(** This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ Copyright (C) 2010-2018 Sylvie Boldo #
# Copyright (C) 2010-2018 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details. *) (** * IEEE-754 arithmetic *) Require Import Core Digits Round Bracket Operations Div Sqrt Relative. Require Import Psatz. Section AnyRadix. Inductive full_float := | F754_zero (s : bool) | F754_infinity (s : bool) | F754_nan (s : bool) (m : positive) | F754_finite (s : bool) (m : positive) (e : Z). Definition FF2R beta x := match x with | F754_finite s m e => F2R (Float beta (cond_Zopp s (Zpos m)) e) | _ => 0%R end. End AnyRadix. Section Binary. Arguments exist {A} {P}. (** [prec] is the number of bits of the mantissa including the implicit one; [emax] is the exponent of the infinities. For instance, binary32 is defined by [prec = 24] and [emax = 128]. *) Variable prec emax : Z. Context (prec_gt_0_ : Prec_gt_0 prec). Hypothesis Hmax : (prec < emax)%Z. Let emin := (3 - emax - prec)%Z. Let fexp := FLT_exp emin prec. Instance fexp_correct : Valid_exp fexp := FLT_exp_valid emin prec. Instance fexp_monotone : Monotone_exp fexp := FLT_exp_monotone emin prec. Definition canonical_mantissa m e := Zeq_bool (fexp (Zpos (digits2_pos m) + e)) e. Definition bounded m e := andb (canonical_mantissa m e) (Zle_bool e (emax - prec)). Definition nan_pl pl := Zlt_bool (Zpos (digits2_pos pl)) prec. Definition valid_binary x := match x with | F754_finite _ m e => bounded m e | F754_nan _ pl => nan_pl pl | _ => true end. (** Basic type used for representing binary FP numbers. Note that there is exactly one such object per FP datum. *) Inductive binary_float := | B754_zero (s : bool) | B754_infinity (s : bool) | B754_nan (s : bool) (pl : positive) : nan_pl pl = true -> binary_float | B754_finite (s : bool) (m : positive) (e : Z) : bounded m e = true -> binary_float. Definition FF2B x := match x as x return valid_binary x = true -> binary_float with | F754_finite s m e => B754_finite s m e | F754_infinity s => fun _ => B754_infinity s | F754_zero s => fun _ => B754_zero s | F754_nan b pl => fun H => B754_nan b pl H end. Definition B2FF x := match x with | B754_finite s m e _ => F754_finite s m e | B754_infinity s => F754_infinity s | B754_zero s => F754_zero s | B754_nan b pl _ => F754_nan b pl end. Definition B2R f := match f with | B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e) | _ => 0%R end. Theorem FF2R_B2FF : forall x, FF2R radix2 (B2FF x) = B2R x. Proof. now intros [sx|sx|sx plx Hplx|sx mx ex Hx]. Qed. Theorem B2FF_FF2B : forall x Hx, B2FF (FF2B x Hx) = x. Proof. now intros [sx|sx|sx plx|sx mx ex] Hx. Qed. Theorem valid_binary_B2FF : forall x, valid_binary (B2FF x) = true. Proof. now intros [sx|sx|sx plx Hplx|sx mx ex Hx]. Qed. Theorem FF2B_B2FF : forall x H, FF2B (B2FF x) H = x. Proof. intros [sx|sx|sx plx Hplx|sx mx ex Hx] H ; try easy. apply f_equal, eqbool_irrelevance. apply f_equal, eqbool_irrelevance. Qed. Theorem FF2B_B2FF_valid : forall x, FF2B (B2FF x) (valid_binary_B2FF x) = x. Proof. intros x. apply FF2B_B2FF. Qed. Theorem B2R_FF2B : forall x Hx, B2R (FF2B x Hx) = FF2R radix2 x. Proof. now intros [sx|sx|sx plx|sx mx ex] Hx. Qed. Theorem match_FF2B : forall {T} fz fi fn ff x Hx, match FF2B x Hx return T with | B754_zero sx => fz sx | B754_infinity sx => fi sx | B754_nan b p _ => fn b p | B754_finite sx mx ex _ => ff sx mx ex end = match x with | F754_zero sx => fz sx | F754_infinity sx => fi sx | F754_nan b p => fn b p | F754_finite sx mx ex => ff sx mx ex end. Proof. now intros T fz fi fn ff [sx|sx|sx plx|sx mx ex] Hx. Qed. Theorem canonical_canonical_mantissa : forall (sx : bool) mx ex, canonical_mantissa mx ex = true -> canonical radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex). Proof. intros sx mx ex H. assert (Hx := Zeq_bool_eq _ _ H). clear H. apply sym_eq. simpl. pattern ex at 2 ; rewrite <- Hx. apply (f_equal fexp). rewrite mag_F2R_Zdigits. rewrite <- Zdigits_abs. rewrite Zpos_digits2_pos. now case sx. now case sx. Qed. Theorem generic_format_B2R : forall x, generic_format radix2 fexp (B2R x). Proof. intros [sx|sx|sx plx Hx |sx mx ex Hx] ; try apply generic_format_0. simpl. apply generic_format_canonical. apply canonical_canonical_mantissa. now destruct (andb_prop _ _ Hx) as (H, _). Qed. Theorem FLT_format_B2R : forall x, FLT_format radix2 emin prec (B2R x). Proof with auto with typeclass_instances. intros x. apply FLT_format_generic... apply generic_format_B2R. Qed. Theorem B2FF_inj : forall x y : binary_float, B2FF x = B2FF y -> x = y. Proof. intros [sx|sx|sx plx Hplx|sx mx ex Hx] [sy|sy|sy ply Hply|sy my ey Hy] ; try easy. (* *) intros H. now inversion H. (* *) intros H. now inversion H. (* *) intros H. inversion H. clear H. revert Hplx. rewrite H2. intros Hx. apply f_equal, eqbool_irrelevance. (* *) intros H. inversion H. clear H. revert Hx. rewrite H2, H3. intros Hx. apply f_equal, eqbool_irrelevance. Qed. Definition is_finite_strict f := match f with | B754_finite _ _ _ _ => true | _ => false end. Theorem B2R_inj: forall x y : binary_float, is_finite_strict x = true -> is_finite_strict y = true -> B2R x = B2R y -> x = y. Proof. intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy. simpl. intros _ _ Heq. assert (Hs: sx = sy). (* *) revert Heq. clear. case sx ; case sy ; try easy ; intros Heq ; apply False_ind ; revert Heq. apply Rlt_not_eq. apply Rlt_trans with R0. now apply F2R_lt_0. now apply F2R_gt_0. apply Rgt_not_eq. apply Rgt_trans with R0. now apply F2R_gt_0. now apply F2R_lt_0. assert (mx = my /\ ex = ey). (* *) refine (_ (canonical_unique _ fexp _ _ _ _ Heq)). rewrite Hs. now case sy ; intro H ; injection H ; split. apply canonical_canonical_mantissa. exact (proj1 (andb_prop _ _ Hx)). apply canonical_canonical_mantissa. exact (proj1 (andb_prop _ _ Hy)). (* *) revert Hx. rewrite Hs, (proj1 H), (proj2 H). intros Hx. apply f_equal. apply eqbool_irrelevance. Qed. Definition Bsign x := match x with | B754_nan s _ _ => s | B754_zero s => s | B754_infinity s => s | B754_finite s _ _ _ => s end. Definition sign_FF x := match x with | F754_nan s _ => s | F754_zero s => s | F754_infinity s => s | F754_finite s _ _ => s end. Theorem Bsign_FF2B : forall x H, Bsign (FF2B x H) = sign_FF x. Proof. now intros [sx|sx|sx plx|sx mx ex] H. Qed. Definition is_finite f := match f with | B754_finite _ _ _ _ => true | B754_zero _ => true | _ => false end. Definition is_finite_FF f := match f with | F754_finite _ _ _ => true | F754_zero _ => true | _ => false end. Theorem is_finite_FF2B : forall x Hx, is_finite (FF2B x Hx) = is_finite_FF x. Proof. now intros [| | |]. Qed. Theorem is_finite_FF_B2FF : forall x, is_finite_FF (B2FF x) = is_finite x. Proof. now intros [| |? []|]. Qed. Theorem B2R_Bsign_inj: forall x y : binary_float, is_finite x = true -> is_finite y = true -> B2R x = B2R y -> Bsign x = Bsign y -> x = y. Proof. intros. destruct x, y; try (apply B2R_inj; now eauto). - simpl in H2. congruence. - symmetry in H1. apply Rmult_integral in H1. destruct H1. apply (eq_IZR _ 0) in H1. destruct s0; discriminate H1. simpl in H1. pose proof (bpow_gt_0 radix2 e). rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3. - apply Rmult_integral in H1. destruct H1. apply (eq_IZR _ 0) in H1. destruct s; discriminate H1. simpl in H1. pose proof (bpow_gt_0 radix2 e). rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3. Qed. Definition is_nan f := match f with | B754_nan _ _ _ => true | _ => false end. Definition is_nan_FF f := match f with | F754_nan _ _ => true | _ => false end. Theorem is_nan_FF2B : forall x Hx, is_nan (FF2B x Hx) = is_nan_FF x. Proof. now intros [| | |]. Qed. Theorem is_nan_FF_B2FF : forall x, is_nan_FF (B2FF x) = is_nan x. Proof. now intros [| |? []|]. Qed. Definition get_nan_pl (x : binary_float) : positive := match x with B754_nan _ pl _ => pl | _ => xH end. Definition build_nan (x : { x | is_nan x = true }) : binary_float. Proof. apply (B754_nan (Bsign (proj1_sig x)) (get_nan_pl (proj1_sig x))). destruct x as [x H]. simpl. revert H. assert (H: false = true -> nan_pl 1 = true) by now destruct (nan_pl 1). destruct x; try apply H. intros _. apply e. Defined. Theorem build_nan_correct : forall x : { x | is_nan x = true }, build_nan x = proj1_sig x. Proof. intros [x H]. now destruct x. Qed. Theorem B2R_build_nan : forall x, B2R (build_nan x) = 0%R. Proof. easy. Qed. Theorem is_finite_build_nan : forall x, is_finite (build_nan x) = false. Proof. easy. Qed. Theorem is_nan_build_nan : forall x, is_nan (build_nan x) = true. Proof. easy. Qed. Definition erase (x : binary_float) : binary_float. Proof. destruct x as [s|s|s pl H|s m e H]. - exact (B754_zero s). - exact (B754_infinity s). - apply (B754_nan s pl). destruct nan_pl. apply eq_refl. exact H. - apply (B754_finite s m e). destruct bounded. apply eq_refl. exact H. Defined. Theorem erase_correct : forall x, erase x = x. Proof. destruct x as [s|s|s pl H|s m e H] ; try easy ; simpl. - apply f_equal, eqbool_irrelevance. - apply f_equal, eqbool_irrelevance. Qed. (** Opposite *) Definition Bopp opp_nan x := match x with | B754_nan _ _ _ => build_nan (opp_nan x) | B754_infinity sx => B754_infinity (negb sx) | B754_finite sx mx ex Hx => B754_finite (negb sx) mx ex Hx | B754_zero sx => B754_zero (negb sx) end. Theorem Bopp_involutive : forall opp_nan x, is_nan x = false -> Bopp opp_nan (Bopp opp_nan x) = x. Proof. now intros opp_nan [sx|sx|sx plx|sx mx ex Hx] ; simpl ; try rewrite Bool.negb_involutive. Qed. Theorem B2R_Bopp : forall opp_nan x, B2R (Bopp opp_nan x) = (- B2R x)%R. Proof. intros opp_nan [sx|sx|sx plx Hplx|sx mx ex Hx]; apply sym_eq ; try apply Ropp_0. simpl. rewrite <- F2R_opp. now case sx. Qed. Theorem is_finite_Bopp : forall opp_nan x, is_finite (Bopp opp_nan x) = is_finite x. Proof. now intros opp_nan [| | |]. Qed. Lemma Bsign_Bopp : forall opp_nan x, is_nan x = false -> Bsign (Bopp opp_nan x) = negb (Bsign x). Proof. now intros opp_nan [s|s|s pl H|s m e H]. Qed. (** Absolute value *) Definition Babs abs_nan (x : binary_float) : binary_float := match x with | B754_nan _ _ _ => build_nan (abs_nan x) | B754_infinity sx => B754_infinity false | B754_finite sx mx ex Hx => B754_finite false mx ex Hx | B754_zero sx => B754_zero false end. Theorem B2R_Babs : forall abs_nan x, B2R (Babs abs_nan x) = Rabs (B2R x). Proof. intros abs_nan [sx|sx|sx plx Hx|sx mx ex Hx]; apply sym_eq ; try apply Rabs_R0. simpl. rewrite <- F2R_abs. now destruct sx. Qed. Theorem is_finite_Babs : forall abs_nan x, is_finite (Babs abs_nan x) = is_finite x. Proof. now intros abs_nan [| | |]. Qed. Theorem Bsign_Babs : forall abs_nan x, is_nan x = false -> Bsign (Babs abs_nan x) = false. Proof. now intros abs_nan [| | |]. Qed. Theorem Babs_idempotent : forall abs_nan (x: binary_float), is_nan x = false -> Babs abs_nan (Babs abs_nan x) = Babs abs_nan x. Proof. now intros abs_nan [sx|sx|sx plx|sx mx ex Hx]. Qed. Theorem Babs_Bopp : forall abs_nan opp_nan x, is_nan x = false -> Babs abs_nan (Bopp opp_nan x) = Babs abs_nan x. Proof. now intros abs_nan opp_nan [| | |]. Qed. (** Comparison [Some c] means ordered as per [c]; [None] means unordered. *) Definition Bcompare (f1 f2 : binary_float) : option comparison := match f1, f2 with | B754_nan _ _ _,_ | _,B754_nan _ _ _ => None | B754_infinity s1, B754_infinity s2 => Some match s1, s2 with | true, true => Eq | false, false => Eq | true, false => Lt | false, true => Gt end | B754_infinity s, _ => Some (if s