(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris-Rocquencourt *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Lesser General Public License as *) (* published by the Free Software Foundation, either version 2.1 of *) (* the License, or (at your option) any later version. *) (* This file is also distributed under the terms of the *) (* INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (* Library of useful Caml <-> Coq conversions *) open Datatypes open BinNums open BinNat open BinInt open BinPos open! Floats (* Coq's [nat] type and some of its operations *) module Nat = struct type t = nat = O | S of t let rec to_int = function | O -> 0 | S n -> succ (to_int n) let rec to_int32 = function | O -> 0l | S n -> Int32.succ(to_int32 n) let rec of_int n = assert (n >= 0); if n = 0 then O else S (of_int (pred n)) let rec of_int32 n = assert (n >= 0l); if n = 0l then O else S (of_int32 (Int32.pred n)) end (* Coq's [positive] type and some of its operations *) module P = struct type t = positive = Coq_xI of t | Coq_xO of t | Coq_xH let one = Coq_xH let succ = Pos.succ let pred = Pos.pred let eq x y = (Pos.compare x y = Eq) let lt x y = (Pos.compare x y = Lt) let gt x y = (Pos.compare x y = Gt) let le x y = (Pos.compare x y <> Gt) let ge x y = (Pos.compare x y <> Lt) let compare x y = match Pos.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1 let rec to_int = function | Coq_xI p -> let n = to_int p in n + n + 1 | Coq_xO p -> let n = to_int p in n + n | Coq_xH -> 1 let rec of_int n = if n land 1 = 0 then if n = 0 then assert false else Coq_xO (of_int (n lsr 1)) else if n = 1 then Coq_xH else Coq_xI (of_int (n lsr 1)) let rec to_int32 = function | Coq_xI p -> Int32.add (Int32.shift_left (to_int32 p) 1) 1l | Coq_xO p -> Int32.shift_left (to_int32 p) 1 | Coq_xH -> 1l let rec of_int32 n = if Int32.logand n 1l = 0l then if n = 0l then assert false else Coq_xO (of_int32 (Int32.shift_right_logical n 1)) else if n = 1l then Coq_xH else Coq_xI (of_int32 (Int32.shift_right_logical n 1)) let rec to_int64 = function | Coq_xI p -> Int64.add (Int64.shift_left (to_int64 p) 1) 1L | Coq_xO p -> Int64.shift_left (to_int64 p) 1 | Coq_xH -> 1L let rec of_int64 n = if Int64.logand n 1L = 0L then if n = 0L then assert false else Coq_xO (of_int64 (Int64.shift_right_logical n 1)) else if n = 1L then Coq_xH else Coq_xI (of_int64 (Int64.shift_right_logical n 1)) let (=) = eq let (<) = lt let (<=) = le let (>) = gt let (>=) = ge end (* Coq's [N] type and some of its operations *) module N = struct type t = coq_N = N0 | Npos of positive let zero = N0 let one = Npos Coq_xH let eq x y = (N.compare x y = Eq) let lt x y = (N.compare x y = Lt) let gt x y = (N.compare x y = Gt) let le x y = (N.compare x y <> Gt) let ge x y = (N.compare x y <> Lt) let compare x y = match N.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1 let to_int = function | N0 -> 0 | Npos p -> P.to_int p let of_int n = if n = 0 then N0 else Npos (P.of_int n) let to_int32 = function | N0 -> 0l | Npos p -> P.to_int32 p let of_int32 n = if n = 0l then N0 else Npos (P.of_int32 n) let to_int64 = function | N0 -> 0L | Npos p -> P.to_int64 p let of_int64 n = if n = 0L then N0 else Npos (P.of_int64 n) let (=) = eq let (<) = lt let (<=) = le let (>) = gt let (>=) = ge end (* Coq's [Z] type and some of its operations *) module Z = struct type t = coq_Z = Z0 | Zpos of positive | Zneg of positive let zero = Z0 let one = Zpos Coq_xH let mone = Zneg Coq_xH let succ = Z.succ let pred = Z.pred let