(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Lesser General Public License as *) (* published by the Free Software Foundation, either version 2.1 of *) (* the License, or (at your option) any later version. *) (* This file is also distributed under the terms of the *) (* INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** This library provides type classes and tactics to decide logical propositions by reflection into computable Boolean equalities. It extends the [DecidableClass] module from the standard library of Coq 8.5 with more instances of decidable properties, including universal and existential quantification over finite types. *) Require Export DecidableClass. Require Import Coqlib. Ltac decide_goal := eapply Decidable_sound; reflexivity. (** Deciding logical connectives *) Global Program Instance Decidable_not (P: Prop) (dP: Decidable P) : Decidable (~ P) := { Decidable_witness := negb (@Decidable_witness P dP) }. Next Obligation. rewrite negb_true_iff. split. apply Decidable_complete_alt. apply Decidable_sound_alt. Qed. Global Program Instance Decidable_equiv (P Q: Prop) (dP: Decidable P) (dQ: Decidable Q) : Decidable (P <-> Q) := { Decidable_witness := Bool.eqb (@Decidable_witness P dP) (@Decidable_witness Q dQ) }. Next Obligation. rewrite eqb_true_iff. split; intros. split; intros; eapply Decidable_sound; [rewrite <- H | rewrite H]; eapply Decidable_complete; eauto. destruct (@Decidable_witness Q dQ) eqn:D. eapply Decidable_complete; rewrite H; eapply Decidable_sound; eauto. eapply Decidable_sound_alt; rewrite H; eapply Decidable_complete_alt; eauto. Qed. Global Program Instance Decidable_and (P Q: Prop) (dP: Decidable P) (dQ: Decidable Q) : Decidable (P /\ Q) := { Decidable_witness := @Decidable_witness P dP && @Decidable_witness Q dQ }. Next Obligation. rewrite andb_true_iff. rewrite ! Decidable_spec. tauto. Qed. Global Program Instance Decidable_or (P Q: Prop) (dP: Decidable P) (dQ: Decidable Q) : Decidable (P \/ Q) := { Decidable_witness := @Decidable_witness P dP || @Decidable_witness Q dQ }. Next Obligation. rewrite orb_true_iff. rewrite ! Decidable_spec. tauto. Qed. Global Program Instance Decidable_implies (P Q: Prop) (dP: Decidable P) (dQ: Decidable Q) : Decidable (P -> Q) := { Decidable_witness := if @Decidable_witness P dP then @Decidable_witness Q dQ else true }. Next Obligation. split. - intros. rewrite Decidable_complete in H by auto. eapply Decidable_sound; eauto. - intros. destruct (@Decidable_witness P dP) eqn:WP; auto. eapply Decidable_complete. apply H. eapply Decidable_sound; eauto. Qed. (** Deciding equalities. *) Program Definition Decidable_eq {A: Type} (eqdec: forall (x y: A), {x=y} + {x<>y}) (x y: A) : Decidable (eq x y) := {| Decidable_witness := proj_sumbool (eqdec x y) |}. Next Obligation. split; intros. InvBooleans. auto. subst y. apply dec_eq_true. Qed. Global Program Instance Decidable_eq_bool : forall (x y : bool), Decidable (eq x y) := { Decidable_witness := Bool.eqb x y }. Next Obligation. apply eqb_true_iff. Qed. Global Program Instance Decidable_eq_nat : forall (x y : nat), Decidable (eq x y) := { Decidable_witness := Nat.eqb x y }. Next Obligation. apply Nat.eqb_eq. Qed. Global Program Instance Decidable_eq_positive : forall (x y : positive), Decidable (eq x y) := { Decidable_witness := Pos.eqb x y }. Next Obligation. apply Pos.eqb_eq. Qed. Global Program Instance Decidable_eq_Z : forall (x y : Z), Decidable (eq x y) := { Decidable_witness := Z.eqb x y }. Next Obligation. apply Z.eqb_eq. Qed. (** Deciding order on Z *) Global Program Instance Decidable_le_Z : forall (x y: Z), Decidable (x <= y) := { Decidable_witness := Z.leb x y }. Next