then Lt else Gt) | _, B754_infinity s => Some (if s then Gt else Lt) | B754_finite s _ _ _, B754_zero _ => Some (if s then Lt else Gt) | B754_zero _, B754_finite s _ _ _ => Some (if s then Gt else Lt) | B754_zero _, B754_zero _ => Some Eq | B754_finite s1 m1 e1 _, B754_finite s2 m2 e2 _ => Some match s1, s2 with | true, false => Lt | false, true => Gt | false, false => match Z.compare e1 e2 with | Lt => Lt | Gt => Gt | Eq => Pcompare m1 m2 Eq end | true, true => match Z.compare e1 e2 with | Lt => Gt | Gt => Lt | Eq => CompOpp (Pcompare m1 m2 Eq) end end end. Theorem Bcompare_correct : forall f1 f2, is_finite f1 = true -> is_finite f2 = true -> Bcompare f1 f2 = Some (Rcompare (B2R f1) (B2R f2)). Proof. Ltac apply_Rcompare := match goal with | [ |- Lt = Rcompare _ _ ] => symmetry; apply Rcompare_Lt | [ |- Eq = Rcompare _ _ ] => symmetry; apply Rcompare_Eq | [ |- Gt = Rcompare _ _ ] => symmetry; apply Rcompare_Gt end. unfold Bcompare; intros f1 f2 H1 H2. destruct f1, f2; try easy; apply f_equal; clear H1 H2. now rewrite Rcompare_Eq. destruct s0 ; apply_Rcompare. now apply F2R_lt_0. now apply F2R_gt_0. destruct s ; apply_Rcompare. now apply F2R_lt_0. now apply F2R_gt_0. simpl. apply andb_prop in e0; destruct e0; apply (canonical_canonical_mantissa false) in H. apply andb_prop in e2; destruct e2; apply (canonical_canonical_mantissa false) in H1. pose proof (Zcompare_spec e e1); unfold canonical, Fexp in H1, H. assert (forall m1 m2 e1 e2, let x := (IZR (Zpos m1) * bpow radix2 e1)%R in let y := (IZR (Zpos m2) * bpow radix2 e2)%R in (cexp radix2 fexp x < cexp radix2 fexp y)%Z -> (x < y)%R). { intros; apply Rnot_le_lt; intro; apply (mag_le radix2) in H5. apply Zlt_not_le with (1 := H4). now apply fexp_monotone. now apply (F2R_gt_0 _ (Float radix2 (Zpos m2) e2)). } assert (forall m1 m2 e1 e2, (IZR (- Zpos m1) * bpow radix2 e1 < IZR (Zpos m2) * bpow radix2 e2)%R). { intros; apply (Rlt_trans _ 0%R). now apply (F2R_lt_0 _ (Float radix2 (Zneg m1) e0)). now apply (F2R_gt_0 _ (Float radix2 (Zpos m2) e2)). } unfold F2R, Fnum, Fexp. destruct s, s0; try (now apply_Rcompare; apply H5); inversion H3; try (apply_Rcompare; apply H4; rewrite H, H1 in H7; assumption); try (apply_Rcompare; do 2 rewrite opp_IZR, Ropp_mult_distr_l_reverse; apply Ropp_lt_contravar; apply H4; rewrite H, H1 in H7; assumption); rewrite H7, Rcompare_mult_r, Rcompare_IZR by (apply bpow_gt_0); reflexivity. Qed. Theorem Bcompare_swap : forall x y, Bcompare y x = match Bcompare x y with Some c => Some (CompOpp c) | None => None end. Proof. intros. destruct x as [ ? | [] | ? ? | [] mx ex Bx ]; destruct y as [ ? | [] | ? ? | [] my ey By ]; simpl; try easy. - rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy. now rewrite (Pcompare_antisym mx my). - rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy. now rewrite Pcompare_antisym. Qed. Theorem bounded_le_emax_minus_prec : forall mx ex, bounded mx ex = true -> (F2R (Float radix2 (Zpos mx) ex) <= bpow radix2 emax - bpow radix2 (emax - prec))%R. Proof. intros mx ex Hx. destruct (andb_prop _ _ Hx) as (H1,H2). generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1. generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2. generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex). destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). unfold mag_val. intros H. elim Ex; [|now apply Rgt_not_eq, F2R_gt_0]; intros _. rewrite <-F2R_Zabs; simpl; clear Ex; intros Ex. generalize (Rmult_lt_compat_r (bpow radix2 (-ex)) _ _ (bpow_gt_0 _ _) Ex). unfold F2R; simpl; rewrite Rmult_assoc, <-!bpow_plus. rewrite H; [|intro H'; discriminate H']. rewrite <-Z.add_assoc, Z.add_opp_diag_r, Z.add_0_r, Rmult_1_r. rewrite <-(IZR_Zpower _ _ (Zdigits_ge_0 _ _)); clear Ex; intro Ex. generalize (Zlt_le_succ _ _ (lt_IZR _ _ Ex)); clear Ex; intro Ex. generalize (IZR_le _ _ Ex). rewrite succ_IZR; clear Ex; intro Ex. generalize (Rplus_le_compat_r (-1) _ _ Ex); clear Ex; intro Ex. ring_simplify in Ex; revert Ex. rewrite (IZR_Zpower _ _ (Zdigits_ge_0 _ _)); intro Ex. generalize (Rmult_le_compat_r (bpow radix2 ex) _ _ (bpow_ge_0 _ _) Ex). intro H'; apply (Rle_trans _ _ _ H'). rewrite Rmult_minus_distr_r, Rmult_1_l, <-bpow_plus. revert H1; unfold fexp, FLT_exp; intro H1. generalize (Z.le_max_l (Z.pos (digits2_pos mx) + ex - prec) emin). rewrite H1; intro H1'. generalize (proj1 (Z.le_sub_le_add_r _ _ _) H1'). rewrite Zpos_digits2_pos; clear H1'; intro H1'. apply (Rle_trans _ _ _ (Rplus_le_compat_r _ _ _ (bpow_le _ _ _ H1'))). replace emax with (emax - prec - ex + (ex + prec))%Z at 1 by ring. replace (emax - prec)%Z with (emax - prec - ex + ex)%Z at 2 by ring. do 2 rewrite (bpow_plus _ (emax - prec - ex)). rewrite <-Rmult_minus_distr_l. rewrite <-(Rmult_1_l (_ + _)). apply Rmult_le_compat_r. { apply Rle_0_minus, bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia. } change 1%R with (bpow radix2 0); apply bpow_le; lia. Qed. Theorem bounded_lt_emax : forall mx ex, bounded mx ex = true -> (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R. Proof. intros mx ex Hx. destruct (andb_prop _ _ Hx) as (H1,H2). generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1. generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2. generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex). destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). unfold mag_val. intros H. apply Rlt_le_trans with (bpow radix2 e'). change (Zpos mx) with (Z.abs (Zpos mx)). rewrite F2R_Zabs. apply Ex. apply Rgt_not_eq. now apply F2R_gt_0. apply bpow_le. rewrite H. 2: discriminate. revert H1. clear -H2. rewrite Zpos_digits2_pos. unfold fexp, FLT_exp. intros ; zify ; lia. Qed. Theorem bounded_ge_emin : forall mx ex, bounded mx ex = true -> (bpow radix2 emin <= F2R (Float radix2 (Zpos mx) ex))%R. Proof. intros mx ex Hx. destruct (andb_prop _ _ Hx) as [H1 _]. apply Zeq_bool_eq in H1. generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex). destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as [e' Ex]. unfold mag_val. intros H. assert (H0 : Zpos mx <> 0%Z) by easy. rewrite Rabs_pos_eq in Ex by now apply F2R_ge_0. refine (Rle_trans _ _ _ _ (proj1 (Ex _))). 2: now apply F2R_neq_0. apply bpow_le. rewrite H by easy. revert H1. rewrite Zpos_digits2_pos. generalize (Zdigits radix2 (Zpos mx)) (Zdigits_gt_0 radix2 (Zpos mx) H0). unfold fexp, FLT_exp. clear -prec_gt_0_. unfold Prec_gt_0 in prec_gt_0_. clearbody emin. intros ; zify ; lia. Qed. Theorem abs_B2R_le_emax_minus_prec : forall x, (Rabs (B2R x) <= bpow radix2 emax - bpow radix2 (emax - prec))%R. Proof. intros [sx|sx|sx plx Hx|sx mx ex Hx] ; simpl ; [rewrite Rabs_R0 ; apply Rle_0_minus, bpow_le ; revert prec_gt_0_; unfold Prec_gt_0; lia..|]. rewrite <- F2R_Zabs, abs_cond_Zopp. now apply bounded_le_emax_minus_prec. Qed. Theorem abs_B2R_lt_emax : forall x, (Rabs (B2R x) < bpow radix2 emax)%R. Proof. intros [sx|sx|sx plx Hx|sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ). rewrite <- F2R_Zabs, abs_cond_Zopp. now apply bounded_lt_emax. Qed. Theorem abs_B2R_ge_emin : forall x, is_finite_strict x = true -> (bpow radix2 emin <= Rabs (B2R x))%R. Proof. intros [sx|sx|sx plx Hx|sx mx ex Hx] ; simpl ; try discriminate. intros; case sx; simpl. - unfold F2R; simpl; rewrite Rabs_mult, <-abs_IZR; simpl. rewrite Rabs_pos_eq; [|apply bpow_ge_0]. now apply bounded_ge_emin. - unfold F2R; simpl; rewrite Rabs_mult, <-abs_IZR; simpl. rewrite Rabs_pos_eq; [|apply bpow_ge_0]. now apply bounded_ge_emin. Qed. Theorem bounded_canonical_lt_emax : forall mx ex, canonical radix2 fexp (Float radix2 (Zpos mx) ex) -> (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R -> bounded mx ex = true. Proof. intros mx ex Cx Bx. apply andb_true_intro. split. unfold canonical_mantissa. unfold canonical, Fexp in Cx. rewrite Cx at 2. rewrite Zpos_digits2_pos. unfold cexp. rewrite mag_F2R_Zdigits. 2: discriminate. now apply -> Zeq_is_eq_bool. apply Zle_bool_true. unfold canonical, Fexp in Cx. rewrite Cx. unfold cexp, fexp, FLT_exp. destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl. apply Z.max_lub. cut (e' - 1 < emax)%Z. clear ; lia. apply lt_bpow with radix2. apply Rle_lt_trans with (2 := Bx). change (Zpos mx) with (Z.abs (Zpos mx)). rewrite F2R_Zabs. apply Ex. apply Rgt_not_eq. now apply F2R_gt_0. unfold emin. generalize (prec_gt_0 prec). clear -Hmax ; lia. Qed. (** Truncation *) Record shr_record := { shr_m : Z ; shr_r : bool ; shr_s : bool }. Definition shr_1 mrs := let '(Build_shr_record m r s) := mrs in let s := orb r s in match m with | Z0 => Build_shr_record Z0 false s | Zpos xH => Build_shr_record Z0 true s | Zpos (xO p) => Build_shr_record (Zpos p) false s | Zpos (xI p) => Build_shr_record (Zpos p) true s | Zneg xH => Build_shr_record Z0 true s | Zneg (xO p) => Build_shr_record (Zneg p) false s | Zneg (xI p) => Build_shr_record (Zneg p) true s end. Definition loc_of_shr_record mrs := match mrs with | Build_shr_record _ false false => loc_Exact | Build_shr_record _ false true => loc_Inexact Lt | Build_shr_record _ true false => loc_Inexact Eq | Build_shr_record _ true true => loc_Inexact Gt end. Definition shr_record_of_loc m l := match l with | loc_Exact => Build_shr_record m false false | loc_Inexact Lt => Build_shr_record m false true | loc_Inexact Eq => Build_shr_record m true false | loc_Inexact Gt => Build_shr_record m true true end. Theorem shr_m_shr_record_of_loc : forall m l, shr_m (shr_record_of_loc m l) = m. Proof. now intros m [|[| |]]. Qed. Theorem loc_of_shr_record_of_loc : forall m l, loc_of_shr_record (shr_record_of_loc m l) = l. Proof. now intros m [|[| |]]. Qed. Definition shr mrs e n := match n with | Zpos p => (iter_pos shr_1 p mrs, (e + n)%Z) | _ => (mrs, e) end. Lemma inbetween_shr_1 : forall x mrs e, (0 <= shr_m mrs)%Z -> inbetween_float radix2 (shr_m mrs) e x (loc_of_shr_record mrs) -> inbetween_float radix2 (shr_m (shr_1 mrs)) (e + 1) x (loc_of_shr_record (shr_1 mrs)). Proof. intros x mrs e Hm Hl. refine (_ (new_location_even_correct (F2R (Float radix2 (shr_m (shr_1 mrs)) (e + 1))) (bpow radix2 e) 2 _ _ _ x (if shr_r (shr_1 mrs) then 1 else 0) (loc_of_shr_record mrs) _ _)) ; try easy. 2: apply bpow_gt_0. 2: now case (shr_r (shr_1 mrs)) ; split. change 2%R with (bpow radix2 1). rewrite <- bpow_plus. rewrite (Zplus_comm 1), <- (F2R_bpow radix2 (e + 1)). unfold inbetween_float, F2R. simpl. rewrite plus_IZR, Rmult_plus_distr_r. replace (new_location_even 2 (if shr_r (shr_1 mrs) then 1%Z else 0%Z) (loc_of_shr_record mrs)) with (loc_of_shr_record (shr_1 mrs)). easy. clear -Hm. destruct mrs as (m, r, s). now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|]. rewrite (F2R_change_exp radix2 e). 2: apply Zle_succ. unfold F2R. simpl. rewrite <- 2!Rmult_plus_distr_r, <- 2!plus_IZR. rewrite Zplus_assoc. replace (shr_m (shr_1 mrs) * 2 ^ (e + 1 - e) + (if shr_r (shr_1 mrs) then 1%Z else 0%Z))%Z with (shr_m mrs). exact Hl. ring_simplify (e + 1 - e)%Z. change (2^1)%Z with 2%Z. rewrite Zmult_comm. clear -Hm. destruct mrs as (m, r, s). now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|]. Qed. Theorem inbetween_shr : forall x m e l n, (0 <= m)%Z -> inbetween_float radix2 m e x l -> let '(mrs, e') := shr (shr_record_of_loc m l) e n in inbetween_float radix2 (shr_m mrs) e' x (loc_of_shr_record mrs). Proof. intros x m e l n Hm Hl. destruct n as [|n|n]. now destruct l as [|[| |]]. 