neg = Z.opp let add = Z.add let sub = Z.sub let mul = Z.mul let div = Z.div let modulo = Z.modulo let eq x y = (Z.compare x y = Eq) let lt x y = (Z.compare x y = Lt) let gt x y = (Z.compare x y = Gt) let le x y = (Z.compare x y <> Gt) let ge x y = (Z.compare x y <> Lt) let compare x y = match Z.compare x y with Lt -> -1 | Eq -> 0 | Gt -> 1 let to_int = function | Z0 -> 0 | Zpos p -> P.to_int p | Zneg p -> - (P.to_int p) let of_sint n = if n = 0 then Z0 else if n > 0 then Zpos (P.of_int n) else Zneg (P.of_int (-n)) let of_uint n = if n = 0 then Z0 else Zpos (P.of_int n) let to_int32 = function | Z0 -> 0l | Zpos p -> P.to_int32 p | Zneg p -> Int32.neg (P.to_int32 p) let of_sint32 n = if n = 0l then Z0 else if n > 0l then Zpos (P.of_int32 n) else Zneg (P.of_int32 (Int32.neg n)) let of_uint32 n = if n = 0l then Z0 else Zpos (P.of_int32 n) let to_int64 = function | Z0 -> 0L | Zpos p -> P.to_int64 p | Zneg p -> Int64.neg (P.to_int64 p) let of_sint64 n = if n = 0L then Z0 else if n > 0L then Zpos (P.of_int64 n) else Zneg (P.of_int64 (Int64.neg n)) let of_uint64 n = if n = 0L then Z0 else Zpos (P.of_int64 n) let of_N = Z.of_N let rec to_string_rec base buff x = if x = Z0 then () else begin let (q, r) = Z.div_eucl x base in to_string_rec base buff q; let d = to_int r in Buffer.add_char buff (Char.chr (if d < 10 then Char.code '0' + d else Char.code 'A' + d - 10)) end let to_string_aux base x = match x with | Z0 -> "0" | Zpos _ -> let buff = Buffer.create 10 in to_string_rec base buff x; Buffer.contents buff | Zneg p -> let buff = Buffer.create 10 in Buffer.add_char buff '-'; to_string_rec base buff (Zpos p); Buffer.contents buff let dec = to_string_aux (of_uint 10) let hex = to_string_aux (of_uint 16) let to_string = dec let is_power2 x = gt x zero && eq (Z.coq_land x (pred x)) zero let (+) = add let (-) = sub let ( * ) = mul let ( / ) = div let (=) = eq let (<) = lt let (<=) = le let (>) = gt let (>=) = ge end (* Alternate names *) let camlint_of_coqint : Integers.Int.int -> int32 = Z.to_int32 let coqint_of_camlint : int32 -> Integers.Int.int = Z.of_uint32 (* interpret the int32 as unsigned so that result Z is in range for int *) let camlint64_of_coqint : Integers.Int64.int -> int64 = Z.to_int64 let coqint_of_camlint64 : int64 -> Integers.Int64.int = Z.of_uint64 (* interpret the int64 as unsigned so that result Z is in range for int *) let camlint64_of_ptrofs : Integers.Ptrofs.int -> int64 = fun x -> Z.to_int64 (Integers.Ptrofs.signed x) (* Atoms (positive integers representing strings) *) type atom = positive let atom_of_string = (Hashtbl.create 17 : (string, atom) Hashtbl.t) let string_of_atom = (Hashtbl.create 17 : (atom, string) Hashtbl.t) let next_atom = ref Coq_xH let use_canonical_atoms = ref false (* If [use_canonical_atoms] is false, strings are numbered from 1 up in the order in which they are encountered. This produces small numbers, and is therefore efficient, but the number for a given string may differ between the compilation of different units. If [use_canonical_atoms] is true, strings are Huffman-encoded as bit sequences, which are then encoded as positive numbers. The same string is always represented by the same number in all compilation units. However, the numbers are bigger than in the first implementation. Also, this places a hard limit on the number of fresh identifiers that can be generated starting with [first_unused_ident]. *) let rec append_bits_pos nbits n p = if nbits <= 0 then p else if n land 1 = 0 then Coq_xO (append_bits_pos (nbits - 1) (n lsr 1) p) else Coq_xI (append_bits_pos (nbits - 1) (n lsr 1) p) (* The encoding of strings as bit sequences is optimized for C identifiers: - numbers are encoded as a 6-bit integer between 0 and 9 - lowercase letters are encoded as a 6-bit integer between 10 and 35 - uppercase letters are encoded as a 6-bit integer between 36 and 61 - the underscore character is encoded as the 6-bit integer 62 - all other characters are encoded as 6 "one" bits followed by the 8-bit encoding of the character. *) let append_char_pos c p = match c with | '0'..'9' -> append_bits_pos 6 (Char.code c - Char.code '0') p | 'a'..'z' -> append_bits_pos 6 (Char.code c - Char.code 'a' + 10) p | 'A'..'Z' -> append_bits_pos 6 (Char.code c - Char.code 'A' + 36) p | '_' -> append_bits_pos 6 62 p | _ -> append_bits_pos 6 63 (append_bits_pos 8 (Char.code c) p) (* The empty string is represented as the positive "1", that is, [xH]. *) let pos_of_string s = let rec encode i accu = if i < 0 then accu else encode (i - 1) (append_char_pos s.[i] accu) in encode (String.length s - 1) Coq_xH let fresh_atom () = let a = !next_atom in next_atom := Pos.succ !next_atom; a let intern_string s = try Hashtbl.find atom_of_string s with Not_found -> let a = if !use_canonical_atoms then pos_of_string s else fresh_atom () in Hashtbl.add atom_of_string s a; Hashtbl.add string_of_atom a s; a let extern_atom a = try Hashtbl.find string_of_atom a with Not_found -> Printf.sprintf "$%d" (P.to_int a) (* Ignoring the terminating "1" bit, canonical encodings of strings can be viewed as lists of bits, formed by concatenation of 6-bit fragments (for letters, numbers, and underscore) and 14-bit fragments (for other characters). Hence, not all positive numbers are canonical encodings: only those whose log2 is of the form [6n + 14m]. Here are the first intervals of positive numbers corresponding to strings: - [1, 1] for the empty string - [2^6, 2^7-1] for one "compact" character - [2^12, 2^13-1] for two "compact" characters - [2^14, 2^14-1] for one "escaped" character Hence, between 2^7 and 2^12 - 1, we have 3968 consecutive positive numbers that cannot be the encoding of a string. These are the positive numbers we'll use as temporaries in the SimplExpr pass if canonical atoms are in use. If short atoms are used, we just number the temporaries consecutively starting one above the last generated atom. *) let first_unused_ident () = if !use_canonical_atoms then P.of_int 128 else !next_atom (* Strings *) let camlstring_of_coqstring (s: char list) = let r = Bytes.create (List.length s) in let rec fill pos = function | [] -> r | c :: s -> Bytes.set r pos c; fill (pos + 1) s in Bytes.to_string (fill 0 s) let coqstring_of_camlstring s = let rec cstring accu pos = if pos < 0 then accu else cstring (s.[pos] :: accu) (pos - 1) in cstring [] (String.length s - 1) let coqstring_uppercase_ascii_of_camlstring s = let rec cstring accu pos = if pos < 0 then accu else let d = if s.[pos] >= 'a' && s.[pos] <= 'z' then Char.chr (Char.code s.[pos] - 32) else s.[pos] in cstring (d :: accu) (pos - 1) in cstring [] (String.length s - 1) (* Floats *) let coqfloat_of_camlfloat f = Float.of_bits(coqint_of_camlint64(Int64.bits_of_float f)) let camlfloat_of_coqfloat f = Int64.float_of_bits(camlint64_of_coqint(Float.to_bits f)) let coqfloat32_of_camlfloat f = Float32.of_bits(coqint_of_camlint(Int32.bits_of_float f)) let camlfloat_of_coqfloat32 f = Int32.float_of_bits(camlint_of_coqint(Float32.to_bits f))