(* *************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Sylvain Boulmé Grenoble-INP, VERIMAG *) (* Xavier Leroy INRIA Paris-Rocquencourt *) (* David Monniaux CNRS, VERIMAG *) (* Cyril Six Kalray *) (* *) (* Copyright Kalray. Copyright VERIMAG. All rights reserved. *) (* This file is distributed under the terms of the INRIA *) (* Non-Commercial License Agreement. *) (* *) (* *************************************************************) (** Operators and addressing modes. The abstract syntax and dynamic semantics for the CminorSel, RTL, LTL and Mach languages depend on the following types, defined in this library: - [condition]: boolean conditions for conditional branches; - [operation]: arithmetic and logical operations; - [addressing]: addressing modes for load and store operations. These types are processor-specific and correspond roughly to what the processor can compute in one instruction. In other terms, these types reflect the state of the program after instruction selection. For a processor-independent set of operations, see the abstract syntax and dynamic semantics of the Cminor language. *) Require Import BoolEqual Coqlib. Require Import AST Integers Floats. Require Import Values ExtValues Memory Globalenvs Events. Set Implicit Arguments. (** Conditions (boolean-valued operators). *) Inductive condition : Type := | Ccomp (c: comparison) (**r signed integer comparison *) | Ccompu (c: comparison) (**r unsigned integer comparison *) | Ccompimm (c: comparison) (n: int) (**r signed integer comparison with a constant *) | Ccompuimm (c: comparison) (n: int) (**r unsigned integer comparison with a constant *) | Ccompl (c: comparison) (**r signed 64-bit integer comparison *) | Ccomplu (c: comparison) (**r unsigned 64-bit integer comparison *) | Ccomplimm (c: comparison) (n: int64) (**r signed 64-bit integer comparison with a constant *) | Ccompluimm (c: comparison) (n: int64) (**r unsigned 64-bit integer comparison with a constant *) | Ccompf (c: comparison) (**r 64-bit floating-point comparison *) | Cnotcompf (c: comparison) (**r negation of a floating-point comparison *) | Ccompfs (c: comparison) (**r 32-bit floating-point comparison *) | Cnotcompfs (c: comparison). (**r negation of a floating-point comparison *) Inductive condition0 : Type := | Ccomp0 (c: comparison) (**r signed integer comparison with 0 *) | Ccompu0 (c: comparison) (**r unsigned integer comparison with 0 *) | Ccompl0 (c: comparison) (**r signed 64-bit integer comparison with 0 *) | Ccomplu0 (c: comparison). (**r unsigned 64-bit integer comparison with 0 *) Definition arg_type_of_condition0 (cond: condition0) := match cond with | Ccomp0 _ | Ccompu0 _ => Tint | Ccompl0 _ | Ccomplu0 _ => Tlong end. (** Arithmetic and logical operations. In the descriptions, [rd] is the result of the operation and [r1], [r2], etc, are the arguments. *) Inductive operation : Type := | Omove (**r [rd = r1] *) | Ointconst (n: int) (**r [rd] is set to the given integer constant *) | Olongconst (n: int64) (**r [rd] is set to the given integer constant *) | Ofloatconst (n: float) (**r [rd] is set to the given float constant *) | Osingleconst (n: float32)(**r [rd] is set to the given float constant *) | Oaddrsymbol (id: ident) (ofs: ptrofs) (**r [rd] is set to the address of the symbol plus the given offset *) | Oaddrstack (ofs: ptrofs) (**r [rd] is set to the stack pointer plus the given offset *) (*c 32-bit integer arithmetic: *) | Ocast8signed (**r [rd] is 8-bit sign extension of [r1] *) | Ocast16signed (**r [rd] is 16-bit sign extension of [r1] *) | Oadd (**r [rd = r1 + r2] *) | Oaddimm (n: int) (**r [rd = r1 + n] *) | Oaddx (shift: shift1_4) (**r [rd = r1 << shift + r2] *) | Oaddximm (shift: shift1_4) (n: int) (**r [rd = r1 << shift + n] *) | Oneg (**r [rd = - r1] *) | Osub (**r [rd = r1 - r2] *) | Orevsubimm (n: int) (**r [rd = n - r1] *) | Orevsubx (shift: shift1_4) (**r [rd = r2 -r1 << shift] *) | Orevsubximm (shift: shift1_4) (n: int) (**r [rd = n -r1 << shift] *) | Omul (**r [rd = r1 * r2] *) | Omulimm (n: int) (**r [rd = r1 * n] *) | Omulhs (**r [rd = high part of r1 * r2, signed] *) | Omulhu (**r [rd = high part of r1 * r2, unsigned] *) | Odiv (**r [rd = r1 / r2] (signed) *) | Odivu (**r [rd = r1 / r2] (unsigned) *) | Omod (**r [rd = r1 % r2] (signed) *) | Omodu (**r [rd = r1 % r2] (unsigned) *) | Oand (**r [rd = r1 & r2] *) | Oandimm (n: int) (**r [rd = r1 & n] *) | Onand (**r [rd = ~(r1 & r2)] *) | Onandimm (n: int) (**r [rd = ~(r1 & n)] *) | Oor (**r [rd = r1 | r2] *) | Oorimm (n: int) (**r [rd = r1 | n] *) | Onor (**r [rd = ~(r1 | r2)] *) | Onorimm (n: int) (**r [rd = ~(r1 | n)] *) | Oxor (**r [rd = r1 ^ r2] *) | Oxorimm (n: int) (**r [rd = r1 ^ n] *) | Onxor (**r [rd = ~(r1 ^ r2)] *) | Onxorimm (n: int) (**r [rd = ~(r1 ^ n)] *) | Onot (**r [rd = ~r1] *) | Oandn (**r [rd = (~r1) & r2] *) | Oandnimm (n: int) (**r [rd = (~r1) & n] *) | Oorn (**r [rd = (~r1) | r2] *) | Oornimm (n: int) (**r [rd = (~r1) | n] *) | Oshl (**r [rd = r1 << r2] *) | Oshlimm (n: int) (**r [rd = r1 << n] *) | Oshr (**r [rd = r1 >>s r2] (signed) *) | Oshrimm (n: int) (**r [rd = r1 >>s n] (signed) *) | Oshru (**r [rd = r1 >>u r2] (unsigned) *) | Oshruimm (n: int) (**r [rd = r1 >>x n] (unsigned) *) | Oshrximm (n: int) (**r [rd = r1 / 2^n] (signed) *) | Ororimm (n: int) (**r rotate right immediate *) | Omadd (**r [rd = rd + r1 * r2] *) | Omaddimm (n: int) (**r [rd = rd + r1 * imm] *) | Omsub (**r [rd = rd - r1 * r2] *) (*c 64-bit integer arithmetic: *) | Omakelong (**r [rd = r1 << 32 | r2] *) | Olowlong (**r [rd = low-word(r1)] *) | Ohighlong (**r [rd = high-word(r1)] *) | Ocast32signed (**r [rd] is 32-bit sign extension of [r1] *) | Ocast32unsigned (**r [rd] is 32-bit zero extension of [r1] *) | Oaddl (**r [rd = r1 + r2] *) | Oaddlimm (n: int64) (**r [rd = r1 + n] *) | Oaddxl (shift: shift1_4) (**r [rd = r1 << shift + r2] *) | Oaddxlimm (shift: shift1_4) (n: int64) (**r [rd = r1 << shift + n] *) | Orevsublimm (n: int64) (**r [rd = n - r1] *) | Orevsubxl (shift: shift1_4) (**r [rd = r2 -r1 << shift] *) | Orevsubxlimm (shift: shift1_4) (n: int64) (**r [rd = n -r1 << shift] *) | Onegl (**r [rd = - r1] *) | Osubl (**r [rd = r1 - r2] *) | Omull (**r [rd = r1 * r2] *) | Omullimm (n: int64) (**r [rd = r1 * n] *) | Omullhs (**r [rd = high part of r1 * r2, signed] *) | Omullhu (**r [rd = high part of r1 * r2, unsigned] *) | Odivl (**r [rd = r1 / r2] (signed) *) | Odivlu (**r [rd = r1 / r2] (unsigned) *) | Omodl (**r [rd = r1 % r2] (signed) *) | Omodlu (**r [rd = r1 % r2] (unsigned) *) | Oandl (**r [rd = r1 & r2] *) | Oandlimm (n: int64) (**r [rd = r1 & n] *) | Onandl (**r [rd = ~(r1 & r2)] *) | Onandlimm (n: int64) (**r [rd = ~(r1 & n)] *) | Oorl (**r [rd = r1 | r2] *) | Oorlimm (n: int64) (**r [rd = r1 | n] *) | Onorl (**r [rd = ~(r1 | r2)] *) | Onorlimm (n: int64) (**r [rd = ~(r1 | n)] *) | Oxorl (**r [rd = r1 ^ r2] *) | Oxorlimm (n: int64) (**r [rd = r1 ^ n] *) | Onxorl (**r [rd = ~(r1 ^ r2)] *) | Onxorlimm (n: int64) (**r [rd = ~(r1 ^ n)] *) | Onotl (**r [rd = ~r1] *) | Oandnl (**r [rd = (~r1) & r2] *) | Oandnlimm (n: int64) (**r [rd = (~r1) & n] *) | Oornl (**r [rd = (~r1) | r2] *) | Oornlimm (n: int64) (**r [rd = (~r1) | n] *) | Oshll (**r [rd = r1 << r2] *) | Oshllimm (n: int) (**r [rd = r1 << n] *) | Oshrl (**r [rd = r1 >> r2] (signed) *) | Oshrlimm (n: int) (**r [rd = r1 >> n] (signed) *) | Oshrlu (**r [rd = r1 >> r2] (unsigned) *) | Oshrluimm (n: int) (**r [rd = r1 >> n] (unsigned) *) | Oshrxlimm (n: int) (**r [rd = r1 / 2^n] (signed) *) | Omaddl (**r [rd = rd + r1 * r2] *) | Omaddlimm (n: int64) (**r [rd = rd + r1 * imm] *) | Omsubl (**r [rd = rd - r1 * r2] *) (*c Floating-point arithmetic: *) | Onegf (**r [rd = - r1] *) | Oabsf (**r [rd = abs(r1)] *) | Oaddf (**r [rd = r1 + r2] *) | Osubf (**r [rd = r1 - r2] *) | Omulf (**r [rd = r1 * r2] *) | Odivf (**r [rd = r1 / r2] *) | Ominf | Omaxf | Ofmaddf | Ofmsubf | Onegfs (**r [rd = - r1] *) | Oabsfs (**r [rd = abs(r1)] *) | Oaddfs (**r [rd = r1 + r2] *) | Osubfs (**r [rd = r1 - r2] *) | Omulfs (**r [rd = r1 * r2] *) | Odivfs (**r [rd = r1 / r2] *) | Ominfs | Omaxfs | Oinvfs | Ofmaddfs | Ofmsubfs | Osingleoffloat (**r [rd] is [r1] truncated to single-precision float *) | Ofloatofsingle (**r [rd] is [r1] extended to double-precision float *) (*c Conversions between int and float: *) | Ointoffloat (**r [rd = signed_int_of_float64(r1)] *) | Ointuoffloat (**r [rd = unsigned_int_of_float64(r1)] *) | Ointofsingle (**r [rd = signed_int_of_float32(r1)] *) | Ointuofsingle (**r [rd = unsigned_int_of_float32(r1)] *) | Osingleofint (**r [rd = float32_of_signed_int(r1)] *) | Osingleofintu (**r [rd = float32_of_unsigned_int(r1)] *) | Olongoffloat (**r [rd = signed_long_of_float64(r1)] *) | Olonguoffloat (**r [rd = unsigned_long_of_float64(r1)] *) | Ofloatoflong (**r [rd = float64_of_signed_long(r1)] *) | Ofloatoflongu (**r [rd = float64_of_unsigned_long(r1)] *) | Olongofsingle (**r [rd = signed_long_of_float32(r1)] *) | Olonguofsingle (**r [rd = unsigned_long_of_float32(r1)] *) | Osingleoflong (**r [rd = float32_of_signed_long(r1)] *) | Osingleoflongu (**r [rd = float32_of_unsigned_int(r1)] *) | Ointofsingle_ne (**r [rd = signed_int_of_float64(r1)] *) | Ointuofsingle_ne (**r [rd = unsigned_int_of_float64(r1)] *) | Olongoffloat_ne (**r [rd = signed_long_of_float64(r1)] *) | Olonguoffloat_ne (**r [rd = unsigned_long_of_float64(r1)] *) (*c Boolean tests: *) | Ocmp (cond: condition) (**r [rd = 1] if condition holds, [rd = 0] otherwise. *) | Oextfz (stop : Z) (start : Z) | Oextfs (stop : Z) (start : Z) | Oextfzl (stop : Z) (start : Z) | Oextfsl (stop : Z) (start : Z) | Oinsf (stop : Z) (start : Z) | Oinsfl (stop : Z) (start : Z) | Osel (c0 : condition0) (ty : typ) | Oselimm (c0 : condition0) (imm: int) | Osellimm (c0 : condition0) (imm: int64) | Oabsdiff | Oabsdiffimm (imm: int) | Oabsdiffl | Oabsdifflimm (imm: int64). (** Addressing modes. [r1], [r2], etc, are the arguments to the addressing. *) Inductive addressing: Type := | Aindexed2XS (scale : Z) : addressing (**r Address is [r1 + r2 << scale] *) | Aindexed2 : addressing (**r Address is [r1 + r2] *) | Aindexed: ptrofs -> addressing (**r Address is [r1 + offset] *) | Aglobal: ident -> ptrofs -> addressing (**r Address is global plus offset *) | Ainstack: ptrofs -> addressing. (**r Address is [stack_pointer + offset] *) (** Comparison functions (used in modules [CSE] and [Allocation]). *) Definition eq_condition (x y: condition) : {x=y} + {x<>y}. Proof. generalize Int.eq_dec Int64.eq_dec; intro. assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality. decide equality. Defined. Definition eq_condition0 (x y: condition0) : {x=y} + {x<>y}. Proof. generalize Int.eq_dec Int64.eq_dec; intro. assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality. decide equality. Defined. Definition eq_addressing (x y: addressing) : {x=y} + {x<>y}. Proof. generalize ident_eq Ptrofs.eq_dec Z.eq_dec; intros. decide equality. Defined. Definition eq_shift1_4 (x y : shift1_4): {x=y} + {x<>y}. Proof. decide equality. Defined. Definition eq_operation: forall (x y: operation), {x=y} + {x<>y}. Proof. generalize typ_eq Int.eq_dec Int64.eq_dec Ptrofs.eq_dec Float.eq_dec Float32.eq_dec ident_eq eq_condition eq_condition0 Z.eq_dec eq_shift1_4; intros. decide equality. Defined. (* Alternate definition: Definition beq_operation: forall (x y: operation), bool. Proof. generalize Int.eq_dec Int64.eq_dec Ptrofs.eq_dec Float.eq_dec Float32.eq_dec ident_eq eq_condition; boolean_equality. Defined. Definition eq_operation: forall (x y: operation), {x=y} + {x<>y}. Proof. decidable_equality_from beq_operation. Defined. *) Global Opaque eq_condition eq_addressing eq_operation. (** * Evaluation functions *) (** Evaluation of conditions, operators and addressing modes applied to lists of values. Return [None] when the computation can trigger an error, e.g. integer division by zero. [eval_condition] returns a boolean, [eval_operation] and [eval_addressing] return a value. *) Definition eval_condition (cond: condition) (vl: list val) (m: mem): option bool := match cond, vl with | Ccomp c, v1 :: v2 :: nil => Val.cmp_bool c v1 v2 | Ccompu c, v1 :: v2 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 v2 | Ccompimm c n, v1 :: nil => Val.cmp_bool c v1 (Vint n) | Ccompuimm c n, v1 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint n) | Ccompl c, v1 :: v2 :: nil => Val.cmpl_bool c v1 v2 | Ccomplu c, v1 :: v2 :: nil => Val.cmplu_bool (Mem.valid_pointer m) c v1 v2 | Ccomplimm c n, v1 :: nil => Val.cmpl_bool c v1 (Vlong n) | Ccompluimm c n, v1 :: nil => Val.cmplu_bool (Mem.valid_pointer m) c v1 (Vlong n) | Ccompf c, v1 :: v2 :: nil => Val.cmpf_bool c v1 v2 | Cnotcompf c, v1 :: v2 :: nil => option_map negb (Val.cmpf_bool c v1 v2) | Ccompfs c, v1 :: v2 :: nil => Val.cmpfs_bool c v1 v2 | Cnotcompfs c, v1 :: v2 :: nil => option_map negb (Val.cmpfs_bool c v1 v2) | _, _ => None end. Definition eval_condition0 (cond: condition0) (v1: val) (m: mem): option bool := match cond with | Ccomp0 c => Val.cmp_bool c v1 (Vint Int.zero) | Ccompu0 c => Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint Int.zero) | Ccompl0 c => Val.cmpl_bool c v1 (Vlong Int64.zero) | Ccomplu0 c => Val.cmplu_bool (Mem.valid_pointer m) c v1 (Vlong Int64.zero) end. Definition negate_condition0 (cond0 : condition0) : condition0 := match cond0 with | Ccomp0 c => Ccomp0 (negate_comparison c) | Ccompu0 c => Ccompu0 (negate_comparison c) | Ccompl0 c => Ccompl0 (negate_comparison c) | Ccomplu0 c => Ccomplu0 (negate_comparison c) end. Definition eval_operation (F V: Type) (genv: Genv.t F V) (sp: val) (op: operation) (vl: list val) (m: mem): option val := match op, vl with | Omove, v1::nil => Some v1 | Ointconst n, nil => Some (Vint n) | Olongconst n, nil => Some (Vlong n) | Ofloatconst n, nil => Some (Vfloat n) | Osingleconst n, nil => Some (Vsingle n) | Oaddrsymbol s ofs, nil => Some (Genv.symbol_address genv s ofs) | Oaddrstack ofs, nil => Some (Val.offset_ptr sp ofs) | Ocast8signed, v1 :: nil => Some (Val.sign_ext 8 v1) | Ocast16signed, v1 :: nil => Some (Val.sign_ext 16 v1) | Oadd, v1 :: v2 :: nil => Some (Val.add v1 v2) | Oaddimm n, v1 :: nil => Some (Val.add v1 (Vint n)) | Oaddx s14, v1 :: v2 :: nil => Some (addx (int_of_shift1_4 s14) v1 v2) | Oaddximm s14 n, v1 :: nil => Some (addx (int_of_shift1_4 s14) v1 (Vint n)) | Oneg, v1 :: nil => Some (Val.neg v1) | Osub, v1 :: v2 :: nil => Some (Val.sub v1 v2) | Orevsubimm n, v1 :: nil => Some (Val.sub (Vint n) v1) | Orevsubx shift, v1 :: v2 :: nil => Some (ExtValues.revsubx (int_of_shift1_4 shift) v1 v2) | Orevsubximm shift n, v1 :: nil => Some (ExtValues.revsubx (int_of_shift1_4 shift) v1 (Vint n)) | Omul, v1 :: v2 :: nil => Some (Val.mul v1 v2) | Omulimm n, v1 :: nil => Some (Val.mul v1 (Vint n)) | Omulhs, v1::v2::nil => Some (Val.mulhs v1 v2) | Omulhu, v1::v2::nil => Some (Val.mulhu v1 v2) | Odiv, v1 :: v2 :: nil => Val.divs v1 v2 | Odivu, v1 :: v2 :: nil => Val.divu v1 v2 | Omod, v1 :: v2 :: nil => Val.mods v1 v2 | Omodu, v1 :: v2 :: nil => Val.modu v1 v2 | Oand, v1 :: v2 :: nil => Some (Val.and v1 v2) | Oandimm n, v1 :: nil => Some (Val.and v1 (Vint n)) | Onand, v1 :: v2 :: nil => Some (Val.notint (Val.and v1 v2)) | Onandimm n, v1 :: nil => Some (Val.notint (Val.and v1 (Vint n))) | Oor, v1 :: v2 :: nil => Some (Val.or v1 v2) | Oorimm n, v1 :: nil => Some (Val.or v1 (Vint n)) | Onor, v1 :: v2 :: nil => Some (Val.notint (Val.or v1 v2)) | Onorimm n, v1 :: nil => Some (Val.notint (Val.or v1 (Vint n))) | Oxor, v1 :: v2 :: nil => Some (Val.xor v1 v2) | Oxorimm n, v1 :: nil => Some (Val.xor v1 (Vint n)) | Onxor, v1 :: v2 :: nil => Some (Val.notint (Val.xor v1 v2)) | Onxorimm n, v1 :: nil => Some (Val.notint (Val.xor v1 (Vint n))) | Onot, v1 :: nil => Some (Val.notint v1) | Oandn, v1 :: v2 :: nil => Some (Val.and (Val.notint v1) v2) | Oandnimm n, v1 :: nil => Some (Val.and (Val.notint v1) (Vint n)) | Oorn, v1 :: v2 :: nil => Some (Val.or (Val.notint v1) v2) | Oornimm n, v1 :: nil => Some (Val.or (Val.notint v1) (Vint n)) | Oshl, v1 :: v2 :: nil => Some (Val.shl v1 v2) | Oshlimm n, v1 :: nil => Some (Val.shl v1 (Vint n)) | Oshr, v1 :: v2 :: nil => Some (Val.shr v1 v2) | Oshrimm n, v1 :: nil => Some (Val.shr v1 (Vint n)) | Ororimm n, v1 :: nil => Some (Val.ror v1 (Vint n)) | Oshru, v1 :: v2 :: nil => Some (Val.shru v1 v2) | Oshruimm n, v1 :: nil => Some (Val.shru v1 (Vint n)) | Oshrximm n, v1::nil => Some (Val.maketotal (Val.shrx v1 (Vint n))) | Omadd, v1::v2::v3::nil => Some (Val.add v1 (Val.mul v2 v3)) | (Omaddimm n), v1::v2::nil => Some (Val.add v1 (Val.mul v2 (Vint n))) | Omsub, v1::v2::v3::nil => Some (Val.sub v1 (Val.mul v2 v3)) | Omakelong, v1::v2::nil => Some (Val.longofwords v1 v2) | Olowlong, v1::nil => Some (Val.loword v1) | Ohighlong, v1::nil => Some (Val.hiword v1) | Ocast32signed, v1 :: nil => Some (Val.longofint v1) | Ocast32unsigned, v1 :: nil => Some (Val.longofintu v1) | Oaddl, v1 :: v2 :: nil => Some (Val.addl v1 v2) | Oaddlimm n, v1::nil => Some (Val.addl v1 (Vlong n)) | Oaddxl s14, v1 :: v2 :: nil => Some (addxl (int_of_shift1_4 s14) v1 v2) | Oaddxlimm s14 n, v1 :: nil => Some (addxl (int_of_shift1_4 s14) v1 (Vlong n)) | Onegl, v1::nil => Some (Val.negl v1) | Osubl, v1::v2::nil => Some (Val.subl v1 v2) | Orevsublimm n, v1 :: nil => Some (Val.subl (Vlong n) v1) | Orevsubxl shift, v1 :: v2 :: nil => Some (ExtValues.revsubxl (int_of_shift1_4 shift) v1 v2) | Orevsubxlimm shift n, v1 :: nil => Some (ExtValues.revsubxl (int_of_shift1_4 shift) v1 (Vlong n)) | Omull, v1::v2::nil => Some (Val.mull v1 v2) | Omullimm n, v1::nil => Some (Val.mull v1 (Vlong n)) | Omullhs, v1::v2::nil => Some (Val.mullhs v1 v2) | Omullhu, v1::v2::nil => Some (Val.mullhu v1 v2) | Odivl, v1::v2::nil => Val.divls v1 v2 | Odivlu, v1::v2::nil => Val.divlu v1 v2 | Omodl, v1::v2::nil => Val.modls v1 v2 | Omodlu, v1::v2::nil => Val.modlu v1 v2 | Oandl, v1::v2::nil => Some(Val.andl v1 v2) | Oandlimm n, v1::nil => Some (Val.andl v1 (Vlong n)) | Onandl, v1::v2::nil => Some(Val.notl (Val.andl v1 v2)) | Onandlimm n, v1::nil => Some(Val.notl (Val.andl v1 (Vlong n))) | Oorl, v1::v2::nil => Some(Val.orl v1 v2) | Oorlimm n, v1::nil => Some (Val.orl v1 (Vlong n)) | Onorl, v1::v2::nil => Some(Val.notl (Val.orl v1 v2)) | Onorlimm n, v1::nil => Some(Val.notl (Val.orl v1 (Vlong n))) | Oxorl, v1::v2::nil => Some(Val.xorl v1 v2) | Oxorlimm n, v1::nil => Some (Val.xorl v1 (Vlong n)) | Onxorl, v1::v2::nil => Some(Val.notl (Val.xorl v1 v2)) | Onxorlimm n, v1::nil => Some(Val.notl (Val.xorl v1 (Vlong n))) | Onotl, v1 :: nil => Some (Val.notl v1) | Oandnl, v1 :: v2 :: nil => Some (Val.andl (Val.notl v1) v2) | Oandnlimm n, v1 :: nil => Some (Val.andl (Val.notl v1) (Vlong n)) | Oornl, v1 :: v2 :: nil => Some (Val.orl (Val.notl v1) v2) | Oornlimm n, v1 :: nil => Some (Val.orl (Val.notl v1) (Vlong n)) | Oshll, v1::v2::nil => Some (Val.shll v1 v2) | Oshllimm n, v1::nil => Some (Val.shll v1 (Vint n)) | Oshrl, v1::v2::nil => Some (Val.shrl v1 v2) | Oshrlimm n, v1::nil => Some (Val.shrl v1 (Vint n)) | Oshrlu, v1::v2::nil => Some (Val.shrlu v1 v2) | Oshrluimm n, v1::nil => Some (Val.shrlu v1 (Vint n)) | Oshrxlimm n, v1::nil => Some (Val.maketotal (Val.shrxl v1 (Vint n))) | Omaddl, v1::v2::v3::nil => Some (Val.addl v1 (Val.mull v2 v3)) | (Omaddlimm n), v1::v2::nil => Some (Val.addl v1 (Val.mull v2 (Vlong n))) | Omsubl, v1::v2::v3::nil => Some (Val.subl v1 (Val.mull v2 v3)) | Onegf, v1::nil => Some (Val.negf v1) | Oabsf, v1::nil => Some (Val.absf v1) | Oaddf, v1::v2::nil => Some (Val.addf v1 v2) | Osubf, v1::v2::nil => Some (Val.subf v1 v2) | Omulf, v1::v2::nil => Some (Val.mulf v1 v2) | Odivf, v1::v2::nil => Some (Val.divf v1 v2) | Ominf, v1::v2::nil => Some (ExtValues.minf v1 v2) | Omaxf, v1::v2::nil => Some (ExtValues.maxf v1 v2) | Ofmaddf, v1::v2::v3::nil => Some (ExtValues.fmaddf v1 v2 v3) | Ofmsubf, v1::v2::v3::nil => Some (ExtValues.fmsubf v1 v2 v3) | Onegfs, v1::nil => Some (Val.negfs v1) | Oabsfs, v1::nil => Some (Val.absfs v1) | Oaddfs, v1::v2::nil => Some (Val.addfs v1 v2) | Osubfs, v1::v2::nil => Some (Val.subfs v1 v2) | Omulfs, v1::v2::nil => Some (Val.mulfs v1 v2) | Odivfs, v1::v2::nil => Some (Val.divfs v1 v2) | Ominfs, v1::v2::nil => Some (ExtValues.minfs v1 v2) | Omaxfs, v1::v2::nil => Some (ExtValues.maxfs v1 v2) | Oinvfs, v1::nil => Some (ExtValues.invfs v1) | Ofmaddfs, v1::v2::v3::nil => Some (ExtValues.fmaddfs v1 v2 v3) | Ofmsubfs, v1::v2::v3::nil => Some (ExtValues.fmsubfs v1 v2 v3) | Osingleoffloat, v1::nil => Some (Val.singleoffloat v1) | Ofloatofsingle, v1::nil => Some (Val.floatofsingle v1) | Ointoffloat, v1::nil => Some (Val.maketotal (Val.intoffloat v1)) | Ointuoffloat, v1::nil => Some (Val.maketotal (Val.intuoffloat v1)) | Ointofsingle, v1::nil => Some (Val.maketotal (Val.intofsingle v1)) | Ointuofsingle, v1::nil => Some (Val.maketotal (Val.intuofsingle v1)) | Osingleofint, v1::nil => Some (Val.maketotal (Val.singleofint v1)) | Osingleofintu, v1::nil => Some (Val.maketotal (Val.singleofintu v1)) | Olongoffloat, v1::nil => Some (Val.maketotal (Val.longoffloat v1)) | Olonguoffloat, v1::nil => Some (Val.maketotal (Val.longuoffloat v1)) | Ofloatoflong, v1::nil => Some (Val.maketotal (Val.floatoflong v1)) | Ofloatoflongu, v1::nil => Some (Val.maketotal (Val.floatoflongu v1)) | Olongofsingle, v1::nil => Some (Val.maketotal (Val.longofsingle v1)) | Olonguofsingle, v1::nil => Some (Val.maketotal (Val.longuofsingle v1)) | Osingleoflong, v1::nil => Some (Val.maketotal (Val.singleoflong v1)) | Osingleoflongu, v1::nil => Some (Val.maketotal (Val.singleoflongu v1)) | Ointofsingle_ne, v1::nil => Some (Val.maketotal (Val.intofsingle_ne v1)) | Ointuofsingle_ne, v1::nil => Some (Val.maketotal (Val.intuofsingle_ne v1)) | Olongoffloat_ne, v1::nil => Some (Val.maketotal (Val.longoffloat_ne v1)) | Olonguoffloat_ne, v1::nil => Some (Val.maketotal (Val.longuoffloat_ne v1)) | Ocmp c, _ => Some (Val.of_optbool (eval_condition c vl m)) | (Oextfz stop start), v0::nil => Some (extfz stop start v0) | (Oextfs stop start), v0::nil => Some (extfs stop start v0) | (Oextfzl stop start), v0::nil => Some (extfzl stop start v0) | (Oextfsl stop start), v0::nil => Some (extfsl stop start v0) | (Oinsf stop start), v0::v1::nil => Some (insf stop start v0 v1) | (Oinsfl stop start), v0::v1::nil => Some (insfl stop start v0 v1) | Osel c ty, v1::v2::vc::nil => Some(Val.select (eval_condition0 c vc m) v1 v2 ty) | Oselimm c imm, v1::vc::nil => Some(Val.select (eval_condition0 c vc m) v1 (Vint imm) Tint) | Osellimm c imm, v1::vc::nil => Some(Val.select (eval_condition0 c vc m) v1 (Vlong imm) Tlong) | Oabsdiff, v0::v1::nil => Some(ExtValues.absdiff v0 v1) | (Oabsdiffimm n1), v0::nil => Some(ExtValues.absdiff v0 (Vint n1)) | Oabsdiffl, v0::v1::nil => Some(ExtValues.absdiffl v0 v1) | (Oabsdifflimm n1), v0::nil => Some(ExtValues.absdiffl v0 (Vlong n1)) | _, _ => None end. Definition eval_addressing (F V: Type) (genv: Genv.t F V) (sp: val) (addr: addressing) (vl: list val) : option val := match addr, vl with | Aindexed2XS scale, v1 :: v2 :: nil => Some (Val.addl v1 (Val.shll v2 (Vint (Int.repr scale)))) | Aindexed2, v1 :: v2 :: nil => Some (Val.addl v1 v2) | Aindexed n, v1 :: nil => Some (Val.offset_ptr v1 n) | Aglobal s ofs, nil => Some (Genv.symbol_address genv s ofs) | Ainstack n, nil => Some (Val.offset_ptr sp n) | _, _ => None end. Remark eval_addressing_Ainstack: forall (F V: Type) (genv: Genv.t F V) sp ofs, eval_addressing genv sp (Ainstack ofs) nil = Some (Val.offset_ptr sp ofs). Proof. intros. reflexivity. Qed. Remark eval_addressing_Ainstack_inv: forall (F V: Type) (genv: Genv.t F V) sp ofs vl v, eval_addressing genv sp (Ainstack ofs) vl = Some v -> vl = nil /\ v = Val.offset_ptr sp ofs. Proof. unfold eval_addressing; intros; destruct vl; inv H; auto. Qed. Ltac FuncInv := match goal with | H: (match ?x with nil => _ | _ :: _ => _ end = Some _) |- _ => destruct x; cbn in H; FuncInv | H: (match ?v with Vundef => _ | Vint _ => _ | Vfloat _ => _ | Vptr _ _ => _ end = Some _) |- _ => destruct v; cbn in H; FuncInv | H: (if Archi.ptr64 then _ else _) = Some _ |- _ => destruct Archi.ptr64 eqn:?; FuncInv | H: (Some _ = Some _) |- _ => injection H; intros; clear H; FuncInv | H: (None = Some _) |- _ => discriminate H | _ => idtac end. (** * Static typing of conditions, operators and addressing modes. *) Definition type_of_condition (c: condition) : list typ := match c with | Ccomp _ => Tint :: Tint :: nil | Ccompu _ => Tint :: Tint :: nil | Ccompimm _ _ => Tint :: nil | Ccompuimm _ _ => Tint :: nil | Ccompl _ => Tlong :: Tlong :: nil | Ccomplu _ => Tlong :: Tlong :: nil | Ccomplimm _ _ => Tlong :: nil | Ccompluimm _ _ => Tlong :: nil | Ccompf _ => Tfloat :: Tfloat :: nil | Cnotcompf _ => Tfloat :: Tfloat :: nil | Ccompfs _ => Tsingle :: Tsingle :: nil | Cnotcompfs _ => Tsingle :: Tsingle :: nil end. Definition type_of_operation (op: operation) : list typ * typ := match op with | Omove => (nil, Tint) (* treated specially *) | Ointconst _ => (nil, Tint) | Olongconst _ => (nil, Tlong) | Ofloatconst f => (nil, Tfloat) | Osingleconst f => (nil, Tsingle) | Oaddrsymbol _ _ => (nil, Tptr) | Oaddrstack _ => (nil, Tptr) | Ocast8signed => (Tint :: nil, Tint) | Ocast16signed => (Tint :: nil, Tint) | Oadd => (Tint :: Tint :: nil, Tint) | Oaddimm _ => (Tint :: nil, Tint) | Oaddx _ => (Tint :: Tint :: nil, Tint) | Oaddximm _ _ => (Tint :: nil, Tint) | Oneg => (Tint :: nil, Tint) | Osub => (Tint :: Tint :: nil, Tint) | Orevsubimm _ => (Tint :: nil, Tint) | Orevsubx _ => (Tint :: Tint :: nil, Tint) | Orevsubximm _ _ => (Tint :: nil, Tint) | Omul => (Tint :: Tint :: nil, Tint) | Omulimm _ => (Tint :: nil, Tint) | Omulhs => (Tint :: Tint :: nil, Tint) | Omulhu => (Tint :: Tint :: nil, Tint) | Odiv => (Tint :: Tint :: nil, Tint) | Odivu => (Tint :: Tint :: nil, Tint) | Omod => (Tint :: Tint :: nil, Tint) | Omodu => (Tint :: Tint :: nil, Tint) | Oand => (Tint :: Tint :: nil, Tint) | Oandimm _ => (Tint :: nil, Tint) | Onand => (Tint :: Tint :: nil, Tint) | Onandimm _ => (Tint :: nil, Tint) | Oor => (Tint :: Tint :: nil, Tint) | Oorimm _ => (Tint :: nil, Tint) | Onor => (Tint :: Tint :: nil, Tint) | Onorimm _ => (Tint :: nil, Tint) | Oxor => (Tint :: Tint :: nil, Tint) | Oxorimm _ => (Tint :: nil, Tint) | Onxor => (Tint :: Tint :: nil, Tint) | Onxorimm _ => (Tint :: nil, Tint) | Onot => (Tint :: nil, Tint) | Oandn => (Tint :: Tint :: nil, Tint) | Oandnimm _ => (Tint :: nil, Tint) | Oorn => (Tint :: Tint :: nil, Tint) | Oornimm _ => (Tint :: nil, Tint) | Oshl => (Tint :: Tint :: nil, Tint) | Oshlimm _ => (Tint :: nil, Tint) | Oshr => (Tint :: Tint :: nil, Tint) | Oshrimm _ => (Tint :: nil, Tint) | Oshru => (Tint :: Tint :: nil, Tint) | Oshruimm _ => (Tint :: nil, Tint) | Oshrximm _ => (Tint :: nil, Tint) | Ororimm _ => (Tint :: nil, Tint) | Omadd => (Tint :: Tint :: Tint :: nil, Tint) | Omaddimm _ => (Tint :: Tint :: nil, Tint) | Omsub => (Tint :: Tint :: Tint :: nil, Tint) | Omakelong => (Tint :: Tint :: nil, Tlong) | Olowlong => (Tlong :: nil, Tint) | Ohighlong => (Tlong :: nil, Tint) | Ocast32signed => (Tint :: nil, Tlong) | Ocast32unsigned => (Tint :: nil, Tlong) | Oaddl => (Tlong :: Tlong :: nil, Tlong) | Oaddlimm _ => (Tlong :: nil, Tlong) | Oaddxl _ => (Tlong :: Tlong :: nil, Tlong) | Oaddxlimm _ _ => (Tlong :: nil, Tlong) | Orevsublimm _ => (Tlong :: nil, Tlong) | Orevsubxl _ => (Tlong :: Tlong :: nil, Tlong) | Orevsubxlimm _ _ => (Tlong :: nil, Tlong) | Onegl => (Tlong :: nil, Tlong) | Osubl => (Tlong :: Tlong :: nil, Tlong) | Omull => (Tlong :: Tlong :: nil, Tlong) | Omullimm _ => (Tlong :: nil, Tlong) | Omullhs => (Tlong :: Tlong :: nil, Tlong) | Omullhu => (Tlong :: Tlong :: nil, Tlong) | Odivl => (Tlong :: Tlong :: nil, Tlong) | Odivlu => (Tlong :: Tlong :: nil, Tlong) | Omodl => (Tlong :: Tlong :: nil, Tlong) | Omodlu => (Tlong :: Tlong :: nil, Tlong) | Oandl => (Tlong :: Tlong :: nil, Tlong) | Oandlimm _ => (Tlong :: nil, Tlong) | Onandl => (Tlong :: Tlong :: nil, Tlong) | Onandlimm _ => (Tlong :: nil, Tlong) | Oorl => (Tlong :: Tlong :: nil, Tlong) | Oorlimm _ => (Tlong :: nil, Tlong) | Onorl => (Tlong :: Tlong :: nil, Tlong) | Onorlimm _ => (Tlong :: nil, Tlong) | Oxorl => (Tlong :: Tlong :: nil, Tlong) | Oxorlimm _ => (Tlong :: nil, Tlong) | Onxorl => (Tlong :: Tlong :: nil, Tlong) | Onxorlimm _ => (Tlong :: nil, Tlong) | Onotl => (Tlong :: nil, Tlong) | Oandnl => (Tlong :: Tlong :: nil, Tlong) | Oandnlimm _ => (Tlong :: nil, Tlong) | Oornl => (Tlong :: Tlong :: nil, Tlong) | Oornlimm _ => (Tlong :: nil, Tlong) | Oshll => (Tlong :: Tint :: nil, Tlong) | Oshllimm _ => (Tlong :: nil, Tlong) | Oshrl => (Tlong :: Tint :: nil, Tlong) | Oshrlimm _ => (Tlong :: nil, Tlong) | Oshrlu => (Tlong :: Tint :: nil, Tlong) | Oshrluimm _ => (Tlong :: nil, Tlong) | Oshrxlimm _ => (Tlong :: nil, Tlong) | Omaddl => (Tlong :: Tlong :: Tlong :: nil, Tlong) | Omaddlimm _ => (Tlong :: Tlong :: nil, Tlong) | Omsubl => (Tlong :: Tlong :: Tlong :: nil, Tlong) | Onegf => (Tfloat :: nil, Tfloat) | Oabsf => (Tfloat :: nil, Tfloat) | Oaddf | Osubf | Omulf | Odivf | Ominf | Omaxf => (Tfloat :: Tfloat :: nil, Tfloat) | Ofmaddf | Ofmsubf => (Tfloat :: Tfloat :: Tfloat :: nil, Tfloat) | Onegfs => (Tsingle :: nil, Tsingle) | Oabsfs => (Tsingle :: nil, Tsingle) | Oaddfs | Osubfs | Omulfs | Odivfs | Ominfs | Omaxfs => (Tsingle :: Tsingle :: nil, Tsingle) | Oinvfs => (Tsingle :: nil, Tsingle) | Ofmaddfs | Ofmsubfs => (Tsingle :: Tsingle :: Tsingle :: nil, Tsingle) | Osingleoffloat => (Tfloat :: nil, Tsingle) | Ofloatofsingle => (Tsingle :: nil, Tfloat) | Ointoffloat => (Tfloat :: nil, Tint) | Ointuoffloat => (Tfloat :: nil, Tint) | Ointofsingle => (Tsingle :: nil, Tint) | Ointuofsingle => (Tsingle :: nil, Tint) | Osingleofint => (Tint :: nil, Tsingle) | Osingleofintu => (Tint :: nil, Tsingle) | Olongoffloat => (Tfloat :: nil, Tlong) | Olonguoffloat => (Tfloat :: nil, Tlong) | Ofloatoflong => (Tlong :: nil, Tfloat) | Ofloatoflongu => (Tlong :: nil, Tfloat) | Olongofsingle => (Tsingle :: nil, Tlong) | Olonguofsingle => (Tsingle :: nil, Tlong) | Osingleoflong => (Tlong :: nil, Tsingle) | Osingleoflongu => (Tlong :: nil, Tsingle) | Ointofsingle_ne => (Tsingle :: nil, Tint) | Ointuofsingle_ne => (Tsingle :: nil, Tint) | Olongoffloat_ne => (Tfloat :: nil, Tlong) | Olonguoffloat_ne => (Tfloat :: nil, Tlong) | Ocmp c => (type_of_condition c, Tint) | Oextfz _ _ | Oextfs _ _ => (Tint :: nil, Tint) | Oextfzl _ _ | Oextfsl _ _ => (Tlong :: nil, Tlong) | Oinsf _ _ => (Tint :: Tint :: nil, Tint) | Oinsfl _ _ => (Tlong :: Tlong :: nil, Tlong) | Osel c ty => (ty :: ty :: arg_type_of_condition0 c :: nil, ty) | Oselimm c ty => (Tint :: arg_type_of_condition0 c :: nil, Tint) | Osellimm c ty => (Tlong :: arg_type_of_condition0 c :: nil, Tlong) | Oabsdiff => (Tint :: Tint :: nil, Tint) | Oabsdiffimm _ => (Tint :: nil, Tint) | Oabsdiffl => (Tlong :: Tlong :: nil, Tlong) | Oabsdifflimm _ => (Tlong :: nil, Tlong) end. (* FIXME: two Tptr ?! *) Definition type_of_addressing (addr: addressing) : list typ := match addr with | Aindexed2XS _ => Tptr :: Tptr :: nil | Aindexed2 => Tptr :: Tptr :: nil | Aindexed _ => Tptr :: nil | Aglobal _ _ => nil | Ainstack _ => nil end. (** Weak type soundness results for [eval_operation]: the result values, when defined, are always of the type predicted by [type_of_operation]. *) Section SOUNDNESS. Variable A V: Type. Variable genv: Genv.t A V. Remark type_add: forall v1 v2, Val.has_type (Val.add v1 v2) Tint. Proof. intros. unfold Val.has_type, Val.add. destruct Archi.ptr64, v1, v2; auto. Qed. Remark type_addl: forall v1 v2, Val.has_type (Val.addl v1 v2) Tlong. Proof. intros. unfold Val.has_type, Val.addl. destruct Archi.ptr64, v1, v2; auto. Qed. Remark type_sub: forall v1 v2, Val.has_type (Val.sub v1 v2) Tint. Proof. intros. unfold Val.has_type, Val.sub. destruct Archi.ptr64, v1, v2; cbn; auto. destruct (eq_block _ _); auto. Qed. Remark type_subl: forall v1 v2, Val.has_type (Val.subl v1 v2) Tlong. Proof. intros. unfold Val.has_type, Val.subl. destruct Archi.ptr64, v1, v2; cbn; auto. destruct (eq_block _ _); auto. Qed. Remark type_shl: forall v1 v2, Val.has_type (Val.shl v1 v2) Tint. Proof. destruct v1, v2; cbn; trivial; destruct (Int.ltu _ _); cbn; trivial. Qed. Remark type_shll: forall v1 v2, Val.has_type (Val.shll v1 v2) Tlong. Proof. destruct v1, v2; cbn; trivial; destruct (Int.ltu _ _); cbn; trivial. Qed. Lemma type_of_operation_sound: forall op vl sp v m, op <> Omove -> eval_operation genv sp op vl m = Some v -> Val.has_type v (snd (type_of_operation op)). Proof with (try exact I; try reflexivity; auto using Val.Vptr_has_type). intros. destruct op; cbn; cbn in H0; FuncInv; subst; cbn. (* move *) - congruence. (* intconst, longconst, floatconst, singleconst *) - exact I. - exact I. - exact I. - exact I. (* addrsymbol *) - unfold Genv.symbol_address. destruct (Genv.find_symbol genv id)... (* addrstack *) - destruct sp... (* castsigned *) - destruct v0... - destruct v0... (* add, addimm *) - apply type_add. - apply type_add. (* addx, addximm *) - apply type_add. - destruct v0; cbn; trivial. destruct (Int.ltu _ _); cbn; trivial. (* neg, sub *) - destruct v0... - apply type_sub. (* revsubimm, revsubx, revsubximm *) - destruct v0... - apply type_sub. - destruct v0; cbn; trivial. destruct (Int.ltu _ _); cbn; trivial. (* mul, mulimm, mulhs, mulhu *) - destruct v0; destruct v1... - destruct v0... - destruct v0; destruct v1... - destruct v0; destruct v1... (* div, divu *) - destruct v0; destruct v1; cbn in *; inv H0. destruct (_ || _); inv H2... - destruct v0; destruct v1; cbn in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2... (* mod, modu *) - destruct v0; destruct v1; cbn in *; inv H0. destruct (_ || _); inv H2... - destruct v0; destruct v1; cbn in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2... (* and, andimm *) - destruct v0; destruct v1... - destruct v0... (* nand, nandimm *) - destruct v0; destruct v1... - destruct v0... (* or, orimm *) - destruct v0; destruct v1... - destruct v0... (* nor, norimm *) - destruct v0; destruct v1... - destruct v0... (* xor, xorimm *) - destruct v0; destruct v1... - destruct v0... (* nxor, nxorimm *) - destruct v0; destruct v1... - destruct v0... (* not *) - destruct v0... (* andn, andnimm *) - destruct v0; destruct v1... - destruct v0... (* orn, ornimm *) - destruct v0; destruct v1... - destruct v0... (* shl, shlimm *) - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int.iwordsize)... - destruct v0; cbn... destruct (Int.ltu n Int.iwordsize)... (* shr, shrimm *) - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int.iwordsize)... - destruct v0; cbn... destruct (Int.ltu n Int.iwordsize)... (* shru, shruimm *) - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int.iwordsize)... - destruct v0; cbn... destruct (Int.ltu n Int.iwordsize)... (* shrx *) - destruct v0; cbn... destruct (Int.ltu n (Int.repr 31)); cbn; trivial. (* shrimm *) - destruct v0; cbn... (* madd *) - apply type_add. - apply type_add. (* msub *) - apply type_sub. (* makelong, lowlong, highlong *) - destruct v0; destruct v1... - destruct v0... - destruct v0... (* cast32 *) - destruct v0... - destruct v0... (* addl, addlimm *) - apply type_addl. - apply type_addl. (* addxl addxlimm *) - apply type_addl. - destruct v0; cbn; trivial. destruct (Int.ltu _ _); cbn; trivial. (* negl, subl *) - destruct v0... - apply type_subl. - destruct v0; cbn; trivial. destruct (Int.ltu _ _); cbn; trivial. - destruct v0... - apply type_subl. (* mull, mullhs, mullhu *) - destruct v0; destruct v1... - destruct v0... - destruct v0; destruct v1... - destruct v0; destruct v1... (* divl, divlu *) - destruct v0; destruct v1; cbn in *; inv H0. destruct (_ || _); inv H2... - destruct