = (a - ZOdiv a b * b)%Z. Proof. intros a b. rewrite (ZO_div_mod_eq a b) at 2. ring. Qed. Theorem ZOmod_mod_mult : forall n a b, ZOmod (ZOmod n (a * b)) b = ZOmod n b. Proof. intros n a b. assert (ZOmod n (a * b) = n + - (ZOdiv n (a * b) * a) * b)%Z. rewrite <- Zopp_mult_distr_l. rewrite <- Zmult_assoc. apply ZOmod_eq. rewrite H. apply ZO_mod_plus. rewrite <- H. apply ZOmod_sgn2. Qed. Theorem Zdiv_mod_mult : forall n a b, (0 <= a)%Z -> (0 <= b)%Z -> (Zdiv (Zmod n (a * b)) a) = Zmod (Zdiv n a) b. Proof. intros n a b Ha Hb. destruct (Zle_lt_or_eq _ _ Ha) as [Ha'|Ha']. destruct (Zle_lt_or_eq _ _ Hb) as [Hb'|Hb']. rewrite (Zmod_eq n (a * b)). rewrite (Zmult_comm a b) at 2. rewrite Zmult_assoc. unfold Zminus. rewrite Zopp_mult_distr_l. rewrite Z_div_plus by now apply Zlt_gt. rewrite <- Zdiv_Zdiv by easy. apply sym_eq. apply Zmod_eq. now apply Zlt_gt. now apply Zmult_gt_0_compat ; apply Zlt_gt. rewrite <- Hb'. rewrite Zmult_0_r, 2!Zmod_0_r. apply Zdiv_0_l. rewrite <- Ha'. now rewrite 2!Zdiv_0_r, Zmod_0_l. Qed. Theorem ZOdiv_mod_mult : forall n a b, (ZOdiv (ZOmod n (a * b)) a) = ZOmod (ZOdiv n a) b. Proof. intros n a b. destruct (Z_eq_dec a 0) as [Za|Za]. rewrite Za. now rewrite 2!ZOdiv_0_r, ZOmod_0_l. assert (ZOmod n (a * b) = n + - (ZOdiv (ZOdiv n a) b * b) * a)%Z. rewrite (ZOmod_eq n (a * b)) at 1. rewrite ZOdiv_ZOdiv. ring. rewrite H. rewrite ZO_div_plus with (2 := Za). apply sym_eq. apply ZOmod_eq. rewrite <- H. apply ZOmod_sgn2. Qed. Theorem ZOdiv_small_abs : forall a b, (Zabs a < b)%Z -> ZOdiv a b = Z0. Proof. intros a b Ha. destruct (Zle_or_lt 0 a) as [H|H]. apply ZOdiv_small. split. exact H. now rewrite Zabs_eq in Ha. apply Zopp_inj. rewrite <- ZOdiv_opp_l, Zopp_0. apply ZOdiv_small. generalize (Zabs_non_eq a). omega. Qed. Theorem ZOmod_small_abs : forall a b, (Zabs a < b)%Z -> ZOmod a b = a. Proof. intros a b Ha. destruct (Zle_or_lt 0 a) as [H|H]. apply ZOmod_small. split. exact H. now rewrite Zabs_eq in Ha. apply Zopp_inj. rewrite <- ZOmod_opp_l. apply ZOmod_small. generalize (Zabs_non_eq a). omega. Qed. Theorem ZOdiv_plus : forall a b c, (0 <= a * b)%Z -> (ZOdiv (a + b) c = ZOdiv a c + ZOdiv b c + ZOdiv (ZOmod a c + ZOmod b c) c)%Z. Proof. intros a b c Hab. destruct (Z_eq_dec c 0) as [Zc|Zc]. now rewrite Zc, 4!ZOdiv_0_r. apply Zmult_reg_r with (1 := Zc). rewrite 2!Zmult_plus_distr_l. assert (forall d, ZOdiv d c * c = d - ZOmod d c)%Z. intros d. rewrite ZOmod_eq. ring. rewrite 4!H. rewrite <- ZOplus_mod with (1 := Hab). ring. Qed. End Div_Mod. Section Same_sign. Theorem Zsame_sign_trans : forall v u w, v <> Z0 -> (0 <= u * v)%Z -> (0 <= v * w)%Z -> (0 <= u * w)%Z. Proof. intros [|v|v] [|u|u] [|w|w] Zv Huv Hvw ; try easy ; now elim Zv. Qed. Theorem Zsame_sign_trans_weak : forall v u w, (v = Z0 -> w = Z0) -> (0 <= u * v)%Z -> (0 <= v * w)%Z -> (0 <= u * w)%Z. Proof. intros [|v|v] [|u|u] [|w|w] Zv Huv Hvw ; try easy ; now discriminate Zv. Qed. Theorem Zsame_sign_imp : forall u v, (0 < u -> 0 <= v)%Z -> (0 < -u -> 0 <= -v)%Z -> (0 <= u * v)%Z. Proof. intros [|u|u] v Hp Hn. easy. apply Zmult_le_0_compat. easy. now apply Hp. replace (Zneg u * v)%Z with (Zpos u * (-v))%Z. apply Zmult_le_0_compat. easy. now apply Hn. rewrite <- Zopp_mult_distr_r. apply Zopp_mult_distr_l. Qed. Theorem Zsame_sign_odiv : forall u v, (0 <= v)%Z -> (0 <= u * ZOdiv u v)%Z. Proof. intros u v Hv. apply Zsame_sign_imp ; intros Hu. apply ZO_div_pos with (2 := Hv). now apply Zlt_le_weak. rewrite <- ZOdiv_opp_l. apply ZO_div_pos with (2 := Hv). now apply Zlt_le_weak. Qed. End Same_sign. (** Boolean comparisons *) Section Zeq_bool. Inductive Zeq_bool_prop (x y : Z) : bool -> Prop := | Zeq_bool_true_ : x = y -> Zeq_bool_prop x y true | Zeq_bool_false_ : x <> y -> Zeq_bool_prop x y false. Theorem Zeq_bool_spec : forall x y, Zeq_bool_prop x y (Zeq_bool x y). Proof. intros x y. generalize (Zeq_is_eq_bool x y). case (Zeq_bool x y) ; intros (H1, H2) ; constructor. now apply H2. intros H. specialize (H1 H). discriminate H1. Qed. Theorem Zeq_bool_true : forall x y, x = y -> Zeq_bool x y = true. Proof. intros x y. apply -> Zeq_is_eq_bool. Qed. Theorem Zeq_bool_false : forall x y, x <> y -> Zeq_bool x y = false. Proof. intros x y. generalize (proj2 (Zeq_is_eq_bool x y)). case Zeq_bool. intros He Hn. elim Hn. now apply He. now intros _ _. Qed. End Zeq_bool. Section Zle_bool. Inductive Zle_bool_prop (x y : Z) : bool -> Prop := | Zle_bool_true_ : (x <= y)%Z -> Zle_bool_prop x y true | Zle_bool_false_ : (y < x)%Z -> Zle_bool_prop x y false. Theorem Zle_bool_spec : forall x y, Zle_bool_prop x y (Zle_bool x y). Proof. intros x y. generalize (Zle_is_le_bool x y). case Zle_bool ; intros (H1, H2) ; constructor. now apply H2. destruct (Zle_or_lt x y) as [H|H]. now specialize (H1 H). exact H. Qed. Theorem Zle_bool_true : forall x y : Z, (x <= y)%Z -> Zle_bool x y = true. Proof. intros x y. apply (proj1 (Zle_is_le_bool x y)). Qed. Theorem Zle_bool_false : forall x y : Z, (y < x)%Z -> Zle_bool x y = false. Proof. intros x y Hxy. generalize (Zle_cases x y). case Zle_bool ; intros H. elim (Zlt_irrefl x). now apply Zle_lt_trans with y. apply refl_equal. Qed. End Zle_bool. Section