2: now destruct l as [|[| |]]. unfold shr. rewrite iter_pos_nat. rewrite Zpos_eq_Z_of_nat_o_nat_of_P. induction (nat_of_P n). simpl. rewrite Zplus_0_r. now destruct l as [|[| |]]. rewrite iter_nat_S. rewrite inj_S. unfold Z.succ. rewrite Zplus_assoc. revert IHn0. apply inbetween_shr_1. clear -Hm. induction n0. now destruct l as [|[| |]]. rewrite iter_nat_S. revert IHn0. generalize (iter_nat shr_1 n0 (shr_record_of_loc m l)). clear. intros (m, r, s) Hm. now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|]. Qed. Definition shr_fexp m e l := shr (shr_record_of_loc m l) e (fexp (Zdigits2 m + e) - e). Theorem shr_truncate : forall m e l, (0 <= m)%Z -> shr_fexp m e l = let '(m', e', l') := truncate radix2 fexp (m, e, l) in (shr_record_of_loc m' l', e'). Proof. intros m e l Hm. case_eq (truncate radix2 fexp (m, e, l)). intros (m', e') l'. unfold shr_fexp. rewrite Zdigits2_Zdigits. case_eq (fexp (Zdigits radix2 m + e) - e)%Z. (* *) intros He. unfold truncate. rewrite He. simpl. intros H. now inversion H. (* *) intros p Hp. assert (He: (e <= fexp (Zdigits radix2 m + e))%Z). clear -Hp ; zify ; lia. destruct (inbetween_float_ex radix2 m e l) as (x, Hx). generalize (inbetween_shr x m e l (fexp (Zdigits radix2 m + e) - e) Hm Hx). assert (Hx0 : (0 <= x)%R). apply Rle_trans with (F2R (Float radix2 m e)). now apply F2R_ge_0. exact (proj1 (inbetween_float_bounds _ _ _ _ _ Hx)). case_eq (shr (shr_record_of_loc m l) e (fexp (Zdigits radix2 m + e) - e)). intros mrs e'' H3 H4 H1. generalize (truncate_correct radix2 _ x m e l Hx0 Hx (or_introl _ He)). rewrite H1. intros (H2,_). rewrite <- Hp, H3. assert (e'' = e'). change (snd (mrs, e'') = snd (fst (m',e',l'))). rewrite <- H1, <- H3. unfold truncate. now rewrite Hp. rewrite H in H4 |- *. apply (f_equal (fun v => (v, _))). destruct (inbetween_float_unique _ _ _ _ _ _ _ H2 H4) as (H5, H6). rewrite H5, H6. case mrs. now intros m0 [|] [|]. (* *) intros p Hp. unfold truncate. rewrite Hp. simpl. intros H. now inversion H. Qed. (** Rounding modes *) Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA. Definition round_mode m := match m with | mode_NE => ZnearestE | mode_ZR => Ztrunc | mode_DN => Zfloor | mode_UP => Zceil | mode_NA => ZnearestA end. Definition choice_mode m sx mx lx := match m with | mode_NE => cond_incr (round_N (negb (Z.even mx)) lx) mx | mode_ZR => mx | mode_DN => cond_incr (round_sign_DN sx lx) mx | mode_UP => cond_incr (round_sign_UP sx lx) mx | mode_NA => cond_incr (round_N true lx) mx end. Global Instance valid_rnd_round_mode : forall m, Valid_rnd (round_mode m). Proof. destruct m ; unfold round_mode ; auto with typeclass_instances. Qed. Definition overflow_to_inf m s := match m with | mode_NE => true | mode_NA => true | mode_ZR => false | mode_UP => negb s | mode_DN => s end. Definition binary_overflow m s := if overflow_to_inf m s then F754_infinity s else F754_finite s (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end) (emax - prec). Definition binary_round_aux mode sx mx ex lx := let '(mrs', e') := shr_fexp mx ex lx in let '(mrs'', e'') := shr_fexp (choice_mode mode sx (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in match shr_m mrs'' with | Z0 => F754_zero sx | Zpos m => if Zle_bool e'' (emax - prec) then F754_finite sx m e'' else binary_overflow mode sx | _ => F754_nan false xH (* dummy *) end. Theorem binary_round_aux_correct' : forall mode x mx ex lx, (x <> 0)%R -> inbetween_float radix2 mx ex (Rabs x) lx -> (ex <= cexp radix2 fexp x)%Z -> let z := binary_round_aux mode (Rlt_bool x 0) mx ex lx in valid_binary z = true /\ if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then FF2R radix2 z = round radix2 fexp (round_mode mode) x /\ is_finite_FF z = true /\ sign_FF z = Rlt_bool x 0 else z = binary_overflow mode (Rlt_bool x 0). Proof with auto with typeclass_instances. intros m x mx ex lx Px Bx Ex z. unfold binary_round_aux in z. revert z. rewrite shr_truncate. refine (_ (round_trunc_sign_any_correct' _ _ (round_mode m) (choice_mode m) _ x mx ex lx Bx (or_introl _ Ex))). rewrite <- cexp_abs in Ex. refine (_ (truncate_correct_partial' _ fexp _ _ _ _ _ Bx Ex)). destruct (truncate radix2 fexp (mx, ex, lx)) as ((m1, e1), l1). rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc. set (m1' := choice_mode m (Rlt_bool x 0) m1 l1). intros (H1a,H1b) H1c. rewrite H1c. assert (Hm: (m1 <= m1')%Z). (* . *) unfold m1', choice_mode, cond_incr. case m ; try apply Z.le_refl ; match goal with |- (m1 <= if ?b then _ else _)%Z => case b ; [ apply Zle_succ | apply Z.le_refl ] end. assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)). (* . *) rewrite <- (Z.abs_eq m1'). replace (Z.abs m1') with (Z.abs (cond_Zopp (Rlt_bool x 0) m1')). rewrite F2R_Zabs. now apply f_equal. apply abs_cond_Zopp. apply Z.le_trans with (2 := Hm). apply Zlt_succ_le. apply gt_0_F2R with radix2 e1. apply Rle_lt_trans with (1 := Rabs_pos x). exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)). (* . *) assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact). now apply inbetween_Exact. destruct m1' as [|m1'|m1']. (* . m1' = 0 *) rewrite shr_truncate. 2: apply Z.le_refl. generalize (truncate_0 radix2 fexp e1 loc_Exact). destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2). rewrite shr_m_shr_record_of_loc. intros Hm2. rewrite Hm2. repeat split. rewrite Rlt_bool_true. repeat split. apply sym_eq. case Rlt_bool ; apply F2R_0. rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0. apply bpow_gt_0. (* . 0 < m1' *) assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z). rewrite <- mag_F2R_Zdigits, <- Hr, mag_abs. 2: discriminate. rewrite H1b. rewrite cexp_abs. fold (cexp radix2 fexp (round radix2 fexp (round_mode m) x)). apply cexp_round_ge... rewrite H1c. case (Rlt_bool x 0). apply Rlt_not_eq. now apply F2R_lt_0. apply Rgt_not_eq. now apply F2R_gt_0. refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)). 2: now rewrite Hr ; apply F2R_gt_0. refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)). 2: discriminate. rewrite shr_truncate. 2: easy. destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2). rewrite shr_m_shr_record_of_loc. intros (H3,H4) (H2,_). destruct m2 as [|m2|m2]. elim Rgt_not_eq with (2 := H3). rewrite F2R_0. now apply F2R_gt_0. rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, <- F2R_abs. simpl Z.abs. case_eq (Zle_bool e2 (emax - prec)) ; intros He2. assert (bounded m2 e2 = true). apply andb_true_intro. split. unfold canonical_mantissa. apply Zeq_bool_true. rewrite Zpos_digits2_pos. rewrite <- mag_F2R_Zdigits. apply sym_eq. now rewrite H3 in H4. discriminate. exact He2. apply (conj H). rewrite Rlt_bool_true. repeat split. apply F2R_cond_Zopp. now apply bounded_lt_emax. rewrite (Rlt_bool_false _ (bpow radix2 emax)). refine (conj _ (refl_equal _)). unfold binary_overflow. case overflow_to_inf. apply refl_equal. unfold valid_binary, bounded. rewrite Zle_bool_refl. rewrite Bool.andb_true_r. apply Zeq_bool_true. rewrite Zpos_digits2_pos. replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec. unfold fexp, FLT_exp, emin. generalize (prec_gt_0 prec). clear -Hmax ; zify ; lia. change 2%Z with (radix_val radix2). case_eq (Zpower radix2 prec - 1)%Z. simpl Zdigits. generalize (Zpower_gt_1 radix2 prec (prec_gt_0 prec)). clear ; lia. intros p Hp. apply Zle_antisym. cut (prec - 1 < Zdigits radix2 (Zpos p))%Z. clear ; lia. apply Zdigits_gt_Zpower. simpl Z.abs. rewrite <- Hp. cut (Zpower radix2 (prec - 1) < Zpower radix2 prec)%Z. clear ; lia. apply lt_IZR. rewrite 2!IZR_Zpower. 2: now apply Zlt_le_weak. apply bpow_lt. apply Zlt_pred. now apply Zlt_0_le_0_pred. apply Zdigits_le_Zpower. simpl Z.abs. rewrite <- Hp. apply Zlt_pred. intros p Hp. generalize (Zpower_gt_1 radix2 _ (prec_gt_0 prec)). clear -Hp ; zify ; lia. apply Rnot_lt_le. intros Hx. generalize (refl_equal (bounded m2 e2)). unfold bounded at 2. rewrite He2. rewrite Bool.andb_false_r. rewrite bounded_canonical_lt_emax with (2 := Hx). discriminate. unfold canonical. now rewrite <- H3. elim Rgt_not_eq with (2 := H3). apply Rlt_trans with R0. now apply F2R_lt_0. now apply F2R_gt_0. rewrite <- Hr. apply generic_format_abs... apply generic_format_round... (* . not m1' < 0 *) elim Rgt_not_eq with (2 := Hr). apply Rlt_le_trans with R0. now apply F2R_lt_0. apply Rabs_pos. (* *) now apply Rabs_pos_lt. (* all the modes are valid *) clear. case m. exact inbetween_int_NE_sign. exact inbetween_int_ZR_sign. exact inbetween_int_DN_sign. exact inbetween_int_UP_sign. exact inbetween_int_NA_sign. (* *) apply inbetween_float_bounds in Bx. apply Zlt_succ_le. eapply gt_0_F2R. apply Rle_lt_trans with (2 := proj2 Bx). apply Rabs_pos. Qed. Theorem binary_round_aux_correct : forall mode x mx ex lx, inbetween_float radix2 (Zpos mx) ex (Rabs x) lx -> (ex <= fexp (Zdigits radix2 (Zpos mx) + ex))%Z -> let z := binary_round_aux mode (Rlt_bool x 0) (Zpos mx) ex lx in valid_binary z = true /\ if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then FF2R radix2 z = round radix2 fexp (round_mode mode) x /\ is_finite_FF z = true /\ sign_FF z = Rlt_bool x 0 else z = binary_overflow mode (Rlt_bool x 0). Proof with auto with typeclass_instances. intros m x mx ex lx Bx Ex z. unfold binary_round_aux in z. revert z. rewrite shr_truncate. 2: easy. refine (_ (round_trunc_sign_any_correct _ _ (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))). refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Bx Ex)). destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1). rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc. set (m1' := choice_mode m (Rlt_bool x 0) m1 l1). intros (H1a,H1b) H1c. rewrite H1c. assert (Hm: (m1 <= m1')%Z). (* . *) unfold m1', choice_mode, cond_incr. case m ; try apply Z.le_refl ; match goal with |- (m1 <= if ?b then _ else _)%Z => case b ; [ apply Zle_succ | apply Z.le_refl ] end. assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)). (* . *) rewrite <- (Z.abs_eq m1'). replace (Z.abs m1') with (Z.abs (cond_Zopp (Rlt_bool x 0) m1')). rewrite F2R_Zabs. now apply f_equal. apply abs_cond_Zopp. apply Z.le_trans with (2 := Hm). apply Zlt_succ_le. apply gt_0_F2R with radix2 e1. apply Rle_lt_trans with (1 := Rabs_pos x). exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)). (* . *) assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact). now apply inbetween_Exact. destruct m1' as [|m1'|m1']. (* . m1' = 0 *) rewrite shr_truncate. 2: apply Z.le_refl. generalize (truncate_0 radix2 fexp e1 loc_Exact). destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2). rewrite shr_m_shr_record_of_loc. intros Hm2. rewrite Hm2. repeat split. rewrite Rlt_bool_true. repeat split. apply sym_eq. case Rlt_bool ; apply F2R_0. rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0. apply bpow_gt_0. (* . 0 < m1' *) assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z). rewrite <- mag_F2R_Zdigits, <- Hr, mag_abs. 2: discriminate. rewrite H1b. rewrite cexp_abs. fold (cexp radix2 fexp (round radix2 fexp (round_mode m) x)). apply cexp_round_ge... rewrite H1c. case (Rlt_bool x 0). apply Rlt_not_eq. now apply F2R_lt_0. apply Rgt_not_eq. now apply F2R_gt_0. refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)). 2: now rewrite Hr ; apply F2R_gt_0. refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)). 2: discriminate. rewrite shr_truncate. 