v0; destruct v1; cbn in *; inv H0. destruct (Int64.eq i0 Int64.zero); inv H2... (* modl, modlu *) - destruct v0; destruct v1; cbn in *; inv H0. destruct (_ || _); inv H2... - destruct v0; destruct v1; cbn in *; inv H0. destruct (Int64.eq i0 Int64.zero); inv H2... (* andl, andlimm *) - destruct v0; destruct v1... - destruct v0... (* nandl, nandlimm *) - destruct v0; destruct v1... - destruct v0... (* orl, orlimm *) - destruct v0; destruct v1... - destruct v0... (* norl, norlimm *) - destruct v0; destruct v1... - destruct v0... (* xorl, xorlimm *) - destruct v0; destruct v1... - destruct v0... (* nxorl, nxorlimm *) - destruct v0; destruct v1... - destruct v0... (* notl *) - destruct v0... (* andnl, andnlimm *) - destruct v0; destruct v1... - destruct v0... (* ornl, ornlimm *) - destruct v0; destruct v1... - destruct v0... (* shll, shllimm *) - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int64.iwordsize')... - destruct v0; cbn... destruct (Int.ltu n Int64.iwordsize')... (* shr, shrimm *) - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int64.iwordsize')... - destruct v0; cbn... destruct (Int.ltu n Int64.iwordsize')... (* shru, shruimm *) - destruct v0; destruct v1; cbn... destruct (Int.ltu i0 Int64.iwordsize')... - destruct v0; cbn... destruct (Int.ltu n Int64.iwordsize')... (* shrxl *) - destruct v0; cbn... destruct (Int.ltu n (Int.repr 63)); cbn; trivial. (* maddl, maddlim *) - apply type_addl. - apply type_addl. (* msubl *) - apply type_subl. (* negf, absf *) - destruct v0... - destruct v0... (* addf, subf *) - destruct v0; destruct v1... - destruct v0; destruct v1... (* mulf, divf *) - destruct v0; destruct v1... - destruct v0; destruct v1... (* minf, maxf *) - destruct v0; destruct v1... - destruct v0; destruct v1... (* fmaddf, fmsubf *) - destruct v0; destruct v1; destruct v2... - destruct v0; destruct v1; destruct v2... (* negfs, absfs *) - destruct v0... - destruct v0... (* addfs, subfs *) - destruct v0; destruct v1... - destruct v0; destruct v1... (* mulfs, divfs *) - destruct v0; destruct v1... - destruct v0; destruct v1... (* minfs, maxfs *) - destruct v0; destruct v1... - destruct v0; destruct v1... (* invfs *) - destruct v0... (* fmaddfs, fmsubfs *) - destruct v0; destruct v1; destruct v2... - destruct v0; destruct v1; destruct v2... (* singleoffloat, floatofsingle *) - destruct v0... - destruct v0... (* intoffloat, intuoffloat *) - destruct v0; cbn... destruct (Float.to_int f); cbn; trivial. - destruct v0; cbn... destruct (Float.to_intu f); cbn; trivial. (* intofsingle, intuofsingle *) - destruct v0; cbn... destruct (Float32.to_int f); cbn; trivial. - destruct v0; cbn... destruct (Float32.to_intu f); cbn; trivial. (* singleofint, singleofintu *) - destruct v0; cbn... - destruct v0; cbn... (* longoffloat, longuoffloat *) - destruct v0; cbn... destruct (Float.to_long f); cbn; trivial. - destruct v0; cbn... destruct (Float.to_longu f); cbn; trivial. (* floatoflong, floatoflongu *) - destruct v0; cbn... - destruct v0; cbn... (* longofsingle, longuofsingle *) - destruct v0; cbn... destruct (Float32.to_long f); cbn; trivial. - destruct v0; cbn... destruct (Float32.to_longu f); cbn; trivial. (* singleoflong, singleoflongu *) - destruct v0; cbn... - destruct v0; cbn... (* intofsingle_ne, intuofsingle_ne *) - destruct v0; cbn... destruct (Float32.to_int_ne f); cbn; trivial. - destruct v0; cbn... destruct (Float32.to_intu_ne f); cbn; trivial. (* longoffloat_ne, longuoffloat_ne *) - destruct v0; cbn... destruct (Float.to_long_ne f); cbn; trivial. - destruct v0; cbn... destruct (Float.to_longu_ne f); cbn; trivial. (* cmp *) - destruct (eval_condition cond vl m)... destruct b... (* extfz *) - unfold extfz. destruct (is_bitfield _ _). + destruct v0; cbn; trivial. + constructor. (* extfs *) - unfold extfs. destruct (is_bitfield _ _). + destruct v0; cbn; trivial. + constructor. (* extfzl *) - unfold extfzl. destruct (is_bitfieldl _ _). + destruct v0; cbn; trivial. + constructor. (* extfsl *) - unfold extfsl. destruct (is_bitfieldl _ _). + destruct v0; cbn; trivial. + constructor. (* insf *) - unfold insf, bitfield_mask. destruct (is_bitfield _ _). + destruct v0; destruct v1; cbn; trivial. destruct (Int.ltu _ _); cbn; trivial. + constructor. (* insf *) - unfold insfl, bitfield_mask. destruct (is_bitfieldl _ _). + destruct v0; destruct v1; cbn; trivial. destruct (Int.ltu _ _); cbn; trivial. + constructor. (* Osel *) - unfold Val.select. destruct (eval_condition0 _ _ m). + apply Val.normalize_type. + constructor. (* Oselimm *) - unfold Val.select. destruct (eval_condition0 _ _ m). + apply Val.normalize_type. + constructor. (* Osellimm *) - unfold Val.select. destruct (eval_condition0 _ _ m). + apply Val.normalize_type. + constructor. (* oabsdiff *) - destruct v0; destruct v1; cbn; trivial. - destruct v0; cbn; trivial. - destruct v0; destruct v1; cbn; trivial. - destruct v0; cbn; trivial. Qed. Definition is_trapping_op (op : operation) := match op with | Odiv | Odivl | Odivu | Odivlu | Omod | Omodl | Omodu | Omodlu => true | _ => false end. Definition args_of_operation op := if eq_operation op Omove then 1%nat else List.length (fst (type_of_operation op)). Lemma is_trapping_op_sound: forall op vl sp m, is_trapping_op op = false -> (List.length vl) = args_of_operation op -> eval_operation genv sp op vl m <> None. Proof. unfold args_of_operation. destruct op; destruct eq_operation; intros; cbn in *; try congruence. all: try (destruct vl as [ | vh1 vl1]; try discriminate). all: try (destruct vl1 as [ | vh2 vl2]; try discriminate). all: try (destruct vl2 as [ | vh3 vl3]; try discriminate). all: try (destruct vl3 as [ | vh4 vl4]; try discriminate). Qed. End SOUNDNESS. (** * Manipulating and transforming operations *) (** Recognition of move operations. *) Definition is_move_operation (A: Type) (op: operation) (args: list A) : option A := match op, args with | Omove, arg :: nil => Some arg | _, _ => None end. Lemma is_move_operation_correct: forall (A: Type) (op: operation) (args: list A) (a: A), is_move_operation op args = Some a -> op = Omove /\ args = a :: nil. Proof. intros until a. unfold is_move_operation; destruct op; try (intros; discriminate). destruct args. intros; discriminate. destruct args. intros. intuition congruence. intros; discriminate. Qed. (** [negate_condition cond] returns a condition that is logically equivalent to the negation of [cond]. *) Definition negate_condition (cond: condition): condition := match cond with | Ccomp c => Ccomp(negate_comparison c) | Ccompu c => Ccompu(negate_comparison c) | Ccompimm c n => Ccompimm (negate_comparison c) n | Ccompuimm c n => Ccompuimm (negate_comparison c) n | Ccompl c => Ccompl(negate_comparison c) | Ccomplu c => Ccomplu(negate_comparison c) | Ccomplimm c n => Ccomplimm (negate_comparison c) n | Ccompluimm c n => Ccompluimm (negate_comparison c) n | Ccompf c => Cnotcompf c | Cnotcompf c => Ccompf c | Ccompfs c => Cnotcompfs c | Cnotcompfs c => Ccompfs c end. Lemma eval_negate_condition: forall cond vl m, eval_condition (negate_condition cond) vl m = option_map negb (eval_condition cond vl m). Proof. intros. destruct cond; cbn. repeat (destruct vl; auto). apply Val.negate_cmp_bool. repeat (destruct vl; auto). apply Val.negate_cmpu_bool. repeat (destruct vl; auto). apply Val.negate_cmp_bool. repeat (destruct vl; auto). apply Val.negate_cmpu_bool. repeat (destruct vl; auto). apply Val.negate_cmpl_bool. repeat (destruct vl; auto). apply Val.negate_cmplu_bool. repeat (destruct vl; auto). apply Val.negate_cmpl_bool. repeat (destruct vl; auto). apply Val.negate_cmplu_bool. repeat (destruct vl; auto). repeat (destruct vl; auto). destruct (Val.cmpf_bool c v v0) as [[]|]; auto. repeat (destruct vl; auto). repeat (destruct vl; auto). destruct (Val.cmpfs_bool c v v0) as [[]|]; auto. Qed. (** Shifting stack-relative references. This is used in [Stacking]. *) Definition shift_stack_addressing (delta: Z) (addr: addressing) := match addr with | Ainstack ofs => Ainstack (Ptrofs.add ofs (Ptrofs.repr delta)) | _ => addr end. Definition shift_stack_operation (delta: Z) (op: operation) := match op with | Oaddrstack ofs => Oaddrstack (Ptrofs.add ofs (Ptrofs.repr delta)) | _ => op end. Lemma type_shift_stack_addressing: forall delta addr, type_of_addressing (shift_stack_addressing delta addr) = type_of_addressing addr. Proof. intros. destruct addr; auto. Qed. Lemma type_shift_stack_operation: forall delta op, type_of_operation (shift_stack_operation delta op) = type_of_operation op. Proof. intros. destruct op; auto. Qed. Lemma eval_shift_stack_addressing: forall F V (ge: Genv.t F V) sp addr vl delta, eval_addressing ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl = eval_addressing ge (Vptr sp (Ptrofs.repr delta)) addr vl. Proof. intros. destruct addr; cbn; auto. destruct vl; auto. rewrite Ptrofs.add_zero_l, Ptrofs.add_commut; auto. Qed. Lemma eval_shift_stack_operation: forall F V (ge: Genv.t F V) sp op vl m delta, eval_operation ge (Vptr sp Ptrofs.zero) (shift_stack_operation delta op) vl m = eval_operation ge (Vptr sp (Ptrofs.repr delta)) op vl m. Proof. intros. destruct op; cbn; auto. destruct vl; auto. rewrite Ptrofs.add_zero_l, Ptrofs.add_commut; auto. Qed. (** Offset an addressing mode [addr] by a quantity [delta], so that it designates the pointer [delta] bytes past the pointer designated by [addr]. May be undefined, in which case [None] is returned. *) Definition offset_addressing (addr: addressing) (delta: Z) : option addressing := match addr with | Aindexed2 | Aindexed2XS _ => None | Aindexed n => Some(Aindexed (Ptrofs.add n (Ptrofs.repr delta))) | Aglobal id n => Some(Aglobal id (Ptrofs.add n (Ptrofs.repr delta))) | Ainstack n => Some(Ainstack (Ptrofs.add n (Ptrofs.repr delta))) end. Lemma eval_offset_addressing: forall (F V: Type) (ge: Genv.t F V) sp addr args delta addr' v, offset_addressing addr delta = Some addr' -> eval_addressing ge sp addr args = Some v -> Archi.ptr64 = false -> eval_addressing ge sp addr' args = Some(Val.add v (Vint (Int.repr delta))). Proof. intros. assert (A: forall x n, Val.offset_ptr x (Ptrofs.add n (Ptrofs.repr delta)) = Val.add (Val.offset_ptr x n) (Vint (Int.repr delta))). { intros; destruct x; cbn; auto. rewrite H1. rewrite Ptrofs.add_assoc. f_equal; f_equal; f_equal. symmetry; auto with ptrofs. } destruct addr; cbn in H; inv H; cbn in *; FuncInv; subst. - rewrite A; auto. - unfold Genv.symbol_address. destruct (Genv.find_symbol ge i); auto. cbn. rewrite H1. f_equal; f_equal; f_equal. symmetry; auto with ptrofs. - rewrite A; auto. Qed. (** Operations that are so cheap to recompute that CSE should not factor them out. *) Definition is_trivial_op (op: operation) : bool := match op with | Omove => true | Ointconst n => Int.eq (Int.sign_ext 12 n) n | Olongconst n => Int64.eq (Int64.sign_ext 12 n) n | Oaddrstack _ => true | _ => false end. (** Operations that depend on the memory state. *) Definition cond_depends_on_memory (c: condition) : bool := match c with | Ccompu _ | Ccompuimm _ _ => negb Archi.ptr64 | Ccomplu _ | Ccompluimm _ _ => Archi.ptr64 | _ => false end. Lemma cond_depends_on_memory_correct: forall c args m1 m2, cond_depends_on_memory c = false -> eval_condition c args m1 = eval_condition c args m2. Proof. intros; destruct c; cbn; discriminate || reflexivity. Qed. Definition op_depends_on_memory (op: operation) : bool := match op with | Ocmp (Ccompu _ | Ccompuimm _ _) => negb Archi.ptr64 | Ocmp (Ccomplu _ | Ccompluimm _ _) => Archi.ptr64 | Osel (Ccompu0 _) _ | Oselimm (Ccompu0 _) _ | Osellimm (Ccompu0 _) _ => negb Archi.ptr64 | Osel (Ccomplu0 _) _ | Oselimm (Ccomplu0 _) _ | Osellimm (Ccomplu0 _) _ => Archi.ptr64 | _ => false end. Lemma op_depends_on_memory_correct: forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2, op_depends_on_memory op = false -> eval_operation ge sp op args m1 = eval_operation ge sp op args m2. Proof. intros until m2. destruct op; cbn; try congruence. - destruct cond; cbn; try congruence; intros SF; auto; rewrite ? negb_false_iff in SF; unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity. - destruct c0; cbn; try congruence; intros SF; auto; rewrite ? negb_false_iff in SF; unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity. - destruct c0; cbn; try congruence; intros SF; auto; rewrite ? negb_false_iff in SF; unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity. - destruct c0; cbn; try congruence; intros SF; auto; rewrite ? negb_false_iff in SF; unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity. Qed. Lemma cond_valid_pointer_eq: forall cond args m1 m2, (forall b z, Mem.valid_pointer m1 b z = Mem.valid_pointer m2 b z) -> eval_condition cond args m1 = eval_condition cond args m2. Proof. intros until m2. intro MEM. destruct cond eqn:COND; simpl; try congruence. all: repeat (destruct args; simpl; try congruence); erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto. Qed. Lemma op_valid_pointer_eq: forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2, (forall b z, Mem.valid_pointer m1 b z = Mem.valid_pointer m2 b z) -> eval_operation ge sp op args m1 = eval_operation ge sp op args m2. Proof. intros until m2. destruct op; cbn; try congruence. - intros MEM; destruct cond; cbn; try congruence; repeat (destruct args; cbn; try congruence); erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto. - intros MEM; destruct c0; cbn; try congruence; repeat (destruct args; cbn; try congruence); erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto. - intros MEM; destruct c0; cbn; try congruence; repeat (destruct args; cbn; try congruence); erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto. - intros MEM; destruct c0; cbn; try congruence; repeat (destruct args; cbn; try congruence); erewrite cmpu_bool_valid_pointer_eq || erewrite cmplu_bool_valid_pointer_eq; eauto. Qed. (** Global variables mentioned in an operation or addressing mode *) Definition globals_addressing (addr: addressing) : list ident := match addr with | Aglobal s ofs => s :: nil | _ => nil end. Definition globals_operation (op: operation) : list ident := match op with | Oaddrsymbol s ofs => s :: nil | _ => nil end. (** * Invariance and compatibility properties. *) (** [eval_operation] and [eval_addressing] depend on a global environment for resolving references to global symbols. We show that they give the same results if a global environment is replaced by another that assigns the same addresses to the same symbols. *) Section GENV_TRANSF. Variable F1 F2 V1 V2: Type. Variable ge1: Genv.t F1 V1. Variable ge2: Genv.t F2 V2. Hypothesis agree_on_symbols: forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s. Lemma eval_addressing_preserved: forall sp addr vl, eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl. Proof. intros. unfold eval_addressing; destruct addr; auto. destruct vl; auto. unfold Genv.symbol_address. rewrite agree_on_symbols; auto. Qed. Lemma eval_operation_preserved: forall sp op vl m, eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m. Proof. intros. unfold eval_operation; destruct op; auto. destruct vl; auto. unfold Genv.symbol_address. rewrite agree_on_symbols; auto. Qed. End GENV_TRANSF. (** Compatibility of the evaluation functions with value injections. *) Section EVAL_COMPAT. Variable F1 F2 V1 V2: Type. Variable ge1: Genv.t F1 V1. Variable ge2: Genv.t F2 V2. Variable f: meminj. Variable m1: mem. Variable m2: mem. Hypothesis valid_pointer_inj: forall b1 ofs b2 delta, f b1 = Some(b2, delta) -> Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. Hypothesis weak_valid_pointer_inj: forall b1 ofs b2 delta, f b1 = Some(b2, delta) -> Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. Hypothesis weak_valid_pointer_no_overflow: forall b1 ofs b2 delta, f b1 = Some(b2, delta) -> Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> 0 <= Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) <= Ptrofs.max_unsigned. Hypothesis valid_different_pointers_inj: forall b1 ofs1 b2 ofs2 b1' delta1 b2' delta2, b1 <> b2 -> Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true -> Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true -> f b1 = Some (b1', delta1) -> f b2 = Some (b2', delta2) -> b1' <> b2' \/ Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta1)) <> Ptrofs.unsigned (Ptrofs.add ofs2 (Ptrofs.repr delta2)). Ltac InvInject := match goal with | [ H: Val.inject _ (Vint _) _ |- _ ] => inv H; InvInject | [ H: Val.inject _ (Vfloat _) _ |- _ ] => inv H; InvInject | [ H: Val.inject _ (Vptr _ _) _ |- _ ] => inv H; InvInject | [ H: Val.inject_list _ nil _ |- _ ] => inv H; InvInject | [ H: Val.inject_list _ (_ :: _) _ |- _ ] => inv H; InvInject | _ => idtac end. Lemma eval_condition_inj: forall cond vl1 vl2 b, Val.inject_list f vl1 vl2 -> eval_condition cond vl1 m1 = Some b -> eval_condition cond vl2 m2 = Some b. Proof. intros. destruct cond; cbn in H0; FuncInv; InvInject; cbn; auto. - inv H3; inv H2; cbn in H0; inv H0; auto. - eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies. - inv H3; cbn in H0; inv H0; auto. - eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies. - inv H3; inv H2; cbn in H0; inv H0; auto. - eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies. - inv H3; cbn in H0; inv H0; auto. - eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies. - inv H3; inv H2; cbn in H0; inv H0; auto. - inv H3; inv H2; cbn in H0; inv H0; auto. - inv H3; inv H2; cbn in H0; inv H0; auto. - inv H3; inv H2; cbn in H0; inv H0; auto. Qed. Lemma eval_condition0_inj: forall cond v1 v2 b, Val.inject f v1 v2 -> eval_condition0 cond v1 m1 = Some b -> eval_condition0 cond v2 m2 = Some b. Proof. intros. destruct cond; cbn in H0; FuncInv; InvInject; cbn; auto. - inv H; cbn in *; congruence. - eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies. - inv H; cbn in *; congruence. - eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies. Qed. Ltac