(** Extension of Coq language with generic loops. *) Require Export ImpIO. Import Notations. Local Open Scope impure. (** While-loop iterations *) Axiom loop: forall {A B}, A * (A -> ?? (A+B)) -> ?? B. Extract Constant loop => "ImpLoopOracles.loop". Section While_Loop. (** Local Definition of "while-loop-invariant" *) Let wli {S} cond body (I: S -> Prop) := forall s, I s -> cond s = true -> WHEN (body s) ~> s' THEN I s'. Program Definition while {S} cond body (I: S -> Prop | wli cond body I) s0: ?? {s | (I s0 -> I s) /\ cond s = false} := loop (A:={s | I s0 -> I s}) (s0, fun s => match (cond s) with | true => DO s' <~ mk_annot (body s) ;; RET (inl (A:={s | I s0 -> I s }) s') | false => RET (inr (B:={s | (I s0 -> I s) /\ cond s = false}) s) end). Obligation 2. unfold wli, wlp in * |-; eauto. Qed. Extraction Inline while. End While_Loop. Section Loop_Until_None. (** useful to demonstrate a UNSAT property *) (** Local Definition of "loop-until-None-invariant" *) Let luni {S} (body: S -> ?? (option S)) (I: S -> Prop) := forall s, I s -> WHEN (body s) ~> s' THEN match s' with Some s1 => I s1 | None => False end. Program Definition loop_until_None {S} body (I: S -> Prop | luni body I) s0: ?? ~(I s0) := loop (A:={s | I s0 -> I s}) (s0, fun s => DO s' <~ mk_annot (body s) ;; match s' with | Some s1 => RET (inl (A:={s | I s0 -> I s }) s1) | None => RET (inr (B:=~(I s0)) _) end). Obligation 2. refine (H2 s _ _ H0). auto. Qed. Obligation 3. intros X; refine (H1 s _ _ H). auto. Qed. Extraction Inline loop_until_None. End Loop_Until_None. (*********************************************) (* A generic fixpoint from an equality test *) Record answ {A B: Type} {R: A -> B -> Prop} := { input: A ; output: B ; correct: R input output }. Arguments answ {A B}. Definition msg: pstring := "wapply fails". Definition beq_correct {A} (beq: A -> A -> ?? bool) := forall x y, WHEN beq x y ~> b THEN b=true -> x=y. Definition wapply {A B} {R: A -> B -> Prop} (beq: A -> A -> ?? bool) (k: A -> ?? answ R) (x:A): ?? B := DO a <~ k x;; DO b <~ beq x (input a) ;; assert_b b msg;; RET (output a). Lemma wapply_correct A B (R: A -> B -> Prop) (beq: A -> A -> ?? bool) (k: A -> ?? answ R) x: beq_correct beq -> WHEN wapply beq k x ~> y THEN R x y. Proof. unfold beq_correct; wlp_simplify. destruct exta; simpl; auto. Qed. Local Hint Resolve wapply_correct: wlp. Global Opaque wapply. Axiom xrec_set_option: recMode -> ?? unit. Extract Constant xrec_set_option => "ImpLoopOracles.xrec_set_option". (* TODO: generalizaton to get beq (and a Hash function ?) in parameters ? *) Axiom xrec: forall {A B}, ((A -> ?? B) -> A -> ?? B) -> ?? (A -> ?? B). Extract Constant xrec => "ImpLoopOracles.xrec". Definition rec_preserv {A B} (recF: (A -> ?? B) -> A -> ?? B) (R: A -> B -> Prop) := forall f x, WHEN recF f x ~> z THEN (forall x', WHEN f x' ~> y THEN R x' y) -> R x z. Program Definition rec {A B} beq recF (R: A -> B -> Prop) (H1: rec_preserv recF R) (H2: beq_correct beq): ?? (A -> ?? B) := DO f <~ xrec (B:=answ R) (fun f x => DO y <~ mk_annot (recF (wapply beq f) x) ;; RET {| input := x; output := `y |});; RET (wapply beq f). Obligation 1. eapply H1; eauto. clear H H1. wlp_simplify. Qed. Lemma rec_correct A B beq recF (R: A -> B -> Prop) (H1: rec_preserv recF R) (H2: beq_correct beq): WHEN rec beq recF R H1 H2 ~> f THEN forall x, WHEN f x ~> y THEN R x y. Proof. wlp_simplify. Qed. Hint Resolve rec_correct: wlp. Global Opaque rec.