2: easy. destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2). rewrite shr_m_shr_record_of_loc. intros (H3,H4) (H2,_). destruct m2 as [|m2|m2]. elim Rgt_not_eq with (2 := H3). rewrite F2R_0. now apply F2R_gt_0. rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, <- F2R_abs. simpl Z.abs. case_eq (Zle_bool e2 (emax - prec)) ; intros He2. assert (bounded m2 e2 = true). apply andb_true_intro. split. unfold canonical_mantissa. apply Zeq_bool_true. rewrite Zpos_digits2_pos. rewrite <- mag_F2R_Zdigits. apply sym_eq. now rewrite H3 in H4. discriminate. exact He2. apply (conj H). rewrite Rlt_bool_true. repeat split. apply F2R_cond_Zopp. now apply bounded_lt_emax. rewrite (Rlt_bool_false _ (bpow radix2 emax)). refine (conj _ (refl_equal _)). unfold binary_overflow. case overflow_to_inf. apply refl_equal. unfold valid_binary, bounded. rewrite Zle_bool_refl. rewrite Bool.andb_true_r. apply Zeq_bool_true. rewrite Zpos_digits2_pos. replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec. unfold fexp, FLT_exp, emin. generalize (prec_gt_0 prec). clear -Hmax ; zify ; lia. change 2%Z with (radix_val radix2). case_eq (Zpower radix2 prec - 1)%Z. simpl Zdigits. generalize (Zpower_gt_1 radix2 prec (prec_gt_0 prec)). clear ; lia. intros p Hp. apply Zle_antisym. cut (prec - 1 < Zdigits radix2 (Zpos p))%Z. clear ; lia. apply Zdigits_gt_Zpower. simpl Z.abs. rewrite <- Hp. cut (Zpower radix2 (prec - 1) < Zpower radix2 prec)%Z. clear ; lia. apply lt_IZR. rewrite 2!IZR_Zpower. 2: now apply Zlt_le_weak. apply bpow_lt. apply Zlt_pred. now apply Zlt_0_le_0_pred. apply Zdigits_le_Zpower. simpl Z.abs. rewrite <- Hp. apply Zlt_pred. intros p Hp. generalize (Zpower_gt_1 radix2 _ (prec_gt_0 prec)). clear -Hp ; zify ; lia. apply Rnot_lt_le. intros Hx. generalize (refl_equal (bounded m2 e2)). unfold bounded at 2. rewrite He2. rewrite Bool.andb_false_r. rewrite bounded_canonical_lt_emax with (2 := Hx). discriminate. unfold canonical. now rewrite <- H3. elim Rgt_not_eq with (2 := H3). apply Rlt_trans with R0. now apply F2R_lt_0. now apply F2R_gt_0. rewrite <- Hr. apply generic_format_abs... apply generic_format_round... (* . not m1' < 0 *) elim Rgt_not_eq with (2 := Hr). apply Rlt_le_trans with R0. now apply F2R_lt_0. apply Rabs_pos. (* *) apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)). now apply F2R_gt_0. (* all the modes are valid *) clear. case m. exact inbetween_int_NE_sign. exact inbetween_int_ZR_sign. exact inbetween_int_DN_sign. exact inbetween_int_UP_sign. exact inbetween_int_NA_sign. Qed. (** Multiplication *) Lemma Bmult_correct_aux : forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true), let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in let z := binary_round_aux m (xorb sx sy) (Zpos (mx * my)) (ex + ey) loc_Exact in valid_binary z = true /\ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x * y))) (bpow radix2 emax) then FF2R radix2 z = round radix2 fexp (round_mode m) (x * y) /\ is_finite_FF z = true /\ sign_FF z = xorb sx sy else z = binary_overflow m (xorb sx sy). Proof. intros m sx mx ex Hx sy my ey Hy x y. unfold x, y. rewrite <- F2R_mult. simpl. replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0). apply binary_round_aux_correct. constructor. rewrite <- F2R_abs. apply F2R_eq. rewrite Zabs_Zmult. now rewrite 2!abs_cond_Zopp. (* *) change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z. assert (forall m e, bounded m e = true -> fexp (Zdigits radix2 (Zpos m) + e) = e)%Z. clear. intros m e Hb. destruct (andb_prop _ _ Hb) as (H,_). apply Zeq_bool_eq. now rewrite <- Zpos_digits2_pos. generalize (H _ _ Hx) (H _ _ Hy). clear x y sx sy Hx Hy H. unfold fexp, FLT_exp. refine (_ (Zdigits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate. refine (_ (Zdigits_gt_0 radix2 (Zpos mx) _) (Zdigits_gt_0 radix2 (Zpos my) _)) ; try discriminate. generalize (Zdigits radix2 (Zpos mx)) (Zdigits radix2 (Zpos my)) (Zdigits radix2 (Zpos mx * Zpos my)). clear -Hmax. unfold emin. intros dx dy dxy Hx Hy Hxy. zify ; intros ; subst. lia. (* *) case sx ; case sy. apply Rlt_bool_false. now apply F2R_ge_0. apply Rlt_bool_true. now apply F2R_lt_0. apply Rlt_bool_true. now apply F2R_lt_0. apply Rlt_bool_false. now apply F2R_ge_0. Qed. Definition Bmult mult_nan m x y := match x, y with | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (mult_nan x y) | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy) | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy) | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy) | B754_infinity _, B754_zero _ => build_nan (mult_nan x y) | B754_zero _, B754_infinity _ => build_nan (mult_nan x y) | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy) | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy) | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy) | B754_finite sx mx ex Hx, B754_finite sy my ey Hy => FF2B _ (proj1 (Bmult_correct_aux m sx mx ex Hx sy my ey Hy)) end. Theorem Bmult_correct : forall mult_nan m x y, if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x * B2R y))) (bpow radix2 emax) then B2R (Bmult mult_nan m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y) /\ is_finite (Bmult mult_nan m x y) = andb (is_finite x) (is_finite y) /\ (is_nan (Bmult mult_nan m x y) = false -> Bsign (Bmult mult_nan m x y) = xorb (Bsign x) (Bsign y)) else B2FF (Bmult mult_nan m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)). Proof. intros mult_nan m [sx|sx|sx plx Hplx|sx mx ex Hx] [sy|sy|sy ply Hply|sy my ey Hy] ; try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | now auto with typeclass_instances ] ). simpl. case Bmult_correct_aux. intros H1. case Rlt_bool. intros (H2, (H3, H4)). split. now rewrite B2R_FF2B. split. now rewrite is_finite_FF2B. rewrite Bsign_FF2B. auto. intros H2. now rewrite B2FF_FF2B. Qed. (** Normalization and rounding *) Definition shl_align mx ex ex' := match (ex' - ex)%Z with | Zneg d => (shift_pos d mx, ex') | _ => (mx, ex) end. Theorem shl_align_correct : forall mx ex ex', let (mx', ex'') := shl_align mx ex ex' in F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex'') /\ (ex'' <= ex')%Z. Proof. intros mx ex ex'. unfold shl_align. case_eq (ex' - ex)%Z. (* d = 0 *) intros H. repeat split. rewrite Zminus_eq with (1 := H). apply Z.le_refl. (* d > 0 *) intros d Hd. repeat split. replace ex' with (ex' - ex + ex)%Z by ring. rewrite Hd. pattern ex at 1 ; rewrite <- Zplus_0_l. now apply Zplus_le_compat_r. (* d < 0 *) intros d Hd. rewrite shift_pos_correct, Zmult_comm. change (Zpower_pos 2 d) with (Zpower radix2 (Zpos d)). change (Zpos d) with (Z.opp (Zneg d)). rewrite <- Hd. split. replace (- (ex' - ex))%Z with (ex - ex')%Z by ring. apply F2R_change_exp. apply Zle_0_minus_le. replace (ex - ex')%Z with (- (ex' - ex))%Z by ring. now rewrite Hd. apply Z.le_refl. Qed. Theorem snd_shl_align : forall mx ex ex', (ex' <= ex)%Z -> snd (shl_align mx ex ex') = ex'. Proof. intros mx ex ex' He. unfold shl_align. case_eq (ex' - ex)%Z ; simpl. intros H. now rewrite Zminus_eq with (1 := H). intros p. clear -He ; zify ; lia. intros. apply refl_equal. Qed. Definition shl_align_fexp mx ex := shl_align mx ex (fexp (Zpos (digits2_pos mx) + ex)). Theorem shl_align_fexp_correct : forall mx ex, let (mx', ex') := shl_align_fexp mx ex in F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\ (ex' <= fexp (Zdigits radix2 (Zpos mx') + ex'))%Z. Proof. intros mx ex. unfold shl_align_fexp. generalize (shl_align_correct mx ex (fexp (Zpos (digits2_pos mx) + ex))). rewrite Zpos_digits2_pos. case shl_align. intros mx' ex' (H1, H2). split. exact H1. rewrite <- mag_F2R_Zdigits. 2: easy. rewrite <- H1. now rewrite mag_F2R_Zdigits. Qed. Definition binary_round m sx mx ex := let '(mz, ez) := shl_align_fexp mx ex in binary_round_aux m sx (Zpos mz) ez loc_Exact. Theorem binary_round_correct : forall m sx mx ex, let z := binary_round m sx mx ex in valid_binary z = true /\ let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then FF2R radix2 z = round radix2 fexp (round_mode m) x /\ is_finite_FF z = true /\ sign_FF z = sx else z = binary_overflow m sx. Proof. intros m sx mx ex. unfold binary_round. generalize (shl_align_fexp_correct mx ex). destruct (shl_align_fexp mx ex) as (mz, ez). intros (H1, H2). set (x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex)). replace sx with (Rlt_bool x 0). apply binary_round_aux_correct. constructor. unfold x. now rewrite <- F2R_Zabs, abs_cond_Zopp. exact H2. unfold x. case sx. apply Rlt_bool_true. now apply F2R_lt_0. apply Rlt_bool_false. now apply F2R_ge_0. Qed. Definition binary_normalize mode m e szero := match m with | Z0 => B754_zero szero | Zpos m => FF2B _ (proj1 (binary_round_correct mode false m e)) | Zneg m => FF2B _ (proj1 (binary_round_correct mode true m e)) end. Theorem binary_normalize_correct : forall m mx ex szero, if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mx ex)))) (bpow radix2 emax) then B2R (binary_normalize m mx ex szero) = round radix2 fexp (round_mode m) (F2R (Float radix2 mx ex)) /\ is_finite (binary_normalize m mx ex szero) = true /\ Bsign (binary_normalize m mx ex szero) = match Rcompare (F2R (Float radix2 mx ex)) 0 with | Eq => szero | Lt => true | Gt => false end else B2FF (binary_normalize m mx ex szero) = binary_overflow m (Rlt_bool (F2R (Float radix2 mx ex)) 0). Proof with auto with typeclass_instances. intros m mx ez szero. destruct mx as [|mz|mz] ; simpl. rewrite F2R_0, round_0, Rabs_R0, Rlt_bool_true... split... split... rewrite Rcompare_Eq... apply bpow_gt_0. (* . mz > 0 *) generalize (binary_round_correct m false mz ez). simpl. case Rlt_bool_spec. intros _ (Vz, (Rz, (Rz', Rz''))). split. now rewrite B2R_FF2B. split. now rewrite is_finite_FF2B. rewrite Bsign_FF2B, Rz''. rewrite Rcompare_Gt... apply F2R_gt_0. simpl. zify; lia. intros Hz' (Vz, Rz). rewrite B2FF_FF2B, Rz. apply f_equal. apply sym_eq. apply Rlt_bool_false. now apply F2R_ge_0. (* . mz < 0 *) generalize (binary_round_correct m true mz ez). simpl. case Rlt_bool_spec. intros _ (Vz, (Rz, (Rz', Rz''))). split. now rewrite B2R_FF2B. split. now rewrite is_finite_FF2B. rewrite Bsign_FF2B, Rz''. rewrite Rcompare_Lt... apply F2R_lt_0. simpl. zify; lia. intros Hz' (Vz, Rz). rewrite B2FF_FF2B, Rz. apply f_equal. apply sym_eq. apply Rlt_bool_true. now apply F2R_lt_0. Qed. (** Addition *) Definition Bplus plus_nan m x y := match x, y with | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (plus_nan x y) | B754_infinity sx, B754_infinity sy => if Bool.eqb sx sy then x else build_nan (plus_nan x y) | B754_infinity _, _ => x | _, B754_infinity _ => y | B754_zero sx, B754_zero sy => if Bool.eqb sx sy then x else match m with mode_DN => B754_zero true | _ => B754_zero false end | B754_zero _, _ => y | _, B754_zero _ => x | B754_finite sx mx ex Hx, B754_finite sy my ey Hy => let ez := Z.min ex ey in binary_normalize m (Zplus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez))))) ez (match m with mode_DN => true | _ => false end) end. Theorem Bplus_correct : forall plus_nan m x y, is_finite x = true -> is_finite y = true -> if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then B2R (Bplus plus_nan m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\ is_finite (Bplus plus_nan m x y) = true /\ Bsign (Bplus plus_nan m x y) = match Rcompare (B2R x + B2R y) 0 with | Eq => match m with mode_DN => orb (Bsign x) (Bsign y) | _ => andb (Bsign x) (Bsign y) end | Lt => true | Gt => false end else (B2FF (Bplus plus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y). Proof with auto with typeclass_instances. intros plus_nan m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] Fx Fy ; try easy. (* *) rewrite Rplus_0_r, round_0, Rabs_R0, Rlt_bool_true... simpl. rewrite