TrivialExists := match goal with | [ |- exists v2, Some ?v1 = Some v2 /\ Val.inject _ _ v2 ] => exists v1; split; auto | _ => idtac end. Lemma eval_operation_inj: forall op sp1 vl1 sp2 vl2 v1, (forall id ofs, In id (globals_operation op) -> Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) -> Val.inject f sp1 sp2 -> Val.inject_list f vl1 vl2 -> eval_operation ge1 sp1 op vl1 m1 = Some v1 -> exists v2, eval_operation ge2 sp2 op vl2 m2 = Some v2 /\ Val.inject f v1 v2. Proof. intros until v1; intros GL; intros. destruct op; cbn in H1; cbn; FuncInv; InvInject; TrivialExists. (* addrsymbol *) - apply GL; cbn; auto. (* addrstack *) - apply Val.offset_ptr_inject; auto. (* castsigned *) - inv H4; cbn; auto. - inv H4; cbn; auto. (* add, addimm *) - apply Val.add_inject; auto. - apply Val.add_inject; auto. (* addx, addximm *) - apply Val.add_inject; trivial. inv H4; inv H2; cbn; try destruct (Int.ltu _ _); cbn; auto. - inv H4; cbn; trivial. destruct (Int.ltu _ _); cbn; trivial. (* neg, sub *) - inv H4; cbn; auto. - apply Val.sub_inject; auto. (* revsubimm, revsubx, revsubximm *) - inv H4; cbn; trivial. - apply Val.sub_inject; trivial. inv H4; inv H2; cbn; try destruct (Int.ltu _ _); cbn; auto. - inv H4; cbn; try destruct (Int.ltu _ _); cbn; auto. (* mul, mulimm, mulhs, mulhu *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. - inv H4; inv H2; cbn; auto. - inv H4; inv H2; cbn; auto. (* div, divu *) - inv H4; inv H3; cbn in H1; inv H1. cbn. destruct (_ || _); inv H2. TrivialExists. - inv H4; inv H3; cbn in H1; inv H1. cbn. destruct (Int.eq i0 Int.zero); inv H2. TrivialExists. (* mod, modu *) - inv H4; inv H3; cbn in H1; inv H1. cbn. destruct (_ || _); inv H2. TrivialExists. - inv H4; inv H3; cbn in H1; inv H1. cbn. destruct (Int.eq i0 Int.zero); inv H2. TrivialExists. (* and, andimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* nand, nandimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* or, orimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* nor, norimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* xor, xorimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* nxor, nxorimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* not *) - inv H4; cbn; auto. (* andn, andnimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* orn, ornimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* shl, shlimm *) - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int.iwordsize); auto. - inv H4; cbn; auto. destruct (Int.ltu n Int.iwordsize); auto. (* shr, shrimm *) - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int.iwordsize); auto. - inv H4; cbn; auto. destruct (Int.ltu n Int.iwordsize); auto. (* shru, shruimm *) - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int.iwordsize); auto. - inv H4; cbn; auto. destruct (Int.ltu n Int.iwordsize); auto. (* shrx *) - inv H4; cbn; auto. destruct (Int.ltu n (Int.repr 31)); inv H; cbn; auto. (* rorimm *) - inv H4; cbn; auto. (* madd, maddim *) - inv H2; inv H3; inv H4; cbn; auto. - inv H2; inv H4; cbn; auto. (* msub *) - apply Val.sub_inject; auto. inv H3; inv H2; cbn; auto. (* makelong, highlong, lowlong *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. - inv H4; cbn; auto. (* cast32 *) - inv H4; cbn; auto. - inv H4; cbn; auto. (* addl, addlimm *) - apply Val.addl_inject; auto. - apply Val.addl_inject; auto. (* addxl, addxlimm *) - apply Val.addl_inject; auto. inv H4; cbn; trivial. destruct (Int.ltu _ _); cbn; trivial. - inv H4; cbn; trivial. destruct (Int.ltu _ _); cbn; trivial. (* negl, subl *) - inv H4; cbn; auto. - apply Val.subl_inject; auto. inv H4; inv H2; cbn; trivial; destruct (Int.ltu _ _); cbn; trivial. - inv H4; cbn; trivial; destruct (Int.ltu _ _); cbn; trivial. - inv H4; cbn; auto. - apply Val.subl_inject; auto. (* mull, mullhs, mullhu *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. - inv H4; inv H2; cbn; auto. - inv H4; inv H2; cbn; auto. (* divl, divlu *) - inv H4; inv H3; cbn in H1; inv H1. cbn. destruct (_ || _); inv H2. TrivialExists. - inv H4; inv H3; cbn in H1; inv H1. cbn. destruct (Int64.eq i0 Int64.zero); inv H2. TrivialExists. (* modl, modlu *) - inv H4; inv H3; cbn in H1; inv H1. cbn. destruct (_ || _); inv H2. TrivialExists. - inv H4; inv H3; cbn in H1; inv H1. cbn. destruct (Int64.eq i0 Int64.zero); inv H2. TrivialExists. (* andl, andlimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* nandl, nandlimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* orl, orlimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* norl, norlimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* xorl, xorlimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* nxorl, nxorlimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* notl *) - inv H4; cbn; auto. (* andnl, andnlimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* ornl, ornlimm *) - inv H4; inv H2; cbn; auto. - inv H4; cbn; auto. (* shll, shllimm *) - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto. - inv H4; cbn; auto. destruct (Int.ltu n Int64.iwordsize'); auto. (* shr, shrimm *) - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto. - inv H4; cbn; auto. destruct (Int.ltu n Int64.iwordsize'); auto. (* shru, shruimm *) - inv H4; inv H2; cbn; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto. - inv H4; cbn; auto. destruct (Int.ltu n Int64.iwordsize'); auto. (* shrx *) - inv H4; cbn; auto. destruct (Int.ltu n (Int.repr 63)); cbn; auto. (* maddl, maddlimm *) - apply Val.addl_inject; auto. inv H2; inv H3; inv H4; cbn; auto. - apply Val.addl_inject; auto. inv H4; inv H2; cbn; auto. (* msubl, msublimm *) - apply Val.subl_inject; auto. inv H2; inv H3; inv H4; cbn; auto. (* negf, absf *) - inv H4; cbn; auto. - inv H4; cbn; auto. (* addf, subf *) - inv H4; inv H2; cbn; auto. - inv H4; inv H2; cbn; auto. (* mulf, divf *) - inv H4; inv H2; cbn; auto. - inv H4; inv H2; cbn; auto. (* minf, maxf *) - inv H4; inv H2; cbn; auto. - inv H4; inv H2; cbn; auto. (* fmaddf, fmsubf *) - inv H4; inv H3; inv H2; cbn; auto. - inv H4; inv H3; inv H2; cbn; auto. (* negfs, absfs *) - inv H4; cbn; auto. - inv H4; cbn; auto. (* addfs, subfs *) - inv H4; inv H2; cbn; auto. - inv H4; inv H2; cbn; auto. (* mulfs, divfs *) - inv H4; inv H2; cbn; auto. - inv H4; inv H2; cbn; auto. (* minfs, maxfs *) - inv H4; inv H2; cbn; auto. - inv H4; inv H2; cbn; auto. (* invfs *) - inv H4; cbn; auto. (* fmaddfs, fmsubfs *) - inv H4; inv H3; inv H2; cbn; auto. - inv H4; inv H3; inv H2; cbn; auto. (* singleoffloat, floatofsingle *) - inv H4; cbn; auto. - inv H4; cbn; auto. (* intoffloat, intuoffloat *) - inv H4; cbn; auto. destruct (Float.to_int f0); cbn; auto. - inv H4; cbn; auto. destruct (Float.to_intu f0); cbn; auto. (* intofsingle, intuofsingle *) - inv H4; cbn; auto. destruct (Float32.to_int f0); cbn; auto. - inv H4; cbn; auto. destruct (Float32.to_intu f0); cbn; auto. (* singleofint, singleofintu *) - inv H4; cbn; auto. - inv H4; cbn; auto. (* longoffloat, longuoffloat *) - inv H4; cbn; auto. destruct (Float.to_long f0); cbn; auto. - inv H4; cbn; auto. destruct (Float.to_longu f0); cbn; auto. (* floatoflong, floatoflongu *) - inv H4; cbn; auto. - inv H4; cbn; auto. (* longofsingle, longuofsingle *) - inv H4; cbn; auto. destruct (Float32.to_long f0); cbn; auto. - inv H4; cbn; auto. destruct (Float32.to_longu f0); cbn; auto. (* singleoflong, singleoflongu *) - inv H4; cbn; auto. - inv H4; cbn; auto. (* intofsingle_ne, intuofsingle_ne *) - inv H4; cbn; auto. destruct (Float32.to_int_ne f0); cbn; auto. - inv H4; cbn; auto. destruct (Float32.to_intu_ne f0); cbn; auto. (* longoffloat_ne, longuoffloat_ne *) - inv H4; cbn; auto. destruct (Float.to_long_ne f0); cbn; auto. - inv H4; cbn; auto. destruct (Float.to_longu_ne f0); cbn; auto. (* cmp *) - subst v1. destruct (eval_condition cond vl1 m1) eqn:?. exploit eval_condition_inj; eauto. intros EQ; rewrite EQ. destruct b; cbn; constructor. cbn; constructor. (* extfz *) - unfold extfz. destruct (is_bitfield _ _). + inv H4; trivial. + trivial. (* extfs *) - unfold extfs. destruct (is_bitfield _ _). + inv H4; trivial. + trivial. (* extfzl *) - unfold extfzl. destruct (is_bitfieldl _ _). + inv H4; trivial. + trivial. (* extfsl *) - unfold extfsl. destruct (is_bitfieldl _ _). + inv H4; trivial. + trivial. (* insf *) - unfold insf. destruct (is_bitfield _ _). + inv H4; inv H2; trivial. cbn. destruct (Int.ltu _ _); trivial. cbn. trivial. + trivial. (* insfl *) - unfold insfl. destruct (is_bitfieldl _ _). + inv H4; inv H2; trivial. cbn. destruct (Int.ltu _ _); trivial. cbn. trivial. + trivial. (* Osel *) - apply Val.select_inject; trivial. destruct (eval_condition0 c0 v2 m1) eqn:Hcond. + right. symmetry. eapply eval_condition0_inj; eassumption. + left. trivial. (* Oselimm *) - apply Val.select_inject; trivial. destruct (eval_condition0 _ _ _) eqn:Hcond. + right. symmetry. eapply eval_condition0_inj; eassumption. + left. trivial. (* Osellimm *) - apply Val.select_inject; trivial. destruct (eval_condition0 _ _ _) eqn:Hcond. + right. symmetry. eapply eval_condition0_inj; eassumption. + left. trivial. (* Oabsdiff *) - apply ExtValues.absdiff_inject; trivial. - apply ExtValues.absdiff_inject; trivial. - apply ExtValues.absdiffl_inject; trivial. - apply ExtValues.absdiffl_inject; trivial. Qed. Lemma eval_addressing_inj: forall addr sp1 vl1 sp2 vl2 v1, (forall id ofs, In id (globals_addressing addr) -> Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) -> Val.inject f sp1 sp2 -> Val.inject_list f vl1 vl2 -> eval_addressing ge1 sp1 addr vl1 = Some v1 -> exists v2, eval_addressing ge2 sp2 addr vl2 = Some v2 /\ Val.inject f v1 v2. Proof. intros. destruct addr; cbn in H2; cbn; FuncInv; InvInject; TrivialExists. - apply Val.addl_inject; trivial. destruct v0; destruct v'0; cbn; trivial; destruct (Int.ltu _ _); cbn; trivial; inv H3. apply Val.inject_long. - apply Val.addl_inject; auto. - apply Val.offset_ptr_inject; auto. - apply H; cbn; auto. - apply Val.offset_ptr_inject; auto. Qed. Lemma eval_addressing_inj_none: forall addr sp1 vl1 sp2 vl2, (forall id ofs, In id (globals_addressing addr) -> Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) -> Val.inject f sp1 sp2 -> Val.inject_list f vl1 vl2 -> eval_addressing ge1 sp1 addr vl1 = None -> eval_addressing ge2 sp2 addr vl2 = None. Proof. intros until vl2. intros Hglobal Hinjsp Hinjvl. destruct addr; cbn in *. 1,2: inv Hinjvl; trivial; inv H0; trivial; inv H2; trivial; discriminate. 2,3: inv Hinjvl; trivial; discriminate. inv Hinjvl; trivial; inv H0; trivial; inv H; trivial; discriminate. Qed. End EVAL_COMPAT. (** Compatibility of the evaluation functions with the ``is less defined'' relation over values. *) Section EVAL_LESSDEF. Variable F V: Type. Variable genv: Genv.t F V. Remark valid_pointer_extends: forall m1 m2, Mem.extends m1 m2 -> forall b1 ofs b2 delta, Some(b1, 0) = Some(b2, delta) -> Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. Proof. intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.valid_pointer_extends; eauto. Qed. Remark weak_valid_pointer_extends: forall m1 m2, Mem.extends m1 m2 -> forall b1 ofs b2 delta, Some(b1, 0) = Some(b2, delta) -> Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true. Proof. intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.weak_valid_pointer_extends; eauto. Qed. Remark weak_valid_pointer_no_overflow_extends: forall m1 b1 ofs b2 delta, Some(b1, 0) = Some(b2, delta) -> Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true -> 0 <= Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) <= Ptrofs.max_unsigned. Proof. intros. inv H. rewrite Z.add_0_r. apply Ptrofs.unsigned_range_2. Qed. Remark valid_different_pointers_extends: forall m1 b1 ofs1 b2 ofs2 b1' delta1 b2' delta2, b1 <> b2 -> Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true -> Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true -> Some(b1, 0) = Some (b1', delta1) -> Some(b2, 0) = Some (b2', delta2) -> b1' <> b2' \/ Ptrofs.unsigned(Ptrofs.add ofs1 (Ptrofs.repr delta1)) <> Ptrofs.unsigned(Ptrofs.add ofs2 (Ptrofs.repr delta2)). Proof. intros. inv H2; inv H3. auto. Qed. Lemma eval_condition_lessdef: forall cond vl1 vl2 b m1 m2, Val.lessdef_list vl1 vl2 -> Mem.extends m1 m2 -> eval_condition cond vl1 m1 = Some b -> eval_condition cond vl2 m2 = Some b. Proof. intros. eapply eval_condition_inj with (f := fun b => Some(b, 0)) (m1 := m1). apply valid_pointer_extends; auto. apply weak_valid_pointer_extends; auto. apply weak_valid_pointer_no_overflow_extends. apply valid_different_pointers_extends; auto. rewrite <- val_inject_list_lessdef. eauto. auto. Qed. Lemma eval_operation_lessdef: forall sp op vl1 vl2 v1 m1 m2, Val.lessdef_list vl1 vl2 -> Mem.extends m1 m2 -> eval_operation genv sp op vl1 m1 = Some v1 -> exists v2, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.lessdef v1 v2. Proof. intros. rewrite val_inject_list_lessdef in H. assert (exists v2 : val, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.inject (fun b => Some(b, 0)) v1 v2). eapply eval_operation_inj with (m1 := m1) (sp1 := sp). apply valid_pointer_extends; auto. apply weak_valid_pointer_extends; auto. apply weak_valid_pointer_no_overflow_extends. apply valid_different_pointers_extends; auto. intros. apply val_inject_lessdef. auto. apply val_inject_lessdef; auto. eauto. auto. destruct H2 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto. Qed. Lemma eval_addressing_lessdef: forall sp addr vl1 vl2 v1, Val.lessdef_list vl1 vl2 -> eval_addressing genv sp addr vl1 = Some v1 -> exists v2, eval_addressing genv sp addr vl2 = Some v2 /\ Val.lessdef v1 v2. Proof. intros. rewrite val_inject_list_lessdef in H. assert (exists v2 : val, eval_addressing genv sp addr vl2 = Some v2 /\ Val.inject (fun b => Some(b, 0)) v1 v2). eapply eval_addressing_inj with (sp1 := sp). intros. rewrite <- val_inject_lessdef; auto. rewrite <- val_inject_lessdef; auto. eauto. auto. destruct H1 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto. Qed. Lemma eval_addressing_lessdef_none: forall sp addr vl1 vl2, Val.lessdef_list vl1 vl2 -> eval_addressing genv sp addr vl1 = None -> eval_addressing genv sp addr vl2 = None. Proof. intros until vl2. intros Hlessdef Heval1. destruct addr; cbn in *. 1, 2, 4, 5: inv Hlessdef; trivial; inv H0; trivial; inv H2; trivial; discriminate. inv Hlessdef; trivial. inv H0; trivial. discriminate. Qed. End EVAL_LESSDEF. (** Compatibility of the evaluation functions with memory injections. *) Section EVAL_INJECT. Variable F V: Type. Variable genv: Genv.t F V. Variable f: meminj. Hypothesis globals: meminj_preserves_globals genv f. Variable sp1: block. Variable sp2: block. Variable delta: Z. Hypothesis sp_inj: f sp1 = Some(sp2, delta). Remark symbol_address_inject: forall id ofs, Val.inject f (Genv.symbol_address genv id ofs) (Genv.symbol_address genv id ofs). Proof. intros. unfold Genv.symbol_address. destruct (Genv.find_symbol genv id) eqn:?; auto. exploit (proj1 globals); eauto. intros. econstructor; eauto. rewrite Ptrofs.add_zero; auto. Qed. Lemma eval_condition_inject: forall cond vl1 vl2 b m1 m2, Val.inject_list f vl1 vl2 -> Mem.inject f m1 m2 -> eval_condition cond vl1 m1 = Some b -> eval_condition cond vl2 m2 = Some b. Proof. intros. eapply eval_condition_inj with (f := f) (m1 := m1); eauto. intros; eapply Mem.valid_pointer_inject_val; eauto. intros; eapply Mem.weak_valid_pointer_inject_val; eauto. intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto. intros; eapply Mem.different_pointers_inject; eauto. Qed. Lemma eval_addressing_inject: forall addr vl1 vl2 v1, Val.inject_list f vl1 vl2 -> eval_addressing genv (Vptr sp1 Ptrofs.zero) addr vl1 = Some v1 -> exists v2, eval_addressing genv (Vptr sp2 Ptrofs.zero) (shift_stack_addressing delta addr) vl2 = Some v2 /\ Val.inject f v1 v2. Proof. intros. rewrite eval_shift_stack_addressing. eapply eval_addressing_inj with (sp1 := Vptr sp1 Ptrofs.zero); eauto. intros. apply symbol_address_inject. econstructor; eauto. rewrite Ptrofs.add_zero_l; auto. Qed. Lemma eval_addressing_inject_none: forall addr vl1 vl2, Val.inject_list f vl1 vl2 -> eval_addressing genv (Vptr sp1 Ptrofs.zero) addr vl1 = None -> eval_addressing genv (Vptr sp2 Ptrofs.zero) (shift_stack_addressing delta addr) vl2 = None. Proof. intros. rewrite eval_shift_stack_addressing. eapply eval_addressing_inj_none with (sp1 := Vptr sp1 Ptrofs.zero); eauto. intros. apply symbol_address_inject. econstructor; eauto. rewrite Ptrofs.add_zero_l; auto. Qed. Lemma eval_operation_inject: forall op vl1 vl2 v1 m1 m2, Val.inject_list f vl1 vl2 -> Mem.inject f m1 m2 -> eval_operation genv (Vptr sp1 Ptrofs.zero) op vl1 m1 = Some v1 -> exists v2, eval_operation genv (Vptr sp2 Ptrofs.zero) (shift_stack_operation delta op) vl2 m2 = Some v2 /\ Val.inject f v1 v2. Proof. intros. rewrite eval_shift_stack_operation. cbn. eapply eval_operation_inj with (sp1 := Vptr sp1 Ptrofs.zero) (m1 := m1); eauto. intros; eapply Mem.valid_pointer_inject_val; eauto. intros; eapply Mem.weak_valid_pointer_inject_val; eauto. intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto. intros; eapply Mem.different_pointers_inject; eauto. intros. apply symbol_address_inject. econstructor; eauto. rewrite Ptrofs.add_zero_l; auto. Qed. End EVAL_INJECT. (** * Handling of builtin arguments *) Definition builtin_arg_ok_1 (A: Type) (ba: builtin_arg A) (c: builtin_arg_constraint) := match c, ba with | OK_all, _ => true | OK_const, (BA_int _ | BA_long _ | BA_float _ | BA_single _) => true | OK_addrstack, BA_addrstack _ => true | OK_addressing, BA_addrstack _ => true | OK_addressing, BA_addptr (BA _) (BA_int _) => true | OK_addressing, BA_addptr (BA _) (BA_long _) => true | _, _ => false end. Definition builtin_arg_ok (A: Type) (ba: builtin_arg A) (c: builtin_arg_constraint) := match ba with | (BA _ | BA_splitlong (BA _) (BA _)) => true | _ => builtin_arg_ok_1 ba c end.