(** Impure monad for interface with impure code *) Require Export Program. Require Export ImpConfig. (* Theory: bind + embed => dbind Program Definition dbind {A B} (k1: t A) (k2: forall (a:A), (mayRet k1 a) -> t B) : t B := bind (mk_annot k1) (fun a => k2 a _). Lemma mayRet_dbind: forall (A B:Type) k1 k2 (b:B), mayRet (dbind k1 k2) b -> exists a:A, exists H: (mayRet k1 a), mayRet (k2 a H) b. Proof. intros A B k1 k2 b H; decompose [ex and] (mayRet_bind _ _ _ _ _ H). eapply ex_intro. eapply ex_intro. eauto. Qed. *) Definition wlp {A:Type} (k: t A) (P: A -> Prop): Prop := forall a, mayRet k a -> P a. (* Notations *) (* Print Grammar constr. *) Module Notations. Bind Scope impure_scope with t. Delimit Scope impure_scope with impure. Notation "?? A" := (t A) (at level 0, A at level 95): impure_scope. Notation "k '~~>' a" := (mayRet k a) (at level 75, no associativity): impure_scope. Notation "'RET' a" := (ret a) (at level 0): impure_scope. Notation "'DO' x '<~' k1 ';;' k2" := (bind k1 (fun x => k2)) (at level 55, k1 at level 53, x at level 99, right associativity): impure_scope. Notation "k1 ';;' k2" := (bind k1 (fun _ => k2)) (at level 55, right associativity): impure_scope. Notation "'WHEN' k '~>' a 'THEN' R" := (wlp k (fun a => R)) (at level 73, R at level 100, right associativity): impure_scope. Notation "'ASSERT' P" := (ret (A:=P) _) (at level 0, only parsing): impure_scope. End Notations. Import Notations. Local Open Scope impure. Goal ((?? list nat * ??nat -> nat) = ((?? ((list nat) * ?? nat) -> nat)))%type. Proof. apply refl_equal. Qed. (* wlp lemmas for tactics *) Lemma wlp_unfold A (k:??A)(P: A -> Prop): (forall a, k ~~> a -> P a) -> wlp k P. Proof. auto. Qed. Lemma wlp_monotone A (k:?? A) (P1 P2: A -> Prop): wlp k P1 -> (forall a, k ~~> a -> P1 a -> P2 a) -> wlp k P2. Proof. unfold wlp; eauto. Qed. Lemma wlp_forall A B (k:?? A) (P: B -> A -> Prop): (forall x, wlp k (P x)) -> wlp k (fun a => forall x, P x a). Proof. unfold wlp; auto. Qed. Lemma wlp_ret A (P: A -> Prop) a: P a -> wlp (ret a) P. Proof. unfold wlp. intros H b H0. rewrite <- (mayRet_ret _ a b H0). auto. Qed. Lemma wlp_bind A B (k1:??A) (k2: A -> ??B) (P: B -> Prop): wlp k1 (fun a => wlp (k2 a) P) -> wlp (bind k1 k2) P. Proof. unfold wlp. intros H a H0. case (mayRet_bind _ _ _ _ _ H0); clear H0. intuition eauto. Qed. Lemma wlp_ifbool A (cond: bool) (k1 k2: ?? A) (P: A -> Prop): (cond=true -> wlp k1 P) -> (cond=false -> wlp k2 P) -> wlp (if cond then k1 else k2) P. Proof. destruct cond; auto. Qed. Lemma wlp_letprod (A B C: Type) (p: A*B) (k: A -> B -> ??C) (P: C -> Prop): (wlp (k (fst p) (snd p)) P) -> (wlp (let (x,y):=p in (k x y)) P). Proof. destruct p; simpl; auto. Qed. Lemma wlp_sum (A B C: Type) (x: A+B) (k1: A -> ??C) (k2: B -> ??C) (P: C -> Prop): (forall a, x=inl a -> wlp (k1 a) P) -> (forall b, x=inr b -> wlp (k2 b) P) -> (wlp (match x with inl a => k1 a | inr b => k2 b end) P). Proof. destruct x; simpl; auto. Qed. Lemma wlp_sumbool (A B:Prop) (C: Type) (x: {A}+{B}) (k1: A -> ??C) (k2: B -> ??C) (P: C -> Prop): (forall a, x=left a -> wlp (k1 a) P) -> (forall b, x=right b -> wlp (k2 b) P) -> (wlp (match x with left a => k1 a | right b => k2 b end) P). Proof. destruct x; simpl; auto. Qed. Lemma wlp_option (A B: Type) (x: option A) (k1: A -> ??B) (k2: ??B) (P: B -> Prop): (forall a, x=Some a -> wlp (k1 a) P) -> (x=None -> wlp k2 P) -> (wlp (match x with Some a => k1 a | None => k2 end) P). Proof. destruct x; simpl; auto. Qed. (* Tactics MAIN tactics: - xtsimplify "base": simplification using from hints in "base" database (in particular "wlp" lemmas). - xtstep "base": only one step of simplification. For good performance, it is recommanded to have several databases. *) Ltac introcomp := let a:= fresh "exta" in let H:= fresh "Hexta" in intros a H. (* decompose the current wlp goal using "introduction" rules *) Ltac wlp_decompose := apply wlp_ret || apply wlp_bind || apply wlp_ifbool || apply wlp_letprod || apply wlp_sum || apply wlp_sumbool || apply wlp_option . (* this tactic simplifies the current "wlp" goal using any hint found via tactic "hint". *) Ltac apply_wlp_hint hint := eapply wlp_monotone; [ hint; fail | idtac ] ; simpl; introcomp. (* one step of wlp_xsimplify *) Ltac wlp_step hint := match goal with | |- (wlp _ _) => wlp_decompose || apply_wlp_hint hint || (apply wlp_unfold; introcomp) end. (* main general tactic WARNING: for the good behavior of "wlp_xsimplify", "hint" must at least perform a "eauto". Example of use: wlp_xsimplify (intuition eauto with base). *) Ltac wlp_xsimplify hint := repeat (intros; subst; wlp_step hint; simpl; (tauto || hint)). Create HintDb wlp discriminated. Ltac wlp_simplify := wlp_xsimplify ltac:(intuition eauto with wlp).