Rcompare_Eq by auto. destruct sx, sy; try easy; now case m. apply bpow_gt_0. (* *) rewrite Rplus_0_l, round_generic, Rlt_bool_true... split... split... simpl. unfold F2R. erewrite <- Rmult_0_l, Rcompare_mult_r. rewrite Rcompare_IZR with (y:=0%Z). destruct sy... apply bpow_gt_0. apply abs_B2R_lt_emax. apply generic_format_B2R. (* *) rewrite Rplus_0_r, round_generic, Rlt_bool_true... split... split... simpl. unfold F2R. erewrite <- Rmult_0_l, Rcompare_mult_r. rewrite Rcompare_IZR with (y:=0%Z). destruct sx... apply bpow_gt_0. apply abs_B2R_lt_emax. apply generic_format_B2R. (* *) clear Fx Fy. simpl. set (szero := match m with mode_DN => true | _ => false end). set (ez := Z.min ex ey). set (mz := (cond_Zopp sx (Zpos (fst (shl_align mx ex ez))) + cond_Zopp sy (Zpos (fst (shl_align my ey ez))))%Z). assert (Hp: (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) + F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey))%R = F2R (Float radix2 mz ez)). rewrite 2!F2R_cond_Zopp. generalize (shl_align_correct mx ex ez). generalize (shl_align_correct my ey ez). generalize (snd_shl_align mx ex ez (Z.le_min_l ex ey)). generalize (snd_shl_align my ey ez (Z.le_min_r ex ey)). destruct (shl_align mx ex ez) as (mx', ex'). destruct (shl_align my ey ez) as (my', ey'). simpl. intros H1 H2. rewrite H1, H2. clear H1 H2. intros (H1, _) (H2, _). rewrite H1, H2. clear H1 H2. rewrite <- 2!F2R_cond_Zopp. unfold F2R. simpl. now rewrite <- Rmult_plus_distr_r, <- plus_IZR. rewrite Hp. assert (Sz: (bpow radix2 emax <= Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mz ez))))%R -> sx = Rlt_bool (F2R (Float radix2 mz ez)) 0 /\ sx = sy). (* . *) rewrite <- Hp. intros Bz. destruct (Bool.bool_dec sx sy) as [Hs|Hs]. (* .. *) refine (conj _ Hs). rewrite Hs. apply sym_eq. case sy. apply Rlt_bool_true. rewrite <- (Rplus_0_r 0). apply Rplus_lt_compat. now apply F2R_lt_0. now apply F2R_lt_0. apply Rlt_bool_false. rewrite <- (Rplus_0_r 0). apply Rplus_le_compat. now apply F2R_ge_0. now apply F2R_ge_0. (* .. *) elim Rle_not_lt with (1 := Bz). generalize (bounded_lt_emax _ _ Hx) (bounded_lt_emax _ _ Hy) (andb_prop _ _ Hx) (andb_prop _ _ Hy). intros Bx By (Hx',_) (Hy',_). generalize (canonical_canonical_mantissa sx _ _ Hx') (canonical_canonical_mantissa sy _ _ Hy'). clear -Bx By Hs prec_gt_0_. intros Cx Cy. destruct sx. (* ... *) destruct sy. now elim Hs. clear Hs. apply Rabs_lt. split. apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)). rewrite F2R_Zopp. now apply Ropp_lt_contravar. apply round_ge_generic... now apply generic_format_canonical. pattern (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)) at 1 ; rewrite <- Rplus_0_r. apply Rplus_le_compat_l. now apply F2R_ge_0. apply Rle_lt_trans with (2 := By). apply round_le_generic... now apply generic_format_canonical. rewrite <- (Rplus_0_l (F2R (Float radix2 (Zpos my) ey))). apply Rplus_le_compat_r. now apply F2R_le_0. (* ... *) destruct sy. 2: now elim Hs. clear Hs. apply Rabs_lt. split. apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)). rewrite F2R_Zopp. now apply Ropp_lt_contravar. apply round_ge_generic... now apply generic_format_canonical. pattern (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)) at 1 ; rewrite <- Rplus_0_l. apply Rplus_le_compat_r. now apply F2R_ge_0. apply Rle_lt_trans with (2 := Bx). apply round_le_generic... now apply generic_format_canonical. rewrite <- (Rplus_0_r (F2R (Float radix2 (Zpos mx) ex))). apply Rplus_le_compat_l. now apply F2R_le_0. (* . *) generalize (binary_normalize_correct m mz ez szero). case Rlt_bool_spec. split; try easy. split; try easy. destruct (Rcompare_spec (F2R (beta:=radix2) {| Fnum := mz; Fexp := ez |}) 0); try easy. rewrite H1 in Hp. apply Rplus_opp_r_uniq in Hp. rewrite <- F2R_Zopp in Hp. eapply canonical_unique in Hp. inversion Hp. destruct sy, sx, m; try discriminate H3; easy. apply canonical_canonical_mantissa. apply Bool.andb_true_iff in Hy. easy. replace (-cond_Zopp sx (Z.pos mx))%Z with (cond_Zopp (negb sx) (Z.pos mx)) by (destruct sx; auto). apply canonical_canonical_mantissa. apply Bool.andb_true_iff in Hx. easy. intros Hz' Vz. specialize (Sz Hz'). split. rewrite Vz. now apply f_equal. apply Sz. Qed. (** Subtraction *) Definition Bminus minus_nan m x y := match x, y with | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (minus_nan x y) | B754_infinity sx, B754_infinity sy => if Bool.eqb sx (negb sy) then x else build_nan (minus_nan x y) | B754_infinity _, _ => x | _, B754_infinity sy => B754_infinity (negb sy) | B754_zero sx, B754_zero sy => if Bool.eqb sx (negb sy) then x else match m with mode_DN => B754_zero true | _ => B754_zero false end | B754_zero _, B754_finite sy my ey Hy => B754_finite (negb sy) my ey Hy | _, B754_zero _ => x | B754_finite sx mx ex Hx, B754_finite sy my ey Hy => let ez := Z.min ex ey in binary_normalize m (Zminus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez))))) ez (match m with mode_DN => true | _ => false end) end. Theorem Bminus_correct : forall minus_nan m x y, is_finite x = true -> is_finite y = true -> if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x - B2R y))) (bpow radix2 emax) then B2R (Bminus minus_nan m x y) = round radix2 fexp (round_mode m) (B2R x - B2R y) /\ is_finite (Bminus minus_nan m x y) = true /\ Bsign (Bminus minus_nan m x y) = match Rcompare (B2R x - B2R y) 0 with | Eq => match m with mode_DN => orb (Bsign x) (negb (Bsign y)) | _ => andb (Bsign x) (negb (Bsign y)) end | Lt => true | Gt => false end else (B2FF (Bminus minus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = negb (Bsign y)). Proof with auto with typeclass_instances. intros minus_nan m x y Fx Fy. generalize (Bplus_correct minus_nan m x (Bopp (fun n => minus_nan n (B754_zero false)) y) Fx). rewrite is_finite_Bopp, B2R_Bopp. intros H. specialize (H Fy). replace (negb (Bsign y)) with (Bsign (Bopp (fun n => minus_nan n (B754_zero false)) y)). destruct x as [| | |sx mx ex Hx], y as [| | |sy my ey Hy] ; try easy. unfold Bminus, Zminus. now rewrite <- cond_Zopp_negb. now destruct y as [ | | | ]. Qed. (** Fused Multiply-Add *) Definition Bfma_szero m (x y z: binary_float) : bool := let s_xy := xorb (Bsign x) (Bsign y) in (* sign of product x*y *) if Bool.eqb s_xy (Bsign z) then s_xy else match m with mode_DN => true | _ => false end. Definition Bfma fma_nan m (x y z: binary_float) := match x, y with | B754_nan _ _ _, _ | _, B754_nan _ _ _ | B754_infinity _, B754_zero _ | B754_zero _, B754_infinity _ => (* Multiplication produces NaN *) build_nan (fma_nan x y z) | B754_infinity sx, B754_infinity sy | B754_infinity sx, B754_finite sy _ _ _ | B754_finite sx _ _ _, B754_infinity sy => let s := xorb sx sy in (* Multiplication produces infinity with sign [s] *) match z with | B754_nan _ _ _ => build_nan (fma_nan x y z) | B754_infinity sz => if Bool.eqb s sz then z else build_nan (fma_nan x y z) | _ => B754_infinity s end | B754_finite sx _ _ _, B754_zero sy | B754_zero sx, B754_finite sy _ _ _ | B754_zero sx, B754_zero sy => (* Multiplication produces zero *) match z with | B754_nan _ _ _ => build_nan (fma_nan x y z) | B754_zero _ => B754_zero (Bfma_szero m x y z) | _ => z end | B754_finite sx mx ex _, B754_finite sy my ey _ => (* Multiplication produces a finite, non-zero result *) match z with | B754_nan _ _ _ => build_nan (fma_nan x y z) | B754_infinity sz => z | B754_zero _ => let X := Float radix2 (cond_Zopp sx (Zpos mx)) ex in let Y := Float radix2 (cond_Zopp sy (Zpos my)) ey in let '(Float _ mr er) := Fmult X Y in binary_normalize m mr er (Bfma_szero m x y z) | B754_finite sz mz ez _ => let X := Float radix2 (cond_Zopp sx (Zpos mx)) ex in let Y := Float radix2 (cond_Zopp sy (Zpos my)) ey in let Z := Float radix2 (cond_Zopp sz (Zpos mz)) ez in let '(Float _ mr er) := Fplus (Fmult X Y) Z in binary_normalize m mr er (Bfma_szero m x y z) end end. Theorem Bfma_correct: forall fma_nan m x y z, let res := (B2R x * B2R y + B2R z)%R in is_finite x = true -> is_finite y = true -> is_finite z = true -> if Rlt_bool (Rabs (round radix2 fexp (round_mode m) res)) (bpow radix2 emax) then B2R (Bfma fma_nan m x y z) = round radix2 fexp (round_mode m) res /\ is_finite (Bfma fma_nan m x y z) = true /\ Bsign (Bfma fma_nan m x y z) = match Rcompare res 0 with | Eq => Bfma_szero m x y z | Lt => true | Gt => false end else B2FF (Bfma fma_nan m x y z) = binary_overflow m (Rlt_bool res 0). Proof. intros. pattern (Bfma fma_nan m x y z). match goal with |- ?p ?x => set (PROP := p) end. set (szero := Bfma_szero m x y z). assert (BINORM: forall mr er, F2R (Float radix2 mr er) = res -> PROP (binary_normalize m mr er szero)). { intros mr er E. specialize (binary_normalize_correct m mr er szero). change (FLT_exp (3 - emax - prec) prec) with fexp. rewrite E. tauto. } set (add_zero := match z with | B754_nan _ _ _ => build_nan (fma_nan x y z) | B754_zero sz => B754_zero szero | _ => z end). assert (ADDZERO: B2R x = 0%R \/ B2R y = 0%R -> PROP add_zero). { intros Z. assert (RES: res = B2R z). { unfold res. destruct Z as [E|E]; rewrite E, ?Rmult_0_l, ?Rmult_0_r, Rplus_0_l; auto. } unfold PROP, add_zero; destruct z as [ sz | sz | sz plz | sz mz ez Bz]; try discriminate. - simpl in RES; rewrite RES; rewrite round_0 by apply valid_rnd_round_mode. rewrite Rlt_bool_true. split. reflexivity. split. reflexivity. rewrite Rcompare_Eq by auto. reflexivity. rewrite Rabs_R0; apply bpow_gt_0. - rewrite RES, round_generic, Rlt_bool_true. split. reflexivity. split. reflexivity. unfold B2R. destruct sz. rewrite Rcompare_Lt. auto. apply F2R_lt_0. reflexivity. rewrite Rcompare_Gt. auto. apply F2R_gt_0. reflexivity. apply abs_B2R_lt_emax. apply valid_rnd_round_mode. apply generic_format_B2R. } destruct x as [ sx | sx | sx plx | sx mx ex Bx]; destruct y as [ sy | sy | sy ply | sy my ey By]; try discriminate. - apply ADDZERO; auto. - apply ADDZERO; auto. - apply ADDZERO; auto. - destruct z as [ sz | sz | sz plz | sz mz ez Bz]; try discriminate; unfold Bfma. + set (X := Float radix2 (cond_Zopp sx (Zpos mx)) ex). set (Y := Float radix2 (cond_Zopp sy (Zpos my)) ey). destruct (Fmult X Y) as [mr er] eqn:FRES. apply BINORM. unfold res. rewrite <- FRES, F2R_mult, Rplus_0_r. auto. + set (X := Float radix2 (cond_Zopp sx (Zpos mx)) ex). set (Y := Float radix2 (cond_Zopp sy (Zpos my)) ey). set (Z := Float radix2 (cond_Zopp sz (Zpos mz)) ez). destruct (Fplus (Fmult X Y) Z) as [mr er] eqn:FRES. apply BINORM. unfold res. rewrite <- FRES, F2R_plus, F2R_mult. auto. Qed. (** Division *) Definition Fdiv_core_binary m1 e1 m2 e2 := let d1 := Zdigits2 m1 in let d2 := Zdigits2 m2 in let e' := Z.min (fexp (d1 + e1 - (d2 + e2))) (e1 - e2) in let s := (e1 - e2 - e')%Z in let m' := match s with | Zpos _ => Z.shiftl m1 s | Z0 => m1 | Zneg _ => Z0 end in let '(q, r) := Zfast_div_eucl m' m2 in (q, e', new_location m2 r loc_Exact). Lemma Bdiv_correct_aux : forall m sx mx ex sy my ey, let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in let z := let '(mz, ez, lz) := Fdiv_core_binary (Zpos mx) ex (Zpos my) ey in binary_round_aux m (xorb sx sy) mz ez lz in valid_binary z = true /\ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x / y))) (bpow radix2 emax) then FF2R radix2 z = round radix2 fexp (round_mode m) (x / y) /\ is_finite_FF z = true /\ sign_FF z = xorb sx sy else z = binary_overflow m (xorb sx sy). Proof. intros m sx mx ex sy my ey. unfold Fdiv_core_binary. rewrite 2!Zdigits2_Zdigits. set (e' := Z.min _ _). generalize (Fdiv_core_correct radix2 (Zpos mx) ex (Zpos my) ey e' eq_refl eq_refl). unfold Fdiv_core. rewrite Zle_bool_true by apply Z.le_min_r. match goal with |- context [Zfast_div_eucl ?m _] => set (mx' := m) end. assert (mx' = Zpos mx * Zpower radix2 (ex - ey - e'))%Z as <-. { unfold mx'. destruct (ex - ey - e')%Z as [|p|p]. now rewrite Zmult_1_r. now rewrite Z.shiftl_mul_pow2. easy. } clearbody mx'. rewrite Zfast_div_eucl_correct. destruct Z.div_eucl as [q r]. intros Bz. assert (xorb sx sy = Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) * / F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey)) 0) as ->. { apply eq_sym. case sy ; simpl. change (Zneg my) with (Z.opp (Zpos my)). rewrite F2R_Zopp. rewrite <- Ropp_inv_permute. rewrite Ropp_mult_distr_r_reverse. case sx ; simpl. apply Rlt_bool_false. rewrite <- Ropp_mult_distr_l_reverse. apply Rmult_le_pos. rewrite <- F2R_opp. now apply F2R_ge_0. apply Rlt_le. apply Rinv_0_lt_compat. now apply F2R_gt_0. apply Rlt_bool_true. rewrite <- Ropp_0. apply Ropp_lt_contravar. apply Rmult_lt_0_compat. now apply F2R_gt_0. apply Rinv_0_lt_compat. now apply F2R_gt_0. apply Rgt_not_eq. now apply F2R_gt_0. case sx. apply Rlt_bool_true. rewrite F2R_Zopp. rewrite Ropp_mult_distr_l_reverse. rewrite <- Ropp_0. apply Ropp_lt_contravar. apply Rmult_lt_0_compat. now apply F2R_gt_0. apply Rinv_0_lt_compat. now apply F2R_gt_0. apply Rlt_bool_false. apply Rmult_le_pos. now apply F2R_ge_0. apply Rlt_le. apply Rinv_0_lt_compat. now apply F2R_gt_0. } unfold Rdiv. apply binary_round_aux_correct'. - apply Rmult_integral_contrapositive_currified. now apply F2R_neq_0 ; case sx. apply Rinv_neq_0_compat. now apply F2R_neq_0 ; case sy. - rewrite Rabs_mult, Rabs_Rinv. now rewrite <- 2!F2R_Zabs, 2!abs_cond_Zopp. now apply F2R_neq_0 ; case sy. - rewrite <- cexp_abs, Rabs_mult, Rabs_Rinv. rewrite 2!F2R_cond_Zopp, 2!abs_cond_Ropp, <- Rabs_Rinv. rewrite <- Rabs_mult, cexp_abs. apply Z.le_trans with (1 := Z.le_min_l _ _). apply FLT_exp_monotone. now apply mag_div_F2R. now apply F2R_neq_0. now apply F2R_neq_0 ; case sy. Qed. Definition Bdiv div_nan m x y := match x, y with | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (div_nan x y) | B754_infinity sx, B754_infinity sy => build_nan (div_nan x y) | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy) | B754_finite sx _ _ _, B754_infinity sy => B754_zero (xorb sx sy) | B754_infinity sx, B754_zero sy => B754_infinity (xorb sx sy) | B754_zero sx, B754_infinity sy => B754_zero (xorb sx sy) | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy) | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy) | B754_zero sx, B754_zero sy => build_nan (div_nan x y) | B754_finite sx mx ex _, B754_finite sy my ey _ => FF2B _ (proj1 (Bdiv_correct_aux m sx mx ex sy my ey)) end. Theorem Bdiv_correct : forall div_nan m x y, B2R y <> 0%R -> if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x / B2R y))) (bpow radix2 emax) then B2R (Bdiv div_nan m x y) = round radix2 fexp (round_mode m) (B2R x / B2R y) /\ is_finite (Bdiv div_nan m x y) = is_finite x /\ (is_nan (Bdiv div_nan m x y) = false -> Bsign (Bdiv div_nan m x y) = xorb (Bsign x) (Bsign y)) else B2FF (Bdiv div_nan m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)). Proof. intros div_nan m x [sy|sy|sy ply|sy my ey Hy] Zy ; try now elim Zy. revert x. unfold Rdiv. intros [sx|sx|sx plx Hx|sx mx ex Hx] ; try ( rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | auto with typeclass_instances ] ). simpl. case Bdiv_correct_aux. intros H1. unfold Rdiv. case Rlt_bool. intros (H2, (H3, H4)). split. now rewrite B2R_FF2B. split. now rewrite is_finite_FF2B. rewrite Bsign_FF2B. congruence. intros H2. now rewrite B2FF_FF2B. Qed. (** Square root *) Definition Fsqrt_core_binary m e := let d := Zdigits2 m in let e' := Z.min (fexp (Z.div2 (d + e + 1))) (Z.div2 e) in let s := (e - 2 * e')%Z in let m' := match s with | Zpos p => Z.shiftl m s | Z0 => m | Zneg _ => Z0 end in let (q, r) := Z.sqrtrem m' in let l := if Zeq_bool r 0 then loc_Exact else loc_Inexact (if Zle_bool r q then Lt else Gt) in (q, e', l). Lemma Bsqrt_correct_aux : forall m mx ex (Hx : bounded mx ex = true), let x := F2R (Float radix2 (Zpos mx) ex) in let z := let '(mz, ez, lz) := Fsqrt_core_binary (Zpos mx) ex in binary_round_aux m false mz ez lz in valid_binary z = true /\ FF2R radix2 z = round radix2 fexp (round_mode m) (sqrt x) /\ is_finite_FF z = true /\ sign_FF z = false. Proof with auto with typeclass_instances. intros m mx ex Hx. unfold Fsqrt_core_binary. rewrite Zdigits2_Zdigits. set (e' := Z.min _ _). assert (2 * e' <= ex)%Z as He. { assert (e' <= Z.div2 ex)%Z by apply Z.le_min_r. rewrite (Zdiv2_odd_eqn ex). destruct Z.odd ; lia. } generalize (Fsqrt_core_correct radix2 (Zpos mx) ex e' eq_refl He). unfold Fsqrt_core. set (mx' := match (ex - 2 * e')%Z with Z0 => _ | _ => _ end). assert (mx' = Zpos mx * Zpower radix2 (ex - 2 * e'))%Z as <-. { unfold mx'. destruct (ex - 2 * e')%Z as [|p|p]. now rewrite Zmult_1_r. now rewrite Z.shiftl_mul_pow2. easy. } clearbody mx'. destruct Z.sqrtrem as [mz r]. set (lz := if Zeq_bool r 0 then _ else _). clearbody lz. intros Bz. refine (_ (binary_round_aux_correct' m (sqrt (F2R (Float radix2 (Zpos mx) ex))) mz e' lz _ _ _)) ; cycle 1. now apply Rgt_not_eq, sqrt_lt_R0, F2R_gt_0. rewrite Rabs_pos_eq. exact Bz. apply sqrt_ge_0. apply Z.le_trans with (1 := Z.le_min_l _ _). apply FLT_exp_monotone. rewrite mag_sqrt_F2R by easy. apply Z.le_refl. rewrite Rlt_bool_false by apply sqrt_ge_0. rewrite Rlt_bool_true. easy. rewrite Rabs_pos_eq. refine (_ (relative_error_FLT_ex radix2 emin prec (prec_gt_0 prec) (round_mode m) (sqrt (F2R (Float radix2 (Zpos mx) ex))) _)). fold fexp. intros (eps, (Heps, Hr)). rewrite Hr. assert (Heps': (Rabs eps < 1)%R). apply Rlt_le_trans with (1 := Heps). fold (bpow radix2 0). apply bpow_le. generalize (prec_gt_0 prec). clear ; lia. apply Rsqr_incrst_0. 3: apply bpow_ge_0. rewrite Rsqr_mult. rewrite Rsqr_sqrt. 2: now apply F2R_ge_0. unfold Rsqr. apply Rmult_ge_0_gt_0_lt_compat. apply Rle_ge. apply Rle_0_sqr. apply bpow_gt_0. now apply bounded_lt_emax. apply Rlt_le_trans with 4%R. apply (Rsqr_incrst_1 _ 2). apply Rplus_lt_compat_l. apply (Rabs_lt_inv _ _ Heps'). rewrite <- (Rplus_opp_r 1). apply Rplus_le_compat_l. apply Rlt_le. apply (Rabs_lt_inv _ _ Heps'). now apply IZR_le. change 4%R with (bpow radix2 2). apply bpow_le. generalize (prec_gt_0 prec). clear -Hmax ; lia. apply Rmult_le_pos. apply sqrt_ge_0. rewrite <- (Rplus_opp_r 1). apply Rplus_le_compat_l. apply Rlt_le. apply (Rabs_lt_inv _ _ Heps'). rewrite Rabs_pos_eq. 2: apply sqrt_ge_0. apply Rsqr_incr_0. 2: apply bpow_ge_0. 2: apply sqrt_ge_0. rewrite Rsqr_sqrt. 2: now apply F2R_ge_0. apply Rle_trans with (bpow radix2 emin). unfold Rsqr. rewrite <- bpow_plus. apply bpow_le. unfold emin. clear -Hmax ; lia. apply generic_format_ge_bpow with fexp. intros. apply Z.le_max_r. now apply F2R_gt_0. apply generic_format_canonical. apply (canonical_canonical_mantissa false). apply (andb_prop _ _ Hx). apply round_ge_generic... apply generic_format_0. apply sqrt_ge_0. Qed. Definition Bsqrt sqrt_nan m x := match x with | B754_nan sx plx _ => build_nan (sqrt_nan x) | B754_infinity false => x | B754_infinity true => build_nan (sqrt_nan x) | B754_finite true _ _ _ => build_nan (sqrt_nan x) | B754_zero _ => x | B754_finite sx mx ex Hx => FF2B _ (proj1 (Bsqrt_correct_aux m mx ex Hx)) end. Theorem Bsqrt_correct : forall sqrt_nan m x, B2R (Bsqrt sqrt_nan m x) = round radix2 fexp (round_mode m) (sqrt (B2R x)) /\ is_finite (Bsqrt sqrt_nan m x) = match x with B754_zero _ => true | B754_finite false _ _ _ => true | _ => false end /\ (is_nan (Bsqrt sqrt_nan m x) = false -> Bsign (Bsqrt sqrt_nan m x) = Bsign x). Proof. intros sqrt_nan m [sx|[|]|sx plx Hplx|sx mx ex Hx] ; try ( simpl ; rewrite sqrt_0, round_0, ?B2R_build_nan, ?is_finite_build_nan, ?is_nan_build_nan ; intuition auto with typeclass_instances ; easy). simpl. case Bsqrt_correct_aux. intros H1 (H2, (H3, H4)). case sx. rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan. refine (conj _ (conj (refl_equal false) _)). apply sym_eq. unfold sqrt. case Rcase_abs. intros _. apply round_0. auto with typeclass_instances. intros H. elim Rge_not_lt with (1 := H). now apply F2R_lt_0. easy. split. now rewrite B2R_FF2B. split. now rewrite is_finite_FF2B. intros _. now rewrite Bsign_FF2B. Qed. (** A few values *) Definition Bone := FF2B _ (proj1 (binary_round_correct mode_NE false 1 0)). Theorem Bone_correct : B2R Bone = 1%R. Proof. unfold Bone; simpl. set (Hr := binary_round_correct _ _ _ _). unfold Hr; rewrite B2R_FF2B. destruct Hr as (Vz, Hr). revert Hr. fold emin; simpl. rewrite round_generic; [|now apply valid_rnd_N|]. - unfold F2R; simpl; rewrite Rmult_1_r. rewrite Rlt_bool_true. + now intros (Hr, Hr'); rewrite Hr. + rewrite Rabs_pos_eq; [|lra]. change 1%R with (bpow radix2 0); apply bpow_lt. unfold Prec_gt_0 in prec_gt_0_; lia. - apply generic_format_F2R; intros _. unfold cexp, fexp, FLT_exp, F2R; simpl; rewrite Rmult_1_r, mag_1. unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia. Qed. Lemma is_finite_Bone : is_finite Bone = true. Proof. generalize Bone_correct; case Bone; simpl; try (intros; reflexivity); intros; exfalso; lra. Qed. Lemma Bsign_Bone : Bsign Bone = false. Proof. generalize Bone_correct; case Bone; simpl; try (intros; exfalso; lra); intros s' m e _. case s'; [|now intro]; unfold F2R; simpl. intro H; exfalso; revert H; apply Rlt_not_eq, (Rle_lt_trans _ 0); [|lra]. rewrite <-Ropp_0, <-(Ropp_involutive (_ * _)); apply Ropp_le_contravar. rewrite Ropp_mult_distr_l; apply Rmult_le_pos; [|now apply bpow_ge_0]. unfold IZR; rewrite <-INR_IPR; generalize (INR_pos m); lra. Qed. Lemma Bmax_float_proof : valid_binary (F754_finite false (shift_pos (Z.to_pos prec) 1 - 1) (emax - prec)) = true. Proof. unfold valid_binary, bounded; apply andb_true_intro; split. - unfold canonical_mantissa; apply Zeq_bool_true. set (p := Z.pos (digits2_pos _)). assert (H : p = prec). { unfold p; rewrite Zpos_digits2_pos, Pos2Z.inj_sub. - rewrite shift_pos_correct, Z.mul_1_r. assert (P2pm1 : (0 <= 2 ^ prec - 1)%Z). { apply (Zplus_le_reg_r _ _ 1); ring_simplify. change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z). apply Zpower_le; unfold Prec_gt_0 in prec_gt_0_; lia. } apply Zdigits_unique; rewrite Z.pow_pos_fold, Z2Pos.id; [|exact prec_gt_0_]; simpl; split. + rewrite (Z.abs_eq _ P2pm1). replace prec with (prec - 1 + 1)%Z at 2 by ring. rewrite Zpower_plus; [| unfold Prec_gt_0 in prec_gt_0_; lia|lia]. simpl; unfold Z.pow_pos; simpl. assert (1 <= 2 ^ (prec - 1))%Z; [|lia]. change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z). apply Zpower_le; simpl; unfold Prec_gt_0 in prec_gt_0_; lia. + now rewrite Z.abs_eq; [lia|]. - change (_ < _)%positive with (Z.pos 1 < Z.pos (shift_pos (Z.to_pos prec) 1))%Z. rewrite shift_pos_correct, Z.mul_1_r, Z.pow_pos_fold. rewrite Z2Pos.id; [|exact prec_gt_0_]. change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z). apply Zpower_lt; unfold Prec_gt_0 in prec_gt_0_; lia. } unfold fexp, FLT_exp; rewrite H, Z.max_l; [ring|]. unfold Prec_gt_0 in prec_gt_0_; unfold emin; lia. - apply Zle_bool_true; unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia. Qed. Definition Bmax_float := FF2B _ Bmax_float_proof. (** Extraction/modification of mantissa/exponent *) Definition Bnormfr_mantissa x := match x with | B754_finite _ mx ex _ => if Z.eqb