Obligation. apply Z.leb_le. Qed. Global Program Instance Decidable_lt_Z : forall (x y: Z), Decidable (x < y) := { Decidable_witness := Z.ltb x y }. Next Obligation. apply Z.ltb_lt. Qed. Global Program Instance Decidable_ge_Z : forall (x y: Z), Decidable (x >= y) := { Decidable_witness := Z.geb x y }. Next Obligation. rewrite Z.geb_le. intuition lia. Qed. Global Program Instance Decidable_gt_Z : forall (x y: Z), Decidable (x > y) := { Decidable_witness := Z.gtb x y }. Next Obligation. rewrite Z.gtb_lt. intuition lia. Qed. Global Program Instance Decidable_divides : forall (x y: Z), Decidable (x | y) := { Decidable_witness := Z.eqb y ((y / x) * x)%Z }. Next Obligation. split. intros. apply Z.eqb_eq in H. exists (y / x). auto. intros [k EQ]. apply Z.eqb_eq. destruct (Z.eq_dec x 0). subst x. rewrite Z.mul_0_r in EQ. subst y. reflexivity. assert (k = y / x). { apply Zdiv_unique_full with 0. red; lia. rewrite EQ; ring. } congruence. Qed. (** Deciding properties over lists *) Global Program Instance Decidable_forall_in_list : forall (A: Type) (l: list A) (P: A -> Prop) (dP: forall x:A, Decidable (P x)), Decidable (forall x:A, In x l -> P x) := { Decidable_witness := List.forallb (fun x => @Decidable_witness (P x) (dP x)) l }. Next Obligation. rewrite List.forallb_forall. split; intros. - eapply Decidable_sound; eauto. - eapply Decidable_complete; eauto. Qed. Global Program Instance Decidable_exists_in_list : forall (A: Type) (l: list A) (P: A -> Prop) (dP: forall x:A, Decidable (P x)), Decidable (exists x:A, In x l /\ P x) := { Decidable_witness := List.existsb (fun x => @Decidable_witness (P x) (dP x)) l }. Next Obligation. rewrite List.existsb_exists. split. - intros (x & U & V). exists x; split; auto. eapply Decidable_sound; eauto. - intros (x & U & V). exists x; split; auto. eapply Decidable_complete; eauto. Qed. (** Types with finitely many elements. *) Class Finite (T: Type) := { Finite_elements: list T; Finite_elements_spec: forall x:T, In x Finite_elements }. (** Deciding forall and exists quantification over finite types. *) Global Program Instance Decidable_forall : forall (T: Type) (fT: Finite T) (P: T -> Prop) (dP: forall x:T, Decidable (P x)), Decidable (forall x, P x) := { Decidable_witness := List.forallb (fun x => @Decidable_witness (P x) (dP x)) (@Finite_elements T fT) }. Next Obligation. rewrite List.forallb_forall. split; intros. - eapply Decidable_sound; eauto. apply H. apply Finite_elements_spec. - eapply Decidable_complete; eauto. Qed. Global Program Instance Decidable_exists : forall (T: Type) (fT: Finite T) (P: T -> Prop) (dP: forall x:T, Decidable (P x)), Decidable (exists x, P x) := { Decidable_witness := List.existsb (fun x => @Decidable_witness (P x) (dP x)) (@Finite_elements T fT) }. Next Obligation. rewrite List.existsb_exists. split. - intros (x & A & B). exists x. eapply Decidable_sound; eauto. - intros (x & A). exists x; split. eapply Finite_elements_spec. eapply Decidable_complete; eauto. Qed. (** Some examples of finite types. *) Global Program Instance Finite_bool : Finite bool := { Finite_elements := false :: true :: nil }. Next Obligation. destruct x; auto. Qed. Global Program Instance Finite_pair : forall (A B: Type) (fA: Finite A) (fB: Finite B), Finite (A * B) := { Finite_elements := list_prod (@Finite_elements A fA) (@Finite_elements B fB) }. Next Obligation. apply List.in_prod; eapply Finite_elements_spec. Qed. Global Program Instance Finite_option : forall (A: Type) (fA: Finite A), Finite (option A) := { Finite_elements := None :: List.map (@Some A) (@Finite_elements A fA) }. Next Obligation. destruct x; auto. right; apply List.in_map; eapply Finite_elements_spec. Qed.