(** Impure monad for interface with impure code *) Require Import Program. Module Type MayReturnMonad. Axiom t: Type -> Type. Axiom mayRet: forall {A:Type}, t A -> A -> Prop. Axiom ret: forall {A}, A -> t A. Axiom bind: forall {A B}, (t A) -> (A -> t B) -> t B. Axiom mk_annot: forall {A} (k: t A), t { a: A | mayRet k a }. Axiom mayRet_ret: forall A (a b:A), mayRet (ret a) b -> a=b. Axiom mayRet_bind: forall A B k1 k2 (b:B), mayRet (bind k1 k2) b -> exists a:A, mayRet k1 a /\ mayRet (k2 a) b. End MayReturnMonad. (** Model of impure computation as predicate *) Module PowerSetMonad<: MayReturnMonad. Definition t (A:Type) := A -> Prop. Definition mayRet {A:Type} (k: t A) a: Prop := k a. Definition ret {A:Type} (a:A) := eq a. Definition bind {A B:Type} (k1: t A) (k2: A -> t B) := fun b => exists a, k1 a /\ k2 a b. Definition mk_annot {A} (k: t A) : t { a | mayRet k a } := fun _ => True. Lemma mayRet_ret A (a b:A): mayRet (ret a) b -> a=b. Proof. unfold mayRet, ret. firstorder. Qed. Lemma mayRet_bind A B k1 k2 (b:B): mayRet (bind k1 k2) b -> exists (a:A), mayRet k1 a /\ mayRet (k2 a) b. Proof. unfold mayRet, bind. firstorder. Qed. End PowerSetMonad. (** The identity interpretation *) Module IdentityMonad<: MayReturnMonad. Definition t (A:Type) := A. (* may-return semantics of computations *) Definition mayRet {A:Type} (a b:A): Prop := a=b. Definition ret {A:Type} (a:A) := a. Definition bind {A B:Type} (k1: A) (k2: A -> B) := k2 k1. Definition mk_annot {A} (k: t A) : t { a: A | mayRet k a } := exist _ k (eq_refl k) . Lemma mayRet_ret (A:Type) (a b:A): mayRet (ret a) b -> a=b. Proof. intuition. Qed. Lemma mayRet_bind (A B:Type) (k1:t A) k2 (b:B): mayRet (bind k1 k2) b -> exists (a:A), mayRet k1 a /\ mayRet (k2 a) b. Proof. firstorder. Qed. End IdentityMonad. (** Model of impure computation as state-transformers *) Module StateMonad<: MayReturnMonad. Parameter St: Type. (* A global state *) Definition t (A:Type) := St -> A * St. Definition mayRet {A:Type} (k: t A) a: Prop := exists s, fst (k s)=a. Definition ret {A:Type} (a:A) := fun (s:St) => (a,s). Definition bind {A B:Type} (k1: t A) (k2: A -> t B) := fun s0 => let r := k1 s0 in k2 (fst r) (snd r). Program Definition mk_annot {A} (k: t A) : t { a | mayRet k a } := fun s0 => let r := k s0 in (exist _ (fst r) _, snd r). Obligation 1. unfold mayRet; eauto. Qed. Lemma mayRet_ret {A:Type} (a b:A): mayRet (ret a) b -> a=b. Proof. unfold mayRet, ret. firstorder. Qed. Lemma mayRet_bind {A B:Type} k1 k2 (b:B): mayRet (bind k1 k2) b -> exists (a:A), mayRet k1 a /\ mayRet (k2 a) b. Proof. unfold mayRet, bind. firstorder eauto. Qed. End StateMonad. (** The deferred interpretation *) Module DeferredMonad<: MayReturnMonad. Definition t (A:Type) := unit -> A. (* may-return semantics of computations *) Definition mayRet {A:Type} (a: t A) (b:A): Prop := a tt=b. Definition ret {A:Type} (a:A) : t A := fun _ => a. Definition bind {A B:Type} (k1: t A) (k2: A -> t B) : t B := fun _ => k2 (k1 tt) tt. Definition mk_annot {A} (k: t A) : t { a: A | mayRet k a } := fun _ => exist _ (k tt) (eq_refl (k tt)). Lemma mayRet_ret (A:Type) (a b: A): mayRet (ret a) b -> a=b. Proof. intuition. Qed. Lemma mayRet_bind (A B:Type) (k1:t A) k2 (b:B): mayRet (bind k1 k2) b -> exists (a:A), mayRet k1 a /\ mayRet (k2 a) b. Proof. firstorder. Qed. End DeferredMonad.