(** This file is part of the Flocq formalization of floating-point arithmetic in Coq: http://flocq.gforge.inria.fr/ Copyright (C) 2010-2018 Sylvie Boldo #
# Copyright (C) 2010-2018 Guillaume Melquiond This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details. *) (** * Sterbenz conditions for exact subtraction *) Require Import Raux Defs Generic_fmt Operations. Section Fprop_Sterbenz. Variable beta : radix. Notation bpow e := (bpow beta e). Variable fexp : Z -> Z. Context { valid_exp : Valid_exp fexp }. Context { monotone_exp : Monotone_exp fexp }. Notation format := (generic_format beta fexp). Theorem generic_format_plus : forall x y, format x -> format y -> (Rabs (x + y) <= bpow (Z.min (mag beta x) (mag beta y)))%R -> format (x + y)%R. Proof. intros x y Fx Fy Hxy. destruct (Req_dec (x + y) 0) as [Zxy|Zxy]. rewrite Zxy. apply generic_format_0. destruct (Req_dec x R0) as [Zx|Zx]. now rewrite Zx, Rplus_0_l. destruct (Req_dec y R0) as [Zy|Zy]. now rewrite Zy, Rplus_0_r. destruct Hxy as [Hxy|Hxy]. revert Hxy. destruct (mag beta x) as (ex, Ex). simpl. specialize (Ex Zx). destruct (mag beta y) as (ey, Ey). simpl. specialize (Ey Zy). intros Hxy. set (fx := Float beta (Ztrunc (scaled_mantissa beta fexp x)) (fexp ex)). assert (Hx: x = F2R fx). rewrite Fx at 1. unfold cexp. now rewrite mag_unique with (1 := Ex). set (fy := Float beta (Ztrunc (scaled_mantissa beta fexp y)) (fexp ey)). assert (Hy: y = F2R fy). rewrite Fy at 1. unfold cexp. now rewrite mag_unique with (1 := Ey). rewrite Hx, Hy. rewrite <- F2R_plus. apply generic_format_F2R. intros _. case_eq (Fplus fx fy). intros mxy exy Pxy; simpl. rewrite <- Pxy, F2R_plus, <- Hx, <- Hy. unfold cexp. replace exy with (fexp (Z.min ex ey)). apply monotone_exp. now apply mag_le_bpow. replace exy with (Fexp (Fplus fx fy)) by exact (f_equal Fexp Pxy). rewrite Fexp_Fplus. simpl. clear -monotone_exp. apply sym_eq. destruct (Zmin_spec ex ey) as [(H1,H2)|(H1,H2)] ; rewrite H2. apply Z.min_l. now apply monotone_exp. apply Z.min_r. apply monotone_exp. apply Zlt_le_weak. now apply Z.gt_lt. apply generic_format_abs_inv. rewrite Hxy. apply generic_format_bpow. apply valid_exp. case (Zmin_spec (mag beta x) (mag beta y)); intros (H1,H2); rewrite H2; now apply mag_generic_gt. Qed. Theorem generic_format_plus_weak : forall x y, format x -> format y -> (Rabs (x + y) <= Rmin (Rabs x) (Rabs y))%R -> format (x + y)%R. Proof. intros x y Fx Fy Hxy. destruct (Req_dec x R0) as [Zx|Zx]. now rewrite Zx, Rplus_0_l. destruct (Req_dec y R0) as [Zy|Zy]. now rewrite Zy, Rplus_0_r. apply generic_format_plus ; try assumption. apply Rle_trans with (1 := Hxy). unfold Rmin. destruct (Rle_dec (Rabs x) (Rabs y)) as [Hxy'|Hxy']. rewrite Z.min_l. destruct (mag beta x) as (ex, Hx). apply Rlt_le; now apply Hx. now apply mag_le_abs. rewrite Z.min_r. destruct (mag beta y) as (ex, Hy). apply Rlt_le; now apply Hy. apply mag_le_abs. exact Zy. apply Rlt_le. now apply Rnot_le_lt. Qed. Lemma sterbenz_aux : forall x y, format x -> format y -> (y <= x <= 2 * y)%R -> format (x - y)%R. Proof. intros x y Hx Hy (Hxy1, Hxy2). unfold Rminus. apply generic_format_plus_weak. exact Hx. now apply generic_format_opp. rewrite Rabs_pos_eq. rewrite Rabs_Ropp. rewrite Rmin_comm. assert (Hy0: (0 <= y)%R). apply Rplus_le_reg_r with y. apply Rle_trans with x. now rewrite Rplus_0_l. now replace (y + y)%R with (2 * y)%R by ring. rewrite Rabs_pos_eq with (1 := Hy0). rewrite Rabs_pos_eq. unfold Rmin. destruct (Rle_dec y x) as [Hyx|Hyx]. apply Rplus_le_reg_r with y. now ring_simplify. now elim Hyx. now apply Rle_trans with y. now apply Rle_0_minus. Qed. Theorem sterbenz : forall x y, format x -> format y -> (y / 2 <= x <= 2 * y)%R -> format (x - y)%R. Proof. intros x y Hx Hy (Hxy1, Hxy2). destruct (Rle_or_lt x y) as [Hxy|Hxy]. rewrite <- Ropp_minus_distr. apply generic_format_opp. apply sterbenz_aux ; try easy. split. exact Hxy. apply Rcompare_not_Lt_inv. rewrite <- Rcompare_half_r. now apply Rcompare_not_Lt. apply sterbenz_aux ; try easy. split. now apply Rlt_le. exact Hxy2. Qed. End Fprop_Sterbenz.