ex (-prec)%Z then Npos mx else 0%N | _ => 0%N end. Definition Bldexp mode f e := match f with | B754_finite sx mx ex _ => FF2B _ (proj1 (binary_round_correct mode sx mx (ex+e))) | _ => f end. Theorem Bldexp_correct : forall m (f : binary_float) e, if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R f * bpow radix2 e))) (bpow radix2 emax) then (B2R (Bldexp m f e) = round radix2 fexp (round_mode m) (B2R f * bpow radix2 e))%R /\ is_finite (Bldexp m f e) = is_finite f /\ Bsign (Bldexp m f e) = Bsign f else B2FF (Bldexp m f e) = binary_overflow m (Bsign f). Proof. intros m f e. case f. - intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode]. now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0]. - intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode]. now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0]. - intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode]. now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0]. - intros s mf ef Hmef. case (Rlt_bool_spec _ _); intro Hover. + unfold Bldexp; rewrite B2R_FF2B, is_finite_FF2B, Bsign_FF2B. simpl; unfold F2R; simpl; rewrite Rmult_assoc, <-bpow_plus. destruct (binary_round_correct m s mf (ef + e)) as (Hf, Hr). fold emin in Hr; simpl in Hr; rewrite Rlt_bool_true in Hr. * now destruct Hr as (Hr, (Hfr, Hsr)); rewrite Hr, Hfr, Hsr. * now revert Hover; unfold B2R, F2R; simpl; rewrite Rmult_assoc, bpow_plus. + unfold Bldexp; rewrite B2FF_FF2B; simpl. destruct (binary_round_correct m s mf (ef + e)) as (Hf, Hr). fold emin in Hr; simpl in Hr; rewrite Rlt_bool_false in Hr; [exact Hr|]. now revert Hover; unfold B2R, F2R; simpl; rewrite Rmult_assoc, bpow_plus. Qed. (** This hypothesis is needed to implement [Bfrexp] (otherwise, we have emin > - prec and [Bfrexp] cannot fit the mantissa in interval #[0.5, 1)#) *) Hypothesis Hemax : (3 <= emax)%Z. Definition Ffrexp_core_binary s m e := if (Z.to_pos prec <=? digits2_pos m)%positive then (F754_finite s m (-prec), (e + prec)%Z) else let d := (prec - Z.pos (digits2_pos m))%Z in (F754_finite s (shift_pos (Z.to_pos d) m) (-prec), (e + prec - d)%Z). Lemma Bfrexp_correct_aux : forall sx mx ex (Hx : bounded mx ex = true), let x := F2R (Float radix2 (cond_Zopp sx (Z.pos mx)) ex) in let z := fst (Ffrexp_core_binary sx mx ex) in let e := snd (Ffrexp_core_binary sx mx ex) in valid_binary z = true /\ (/2 <= Rabs (FF2R radix2 z) < 1)%R /\ (x = FF2R radix2 z * bpow radix2 e)%R. Proof. intros sx mx ex Bx. set (x := F2R _). set (z := fst _). set (e := snd _); simpl. assert (Dmx_le_prec : (Z.pos (digits2_pos mx) <= prec)%Z). { revert Bx; unfold bounded; rewrite Bool.andb_true_iff. unfold canonical_mantissa; rewrite <-Zeq_is_eq_bool; unfold fexp, FLT_exp. case (Z.max_spec (Z.pos (digits2_pos mx) + ex - prec) emin); lia. } assert (Dmx_le_prec' : (digits2_pos mx <= Z.to_pos prec)%positive). { change (_ <= _)%positive with (Z.pos (digits2_pos mx) <= Z.pos (Z.to_pos prec))%Z. now rewrite Z2Pos.id; [|now apply prec_gt_0_]. } unfold z, e, Ffrexp_core_binary. case (Pos.leb_spec _ _); simpl; intro Dmx. - unfold bounded, F2R; simpl. assert (Dmx' : digits2_pos mx = Z.to_pos prec). { now apply Pos.le_antisym. } assert (Dmx'' : Z.pos (digits2_pos mx) = prec). { now rewrite Dmx', Z2Pos.id; [|apply prec_gt_0_]. } split; [|split]. + apply andb_true_intro. split; [|apply Zle_bool_true; lia]. apply Zeq_bool_true; unfold fexp, FLT_exp. rewrite Dmx', Z2Pos.id; [|now apply prec_gt_0_]. rewrite Z.max_l; [ring|unfold emin; lia]. + rewrite Rabs_mult, (Rabs_pos_eq (bpow _ _)); [|now apply bpow_ge_0]. rewrite <-abs_IZR, abs_cond_Zopp; simpl; split. * apply (Rmult_le_reg_r (bpow radix2 prec)); [now apply bpow_gt_0|]. rewrite Rmult_assoc, <-bpow_plus, Z.add_opp_diag_l; simpl. rewrite Rmult_1_r. change (/ 2)%R with (bpow radix2 (- 1)); rewrite <-bpow_plus. rewrite <-Dmx'', Z.add_comm, Zpos_digits2_pos, Zdigits_mag; [|lia]. set (b := bpow _ _). rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia]. apply bpow_mag_le; apply IZR_neq; lia. * apply (Rmult_lt_reg_r (bpow radix2 prec)); [now apply bpow_gt_0|]. rewrite Rmult_assoc, <-bpow_plus, Z.add_opp_diag_l; simpl. rewrite Rmult_1_l, Rmult_1_r. rewrite <-Dmx'', Zpos_digits2_pos, Zdigits_mag; [|lia]. set (b := bpow _ _). rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia]. apply bpow_mag_gt; apply IZR_neq; lia. + unfold x, F2R; simpl; rewrite Rmult_assoc, <-bpow_plus. now replace (_ + _)%Z with ex by ring. - unfold bounded, F2R; simpl. assert (Dmx' : (Z.pos (digits2_pos mx) < prec)%Z). { now rewrite <-(Z2Pos.id prec); [|now apply prec_gt_0_]. } split; [|split]. + unfold bounded; apply andb_true_intro. split; [|apply Zle_bool_true; lia]. apply Zeq_bool_true; unfold fexp, FLT_exp. rewrite Zpos_digits2_pos, shift_pos_correct, Z.pow_pos_fold. rewrite Z2Pos.id; [|lia]. rewrite Z.mul_comm; change 2%Z with (radix2 : Z). rewrite Zdigits_mult_Zpower; [|lia|lia]. rewrite Zpos_digits2_pos; replace (_ - _)%Z with (- prec)%Z by ring. now rewrite Z.max_l; [|unfold emin; lia]. + rewrite Rabs_mult, (Rabs_pos_eq (bpow _ _)); [|now apply bpow_ge_0]. rewrite <-abs_IZR, abs_cond_Zopp; simpl. rewrite shift_pos_correct, mult_IZR. change (IZR (Z.pow_pos _ _)) with (bpow radix2 (Z.pos (Z.to_pos ((prec - Z.pos (digits2_pos mx)))))). rewrite Z2Pos.id; [|lia]. rewrite Rmult_comm, <-Rmult_assoc, <-bpow_plus. set (d := Z.pos (digits2_pos mx)). replace (_ + _)%Z with (- d)%Z by ring; split. * apply (Rmult_le_reg_l (bpow radix2 d)); [now apply bpow_gt_0|]. rewrite <-Rmult_assoc, <-bpow_plus, Z.add_opp_diag_r. rewrite Rmult_1_l. change (/ 2)%R with (bpow radix2 (- 1)); rewrite <-bpow_plus. rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia]. unfold d; rewrite Zpos_digits2_pos, Zdigits_mag; [|lia]. apply bpow_mag_le; apply IZR_neq; lia. * apply (Rmult_lt_reg_l (bpow radix2 d)); [now apply bpow_gt_0|]. rewrite <-Rmult_assoc, <-bpow_plus, Z.add_opp_diag_r. rewrite Rmult_1_l, Rmult_1_r. rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia]. unfold d; rewrite Zpos_digits2_pos, Zdigits_mag; [|lia]. apply bpow_mag_gt; apply IZR_neq; lia. + rewrite Rmult_assoc, <-bpow_plus, shift_pos_correct. rewrite IZR_cond_Zopp, mult_IZR, cond_Ropp_mult_r, <-IZR_cond_Zopp. change (IZR (Z.pow_pos _ _)) with (bpow radix2 (Z.pos (Z.to_pos (prec - Z.pos (digits2_pos mx))))). rewrite Z2Pos.id; [|lia]. rewrite Rmult_comm, <-Rmult_assoc, <-bpow_plus. now replace (_ + _)%Z with ex by ring; rewrite Rmult_comm. Qed. Definition Bfrexp f := match f with | B754_finite s m e H => let e' := snd (Ffrexp_core_binary s m e) in (FF2B _ (proj1 (Bfrexp_correct_aux s m e H)), e') | _ => (f, (-2*emax-prec)%Z) end. Theorem Bfrexp_correct : forall f, is_finite_strict f = true -> let x := B2R f in let z := fst (Bfrexp f) in let e := snd (Bfrexp f) in (/2 <= Rabs (B2R z) < 1)%R /\ (x = B2R z * bpow radix2 e)%R /\ e = mag radix2 x. Proof. intro f; case f; intro s; try discriminate; intros m e Hf _. generalize (Bfrexp_correct_aux s m e Hf). intros (_, (Hb, Heq)); simpl; rewrite B2R_FF2B. split; [now simpl|]; split; [now simpl|]. rewrite Heq, mag_mult_bpow. - apply (Z.add_reg_l (- (snd (Ffrexp_core_binary s m e)))). now ring_simplify; symmetry; apply mag_unique. - intro H; destruct Hb as (Hb, _); revert Hb; rewrite H, Rabs_R0; lra. Qed. (** Ulp *) Definition Bulp x := Bldexp mode_NE Bone (fexp (snd (Bfrexp x))). Theorem Bulp_correct : forall x, is_finite x = true -> B2R (Bulp x) = ulp radix2 fexp (B2R x) /\ is_finite (Bulp x) = true /\ Bsign (Bulp x) = false. Proof. intro x; case x. - intros s _; unfold Bulp. replace (fexp _) with emin. + generalize (Bldexp_correct mode_NE Bone emin). rewrite Bone_correct, Rmult_1_l, round_generic; [|now apply valid_rnd_N|apply generic_format_bpow; unfold fexp, FLT_exp; rewrite Z.max_r; unfold Prec_gt_0 in prec_gt_0_; lia]. rewrite Rlt_bool_true. * intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs. split; [|now split; [apply is_finite_Bone|apply Bsign_Bone]]. simpl; unfold ulp; rewrite Req_bool_true; [|reflexivity]. destruct (negligible_exp_FLT emin prec) as (n, (Hn, Hn')). change fexp with (FLT_exp emin prec); rewrite Hn. now unfold FLT_exp; rewrite Z.max_r; [|unfold Prec_gt_0 in prec_gt_0_; lia]. * rewrite Rabs_pos_eq; [|now apply bpow_ge_0]; apply bpow_lt. unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia. + simpl; change (fexp _) with (fexp (-2 * emax - prec)). unfold fexp, FLT_exp; rewrite Z.max_r; [reflexivity|]. unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia. - intro; discriminate. - intros s pl Hpl; discriminate. - intros s m e Hme _; unfold Bulp, ulp, cexp. set (f := B754_finite _ _ _ _). rewrite Req_bool_false. + destruct (Bfrexp_correct f (eq_refl _)) as (Hfr1, (Hfr2, Hfr3)). rewrite Hfr3. set (e' := fexp _). generalize (Bldexp_correct mode_NE Bone e'). rewrite Bone_correct, Rmult_1_l, round_generic; [|now apply valid_rnd_N|]. { rewrite Rlt_bool_true. - intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs. now split; [|split; [apply is_finite_Bone|apply Bsign_Bone]]. - rewrite Rabs_pos_eq; [|now apply bpow_ge_0]. unfold e', fexp, FLT_exp. case (Z.max_spec (mag radix2 (B2R f) - prec) emin) as [(_, Hm)|(_, Hm)]; rewrite Hm; apply bpow_lt; [now unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia|]. apply (Zplus_lt_reg_r _ _ prec); ring_simplify. assert (mag radix2 (B2R f) <= emax)%Z; [|now unfold Prec_gt_0 in prec_gt_0_; lia]. apply mag_le_bpow; [|now apply abs_B2R_lt_emax]. now unfold f, B2R; apply F2R_neq_0; case s. } apply generic_format_bpow, Z.max_lub. * unfold Prec_gt_0 in prec_gt_0_; lia. * apply Z.le_max_r. + now unfold f, B2R; apply F2R_neq_0; case s. Qed. (** Successor (and predecessor) *) Definition Bpred_pos pred_pos_nan x := match x with | B754_finite _ mx _ _ => let d := if (mx~0 =? shift_pos (Z.to_pos prec) 1)%positive then Bldexp mode_NE Bone (fexp (snd (Bfrexp x) - 1)) else Bulp x in Bminus (fun _ => pred_pos_nan) mode_NE x d | _ => x end. Theorem Bpred_pos_correct : forall pred_pos_nan x, (0 < B2R x)%R -> B2R (Bpred_pos pred_pos_nan x) = pred_pos radix2 fexp (B2R x) /\ is_finite (Bpred_pos pred_pos_nan x) = true /\ Bsign (Bpred_pos pred_pos_nan x) = false. Proof. intros pred_pos_nan x. generalize (Bfrexp_correct x). case x. - simpl; intros s _ Bx; exfalso; apply (Rlt_irrefl _ Bx). - simpl; intros s _ Bx; exfalso; apply (Rlt_irrefl _ Bx). - simpl; intros s pl Hpl _ Bx; exfalso; apply (Rlt_irrefl _ Bx). - intros sx mx ex Hmex Hfrexpx Px. assert (Hsx : sx = false). { revert Px; case sx; unfold B2R, F2R; simpl; [|now intro]. intro Px; exfalso; revert Px; apply Rle_not_lt. rewrite <-(Rmult_0_l (bpow radix2 ex)). apply Rmult_le_compat_r; [apply bpow_ge_0|apply IZR_le; lia]. } clear Px; rewrite Hsx in Hfrexpx |- *; clear Hsx sx. specialize (Hfrexpx (eq_refl _)). simpl in Hfrexpx; rewrite B2R_FF2B in Hfrexpx. destruct Hfrexpx as (Hfrexpx_bounds, (Hfrexpx_eq, Hfrexpx_exp)). unfold Bpred_pos, Bfrexp. simpl (snd (_, snd _)). rewrite Hfrexpx_exp. set (x' := B754_finite _ _ _ _). set (xr := F2R _). assert (Nzxr : xr <> 0%R). { unfold xr, F2R; simpl. rewrite <-(Rmult_0_l (bpow radix2 ex)); intro H. apply Rmult_eq_reg_r in H; [|apply Rgt_not_eq, bpow_gt_0]. apply eq_IZR in H; lia. } assert (Hulp := Bulp_correct x'). specialize (Hulp (eq_refl _)). assert (Hldexp := Bldexp_correct mode_NE Bone (fexp (mag radix2 xr - 1))). rewrite Bone_correct, Rmult_1_l in Hldexp. assert (Fbpowxr : generic_format radix2 fexp (bpow radix2 (fexp (mag radix2 xr - 1)))). { apply