Zlt_bool. Inductive Zlt_bool_prop (x y : Z) : bool -> Prop := | Zlt_bool_true_ : (x < y)%Z -> Zlt_bool_prop x y true | Zlt_bool_false_ : (y <= x)%Z -> Zlt_bool_prop x y false. Theorem Zlt_bool_spec : forall x y, Zlt_bool_prop x y (Zlt_bool x y). Proof. intros x y. generalize (Zlt_is_lt_bool x y). case Zlt_bool ; intros (H1, H2) ; constructor. now apply H2. destruct (Zle_or_lt y x) as [H|H]. exact H. now specialize (H1 H). Qed. Theorem Zlt_bool_true : forall x y : Z, (x < y)%Z -> Zlt_bool x y = true. Proof. intros x y. apply (proj1 (Zlt_is_lt_bool x y)). Qed. Theorem Zlt_bool_false : forall x y : Z, (y <= x)%Z -> Zlt_bool x y = false. Proof. intros x y Hxy. generalize (Zlt_cases x y). case Zlt_bool ; intros H. elim (Zlt_irrefl x). now apply Zlt_le_trans with y. apply refl_equal. Qed. Theorem negb_Zle_bool : forall x y : Z, negb (Zle_bool x y) = Zlt_bool y x. Proof. intros x y. case Zle_bool_spec ; intros H. now rewrite Zlt_bool_false. now rewrite Zlt_bool_true. Qed. Theorem negb_Zlt_bool : forall x y : Z, negb (Zlt_bool x y) = Zle_bool y x. Proof. intros x y. case Zlt_bool_spec ; intros H. now rewrite Zle_bool_false. now rewrite Zle_bool_true. Qed. End Zlt_bool. Section Zcompare. Inductive Zcompare_prop (x y : Z) : comparison -> Prop := | Zcompare_Lt_ : (x < y)%Z -> Zcompare_prop x y Lt | Zcompare_Eq_ : x = y -> Zcompare_prop x y Eq | Zcompare_Gt_ : (y < x)%Z -> Zcompare_prop x y Gt. Theorem Zcompare_spec : forall x y, Zcompare_prop x y (Zcompare x y). Proof. intros x y. destruct (Z_dec x y) as [[H|H]|H]. generalize (Zlt_compare _ _ H). case (Zcompare x y) ; try easy. now constructor. generalize (Zgt_compare _ _ H). case (Zcompare x y) ; try easy. constructor. now apply Zgt_lt. generalize (proj2 (Zcompare_Eq_iff_eq _ _) H). case (Zcompare x y) ; try easy. now constructor. Qed. Theorem Zcompare_Lt : forall x y, (x < y)%Z -> Zcompare x y = Lt. Proof. easy. Qed. Theorem Zcompare_Eq : forall x y, (x = y)%Z -> Zcompare x y = Eq. Proof. intros x y. apply <- Zcompare_Eq_iff_eq. Qed. Theorem Zcompare_Gt : forall x y, (y < x)%Z -> Zcompare x y = Gt. Proof. intros x y. apply Zlt_gt. Qed. End Zcompare. Section cond_Zopp. Definition cond_Zopp (b : bool) m := if b then Zopp m else m. Theorem abs_cond_Zopp : forall b m, Zabs (cond_Zopp b m) = Zabs m. Proof. intros [|] m. apply Zabs_Zopp. apply refl_equal. Qed. Theorem cond_Zopp_Zlt_bool : forall m, cond_Zopp (Zlt_bool m 0) m = Zabs m. Proof. intros m. apply sym_eq. case Zlt_bool_spec ; intros Hm. apply Zabs_non_eq. now apply Zlt_le_weak. now apply Zabs_eq. Qed. End cond_Zopp.