generic_format_bpow, Z.max_lub. - unfold Prec_gt_0 in prec_gt_0_; lia. - apply Z.le_max_r. } assert (H : Rlt_bool (Rabs (round radix2 fexp (round_mode mode_NE) (bpow radix2 (fexp (mag radix2 xr - 1))))) (bpow radix2 emax) = true); [|rewrite H in Hldexp; clear H]. { apply Rlt_bool_true; rewrite round_generic; [|apply valid_rnd_round_mode|apply Fbpowxr]. rewrite Rabs_pos_eq; [|apply bpow_ge_0]; apply bpow_lt. apply Z.max_lub_lt; [|unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia]. apply (Zplus_lt_reg_r _ _ (prec + 1)); ring_simplify. rewrite Z.add_1_r; apply Zle_lt_succ, mag_le_bpow. - exact Nzxr. - apply (Rlt_le_trans _ (bpow radix2 emax)). + change xr with (B2R x'); apply abs_B2R_lt_emax. + apply bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia. } set (d := if (mx~0 =? _)%positive then _ else _). set (minus_nan := fun _ => _). assert (Hminus := Bminus_correct minus_nan mode_NE x' d (eq_refl _)). assert (Fd : is_finite d = true). { unfold d; case (_ =? _)%positive. - now rewrite (proj1 (proj2 Hldexp)), is_finite_Bone. - now rewrite (proj1 (proj2 Hulp)). } specialize (Hminus Fd). assert (Px : (0 <= B2R x')%R). { unfold B2R, x', F2R; simpl. now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. } assert (Pd : (0 <= B2R d)%R). { unfold d; case (_ =? _)%positive. - rewrite (proj1 Hldexp). now rewrite round_generic; [apply bpow_ge_0|apply valid_rnd_N|]. - rewrite (proj1 Hulp); apply ulp_ge_0. } assert (Hdlex : (B2R d <= B2R x')%R). { unfold d; case (_ =? _)%positive. - rewrite (proj1 Hldexp). rewrite round_generic; [|now apply valid_rnd_N|now simpl]. apply (Rle_trans _ (bpow radix2 (mag radix2 xr - 1))). + apply bpow_le, Z.max_lub. * unfold Prec_gt_0 in prec_gt_0_; lia. * apply (Zplus_le_reg_r _ _ 1); ring_simplify. apply mag_ge_bpow. replace (_ - 1)%Z with emin by ring. now change xr with (B2R x'); apply abs_B2R_ge_emin. + rewrite <-(Rabs_pos_eq _ Px). now change xr with (B2R x'); apply bpow_mag_le. - rewrite (proj1 Hulp); apply ulp_le_id. + assert (B2R x' <> 0%R); [exact Nzxr|lra]. + apply generic_format_B2R. } assert (H : Rlt_bool (Rabs (round radix2 fexp (round_mode mode_NE) (B2R x' - B2R d))) (bpow radix2 emax) = true); [|rewrite H in Hminus; clear H]. { apply Rlt_bool_true. rewrite <-round_NE_abs; [|now apply FLT_exp_valid]. rewrite Rabs_pos_eq; [|lra]. apply (Rle_lt_trans _ (B2R x')). - apply round_le_generic; [now apply FLT_exp_valid|now apply valid_rnd_N| |lra]. apply generic_format_B2R. - apply (Rle_lt_trans _ _ _ (Rle_abs _)), abs_B2R_lt_emax. } rewrite (proj1 Hminus). rewrite (proj1 (proj2 Hminus)). rewrite (proj2 (proj2 Hminus)). split; [|split; [reflexivity|now case (Rcompare_spec _ _); [lra| |]]]. unfold pred_pos, d. case (Pos.eqb_spec _ _); intro Hd; case (Req_bool_spec _ _); intro Hpred. + rewrite (proj1 Hldexp). rewrite (round_generic _ _ _ _ Fbpowxr). change xr with (B2R x'). replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')). * rewrite round_generic; [reflexivity|now apply valid_rnd_N|]. apply generic_format_pred_pos; [now apply FLT_exp_valid|apply generic_format_B2R|]. change xr with (B2R x') in Nzxr; lra. * now unfold pred_pos; rewrite Req_bool_true. + exfalso; apply Hpred. assert (Hmx : IZR (Z.pos mx) = bpow radix2 (prec - 1)). { apply (Rmult_eq_reg_l 2); [|lra]; rewrite <-mult_IZR. change (2 * Z.pos mx)%Z with (Z.pos mx~0); rewrite Hd. rewrite shift_pos_correct, Z.mul_1_r. change (IZR (Z.pow_pos _ _)) with (bpow radix2 (Z.pos (Z.to_pos prec))). rewrite Z2Pos.id; [|exact prec_gt_0_]. change 2%R with (bpow radix2 1); rewrite <-bpow_plus. f_equal; ring. } unfold x' at 1; unfold B2R at 1; unfold F2R; simpl. rewrite Hmx, <-bpow_plus; f_equal. apply (Z.add_reg_l 1); ring_simplify; symmetry; apply mag_unique_pos. unfold F2R; simpl; rewrite Hmx, <-bpow_plus; split. * right; f_equal; ring. * apply bpow_lt; lia. + rewrite (proj1 Hulp). assert (H : ulp radix2 fexp (B2R x') = bpow radix2 (fexp (mag radix2 (B2R x') - 1))); [|rewrite H; clear H]. { unfold ulp; rewrite Req_bool_false; [|now simpl]. unfold cexp; f_equal. assert (H : (mag radix2 (B2R x') <= emin + prec)%Z). { assert (Hcm : canonical_mantissa mx ex = true). { now generalize Hmex; unfold bounded; rewrite Bool.andb_true_iff. } apply (canonical_canonical_mantissa false) in Hcm. revert Hcm; fold emin; unfold canonical, cexp; simpl. change (F2R _) with (B2R x'); intro Hex. apply Z.nlt_ge; intro H'; apply Hd. apply Pos2Z.inj_pos; rewrite shift_pos_correct, Z.mul_1_r. apply eq_IZR; change (IZR (Z.pow_pos _ _)) with (bpow radix2 (Z.pos (Z.to_pos prec))). rewrite Z2Pos.id; [|exact prec_gt_0_]. change (Z.pos mx~0) with (2 * Z.pos mx)%Z. rewrite Z.mul_comm, mult_IZR. apply (Rmult_eq_reg_r (bpow radix2 (ex - 1))); [|apply Rgt_not_eq, bpow_gt_0]. change 2%R with (bpow radix2 1); rewrite Rmult_assoc, <-!bpow_plus. replace (1 + _)%Z with ex by ring. unfold B2R at 1, F2R in Hpred; simpl in Hpred; rewrite Hpred. change (F2R _) with (B2R x'); rewrite Hex. unfold fexp, FLT_exp; rewrite Z.max_l; [f_equal; ring|lia]. } now unfold fexp, FLT_exp; do 2 (rewrite Z.max_r; [|lia]). } replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')). * rewrite round_generic; [reflexivity|apply valid_rnd_N|]. apply generic_format_pred_pos; [now apply FLT_exp_valid| |change xr with (B2R x') in Nzxr; lra]. apply generic_format_B2R. * now unfold pred_pos; rewrite Req_bool_true. + rewrite (proj1 Hulp). replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')). * rewrite round_generic; [reflexivity|now apply valid_rnd_N|]. apply generic_format_pred_pos; [now apply FLT_exp_valid|apply generic_format_B2R|]. change xr with (B2R x') in Nzxr; lra. * now unfold pred_pos; rewrite Req_bool_false. Qed. Definition Bsucc succ_nan x := match x with | B754_zero _ => Bldexp mode_NE Bone emin | B754_infinity false => x | B754_infinity true => Bopp succ_nan Bmax_float | B754_nan _ _ _ => build_nan (succ_nan x) | B754_finite false _ _ _ => Bplus (fun _ => succ_nan) mode_NE x (Bulp x) | B754_finite true _ _ _ => Bopp succ_nan (Bpred_pos succ_nan (Bopp succ_nan x)) end. Lemma Bsucc_correct : forall succ_nan x, is_finite x = true -> if Rlt_bool (succ radix2 fexp (B2R x)) (bpow radix2 emax) then B2R (Bsucc succ_nan x) = succ radix2 fexp (B2R x) /\ is_finite (Bsucc succ_nan x) = true /\ (Bsign (Bsucc succ_nan x) = Bsign x && is_finite_strict x)%bool else B2FF (Bsucc succ_nan x) = F754_infinity false. Proof. assert (Hsucc : succ radix2 fexp 0 = bpow radix2 emin). { unfold succ; rewrite Rle_bool_true; [|now right]; rewrite Rplus_0_l. unfold ulp; rewrite Req_bool_true; [|now simpl]. destruct (negligible_exp_FLT emin prec) as (n, (Hne, Hn)). now unfold fexp; rewrite Hne; unfold FLT_exp; rewrite Z.max_r; [|unfold Prec_gt_0 in prec_gt_0_; lia]. } intros succ_nan [s|s|s pl Hpl|sx mx ex Hmex]; try discriminate; intros _. - generalize (Bldexp_correct mode_NE Bone emin); unfold Bsucc; simpl. assert (Hbemin : round radix2 fexp ZnearestE (bpow radix2 emin) = bpow radix2 emin). { rewrite round_generic; [reflexivity|apply valid_rnd_N|]. apply generic_format_bpow. unfold fexp, FLT_exp; rewrite Z.max_r; [now simpl|]. unfold Prec_gt_0 in prec_gt_0_; lia. } rewrite Hsucc, Rlt_bool_true. + intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs. rewrite Bone_correct, Rmult_1_l, is_finite_Bone, Bsign_Bone. case Rlt_bool_spec; intro Hover. * now rewrite Bool.andb_false_r. * exfalso; revert Hover; apply Rlt_not_le, bpow_lt. unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia. + rewrite Bone_correct, Rmult_1_l, Hbemin, Rabs_pos_eq; [|apply bpow_ge_0]. apply bpow_lt; unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia. - unfold Bsucc; case sx. + case Rlt_bool_spec; intro Hover. * rewrite B2R_Bopp; simpl (Bopp _ (B754_finite _ _ _ _)). rewrite is_finite_Bopp. set (ox := B754_finite false mx ex Hmex). assert (Hpred := Bpred_pos_correct succ_nan ox). assert (Hox : (0 < B2R ox)%R); [|specialize (Hpred Hox); clear Hox]. { now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0]. } rewrite (proj1 Hpred), (proj1 (proj2 Hpred)). unfold succ; rewrite Rle_bool_false; [split; [|split]|]. { now unfold B2R, F2R, ox; simpl; rewrite Ropp_mult_distr_l, <-opp_IZR. } { now simpl. } { simpl (Bsign (B754_finite _ _ _ _)); simpl (true && _)%bool. rewrite Bsign_Bopp, (proj2 (proj2 Hpred)); [now simpl|]. now destruct Hpred as (_, (H, _)); revert H; case (Bpred_pos _ _). } unfold B2R, F2R; simpl; change (Z.neg mx) with (- Z.pos mx)%Z. rewrite opp_IZR, <-Ropp_mult_distr_l, <-Ropp_0; apply Ropp_lt_contravar. now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0]. * exfalso; revert Hover; apply Rlt_not_le. apply (Rle_lt_trans _ (succ radix2 fexp 0)). { apply succ_le; [now apply FLT_exp_valid|apply generic_format_B2R| apply generic_format_0|]. unfold B2R, F2R; simpl; change (Z.neg mx) with (- Z.pos mx)%Z. rewrite opp_IZR, <-Ropp_mult_distr_l, <-Ropp_0; apply Ropp_le_contravar. now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. } rewrite Hsucc; apply bpow_lt. unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia. + set (x := B754_finite _ _ _ _). set (plus_nan := fun _ => succ_nan). assert (Hulp := Bulp_correct x (eq_refl _)). assert (Hplus := Bplus_correct plus_nan mode_NE x (Bulp x) (eq_refl _)). rewrite (proj1 (proj2 Hulp)) in Hplus; specialize (Hplus (eq_refl _)). assert (Px : (0 <= B2R x)%R). { now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. } assert (Hsucc' : (succ radix2 fexp (B2R x) = B2R x + ulp radix2 fexp (B2R x))%R). { now unfold succ; rewrite (Rle_bool_true _ _ Px). } rewrite (proj1 Hulp), <- Hsucc' in Hplus. rewrite round_generic in Hplus; [|apply valid_rnd_N| now apply generic_format_succ; [apply FLT_exp_valid|apply generic_format_B2R]]. rewrite Rabs_pos_eq in Hplus; [|apply (Rle_trans _ _ _ Px), succ_ge_id]. revert Hplus; case Rlt_bool_spec; intros Hover Hplus. * split; [now simpl|split; [now simpl|]]. rewrite (proj2 (proj2 Hplus)); case Rcompare_spec. { intro H; exfalso; revert H. apply Rle_not_lt, (Rle_trans _ _ _ Px), succ_ge_id. } { intro H; exfalso; revert H; apply Rgt_not_eq, Rlt_gt. apply (Rlt_le_trans _ (B2R x)); [|apply succ_ge_id]. now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0]. } now simpl. * now rewrite (proj1 Hplus). Qed. Definition Bpred pred_nan x := Bopp pred_nan (Bsucc pred_nan (Bopp pred_nan x)). Lemma Bpred_correct : forall pred_nan x, is_finite x = true -> if Rlt_bool (- bpow radix2 emax) (pred radix2 fexp (B2R x)) then B2R (Bpred pred_nan x) = pred radix2 fexp (B2R x) /\ is_finite (Bpred pred_nan x) = true /\ (Bsign (Bpred pred_nan x) = Bsign x || negb (is_finite_strict x))%bool else B2FF (Bpred pred_nan x) = F754_infinity true. Proof. intros pred_nan x Fx. assert (Fox : is_finite (Bopp pred_nan x) = true). { now rewrite is_finite_Bopp. } rewrite <-(Ropp_involutive (B2R x)), <-(B2R_Bopp pred_nan). rewrite pred_opp, Rlt_bool_opp. generalize (Bsucc_correct pred_nan _ Fox). case (Rlt_bool _ _). - intros (HR, (HF, HS)); unfold Bpred. rewrite B2R_Bopp, HR, is_finite_Bopp. rewrite <-(Bool.negb_involutive (Bsign x)), <-Bool.negb_andb. split; [reflexivity|split; [exact HF|]]. replace (is_finite_strict x) with (is_finite_strict (Bopp pred_nan x)); [|now case x; try easy; intros s pl Hpl; simpl; rewrite is_finite_strict_build_nan]. rewrite Bsign_Bopp, <-(Bsign_Bopp pred_nan x), HS. + now simpl. + now revert Fx; case x. + now revert HF; case (Bsucc _ _). - now unfold Bpred; case (Bsucc _ _); intro s; case s. Qed. End Binary.