(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris *) (* Prashanth Mundkur, SRI International *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* The contributions by Prashanth Mundkur are reused and adapted *) (* under the terms of a Contributor License Agreement between *) (* SRI International and INRIA. *) (* *) (* *********************************************************************) (** Correctness of instruction selection for 64-bit integer operations *) Require Import String Coqlib Maps Integers Floats Errors. Require Archi. Require Import AST Values ExtValues Memory Globalenvs Events. Require Import Cminor Op CminorSel. Require Import OpHelpers OpHelpersproof. Require Import SelectOp SelectOpproof SplitLong SplitLongproof. Require Import SelectLong. Require Import DecBoolOps. Local Open Scope cminorsel_scope. Local Open Scope string_scope. (** * Correctness of the instruction selection functions for 64-bit operators *) Section CMCONSTR. Variable prog: program. Variable hf: helper_functions. Hypothesis HELPERS: helper_functions_declared prog hf. Let ge := Genv.globalenv prog. Variable sp: val. Variable e: env. Variable m: mem. Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop := forall le a x, eval_expr ge sp e m le a x -> exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v. Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop := forall le a x b y, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v. Definition partial_unary_constructor_sound (cstr: expr -> expr) (sem: val -> option val) : Prop := forall le a x y, eval_expr ge sp e m le a x -> sem x = Some y -> exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef y v. Definition partial_binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> option val) : Prop := forall le a x b y z, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> sem x y = Some z -> exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef z v. Theorem eval_longconst: forall le n, eval_expr ge sp e m le (longconst n) (Vlong n). Proof. unfold longconst; intros; destruct Archi.splitlong. apply SplitLongproof.eval_longconst. EvalOp. Qed. Lemma is_longconst_sound: forall v a n le, is_longconst a = Some n -> eval_expr ge sp e m le a v -> v = Vlong n. Proof with (try discriminate). intros. unfold is_longconst in *. destruct Archi.splitlong. eapply SplitLongproof.is_longconst_sound; eauto. assert (a = Eop (Olongconst n) Enil). { destruct a... destruct o... destruct e0... congruence. } subst a. InvEval. auto. Qed. Theorem eval_intoflong: unary_constructor_sound intoflong Val.loword. Proof. unfold intoflong; destruct Archi.splitlong. apply SplitLongproof.eval_intoflong. red; intros. destruct (is_longconst a) as [n|] eqn:C. - TrivialExists. simpl. erewrite (is_longconst_sound x) by eauto. auto. - TrivialExists. Qed. Theorem eval_longofintu: unary_constructor_sound longofintu Val.longofintu. Proof. unfold longofintu; destruct Archi.splitlong. apply SplitLongproof.eval_longofintu. red; intros. destruct (is_intconst a) as [n|] eqn:C. - econstructor; split. apply eval_longconst. exploit is_intconst_sound; eauto. intros; subst x. auto. - TrivialExists. Qed. Theorem eval_longofint: unary_constructor_sound longofint Val.longofint. Proof. unfold longofint; destruct Archi.splitlong. apply SplitLongproof.eval_longofint. red; intros. destruct (is_intconst a) as [n|] eqn:C. - econstructor; split. apply eval_longconst. exploit is_intconst_sound; eauto. intros; subst x. auto. - TrivialExists. Qed. Theorem eval_negl: unary_constructor_sound negl Val.negl. Proof. unfold negl. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_negl; auto. red; intros. destruct (is_longconst a) as [n|] eqn:C. - exploit is_longconst_sound; eauto. intros EQ; subst x. econstructor; split. apply eval_longconst. auto. - TrivialExists. Qed. Theorem eval_addlimm: forall n, unary_constructor_sound (addlimm n) (fun v => Val.addl v (Vlong n)). Proof. unfold addlimm; intros; red; intros. predSpec Int64.eq Int64.eq_spec n Int64.zero. subst. exists x; split; auto. destruct x; simpl; rewrite ?Int64.add_zero, ?Ptrofs.add_zero; auto. destruct (addlimm_match a); InvEval. - econstructor; split. apply eval_longconst. rewrite Int64.add_commut; auto. - destruct (Compopts.optim_fglobaladdroffset _). + econstructor; split. EvalOp. simpl; eauto. unfold Genv.symbol_address. destruct (Genv.find_symbol ge s); simpl; auto. destruct Archi.ptr64; auto. rewrite Ptrofs.add_commut; auto. + TrivialExists. repeat econstructor. simpl. trivial. - econstructor; split. EvalOp. simpl; eauto. destruct sp; simpl; auto. destruct Archi.ptr64; auto. rewrite Ptrofs.add_assoc, (Ptrofs.add_commut m0). auto. - subst x. rewrite Val.addl_assoc. rewrite Int64.add_commut. TrivialExists. - TrivialExists. Qed. Theorem eval_addl: binary_constructor_sound addl Val.addl. Proof. unfold addl. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_addl. apply Archi.splitlong_ptr32; auto. (* assert (SF: Archi.ptr64 = true). { Local Transparent Archi.splitlong. unfold Archi.splitlong in SL. destruct Archi.ptr64; simpl in *; congruence. } *) (* assert (B: forall id ofs n, Genv.symbol_address ge id (Ptrofs.add ofs (Ptrofs.repr n)) = Val.addl (Genv.symbol_address ge id ofs) (Vlong (Int64.repr n))). { intros. replace (Ptrofs.repr n) with (Ptrofs.of_int64 (Int64.repr n)) by auto with ptrofs. apply Genv.shift_symbol_address_64; auto. } *) red; intros until y. case (addl_match a b); intros; InvEval. - rewrite Val.addl_commut. apply eval_addlimm; auto. - apply eval_addlimm; auto. - subst. replace (Val.addl (Val.addl v1 (Vlong n1)) (Val.addl v0 (Vlong n2))) with (Val.addl (Val.addl v1 v0) (Val.addl (Vlong n1) (Vlong n2))). apply eval_addlimm. EvalOp. repeat rewrite Val.addl_assoc. decEq. apply Val.addl_permut. - subst. econstructor; split. EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. simpl; eauto. rewrite Val.addl_commut. destruct sp; simpl; auto. destruct v1; simpl; auto. destruct Archi.ptr64 eqn:SF; auto. apply Val.lessdef_same. f_equal. rewrite ! Ptrofs.add_assoc. f_equal. rewrite (Ptrofs.add_commut (Ptrofs.of_int64 n1)), Ptrofs.add_assoc. f_equal. auto with ptrofs. - subst. econstructor; split. EvalOp. constructor. EvalOp. simpl; eauto. constructor. eauto. constructor. simpl; eauto. destruct sp; simpl; auto. destruct v1; simpl; auto. destruct Archi.ptr64 eqn:SF; auto. apply Val.lessdef_same. f_equal. rewrite ! Ptrofs.add_assoc. f_equal. f_equal. rewrite Ptrofs.add_commut. auto with ptrofs. - subst. replace (Val.addl (Val.addl v1 (Vlong n1)) y) with (Val.addl (Val.addl v1 y) (Vlong n1)). apply eval_addlimm. EvalOp. repeat rewrite Val.addl_assoc. decEq. apply Val.addl_commut. - subst. replace (Val.addl x (Val.addl v1 (Vlong n2))) with (Val.addl (Val.addl x v1) (Vlong n2)). apply eval_addlimm. EvalOp. repeat rewrite Val.addl_assoc. reflexivity. - subst. TrivialExists. - subst. rewrite Val.addl_commut. TrivialExists. - subst. TrivialExists. - subst. rewrite Val.addl_commut. TrivialExists. - TrivialExists. Qed. Theorem eval_subl: binary_constructor_sound subl Val.subl. Proof. unfold subl. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_subl. apply Archi.splitlong_ptr32; auto. red; intros; destruct (subl_match a b); InvEval. - rewrite Val.subl_addl_opp. apply eval_addlimm; auto. - subst. rewrite Val.subl_addl_l. rewrite Val.subl_addl_r. rewrite Val.addl_assoc. simpl. rewrite Int64.add_commut. rewrite <- Int64.sub_add_opp. apply eval_addlimm; EvalOp. - subst. rewrite Val.subl_addl_l. apply eval_addlimm; EvalOp. - subst. rewrite Val.subl_addl_r. apply eval_addlimm; EvalOp. - TrivialExists. Qed. Theorem eval_shllimm: forall n, unary_constructor_sound (fun e => shllimm e n) (fun v => Val.shll v (Vint n)). Proof. intros; unfold shllimm. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shllimm; auto. red; intros. predSpec Int.eq Int.eq_spec n Int.zero. exists x; split; auto. subst n; destruct x; simpl; auto. destruct (Int.ltu Int.zero Int64.iwordsize'); auto. change (Int64.shl' i Int.zero) with (Int64.shl i Int64.zero). rewrite Int64.shl_zero; auto. destruct (Int.ltu n Int64.iwordsize') eqn:LT; simpl. assert (DEFAULT: exists v, eval_expr ge sp e m le (Eop (Oshllimm n) (a:::Enil)) v /\ Val.lessdef (Val.shll x (Vint n)) v) by TrivialExists. destruct (shllimm_match a); InvEval. - econstructor; split. apply eval_longconst. simpl; rewrite LT; auto. - destruct (Int.ltu (Int.add n n1) Int64.iwordsize') eqn:LT'; auto. subst. econstructor; split. EvalOp. simpl; eauto. destruct v1; simpl; auto. rewrite LT'. destruct (Int.ltu n1 Int64.iwordsize') eqn:LT1; auto. simpl; rewrite LT. rewrite Int.add_commut, Int64.shl'_shl'; auto. rewrite Int.add_commut; auto. - apply DEFAULT. - TrivialExists. constructor; eauto. constructor. EvalOp. simpl; eauto. constructor. auto. Qed. Theorem eval_shrluimm: forall n, unary_constructor_sound (fun e => shrluimm e n) (fun v => Val.shrlu v (Vint n)). Proof. intros; unfold shrluimm. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shrluimm; auto. red; intros. predSpec Int.eq Int.eq_spec n Int.zero. exists x; split; auto. subst n; destruct x; simpl; auto. destruct (Int.ltu Int.zero Int64.iwordsize'); auto. change (Int64.shru' i Int.zero) with (Int64.shru i Int64.zero). rewrite Int64.shru_zero; auto. destruct (Int.ltu n Int64.iwordsize') eqn:LT. assert (DEFAULT: exists v, eval_expr ge sp e m le (Eop (Oshrluimm n) (a:::Enil)) v /\ Val.lessdef (Val.shrlu x (Vint n)) v) by TrivialExists. destruct (shrluimm_match a); InvEval. - econstructor; split. apply eval_longconst. simpl; rewrite LT; auto. - destruct (Int.ltu (Int.add n n1) Int64.iwordsize') eqn:LT'; auto. subst. econstructor; split. EvalOp. simpl; eauto. destruct v1; simpl; auto. rewrite LT'. destruct (Int.ltu n1 Int64.iwordsize') eqn:LT1; auto. simpl; rewrite LT. rewrite Int.add_commut, Int64.shru'_shru'; auto. rewrite Int.add_commut; auto. - subst x. simpl negb. cbn iota. destruct (is_bitfieldl _ _) eqn:BOUNDS. + exists (extfzl (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)) (Z.sub (Z.add (Z.add (Int.unsigned n) (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one))) Z.one) Int64.zwordsize) v1). split. ++ EvalOp. ++ unfold extfzl. rewrite BOUNDS. destruct v1; try (simpl; apply Val.lessdef_undef). replace (Z.sub Int64.zwordsize (Z.add (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)) Z.one)) with (Int.unsigned n1) by omega. replace (Z.sub Int64.zwordsize (Z.sub (Z.add (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)) Z.one) (Z.sub (Z.add (Z.add (Int.unsigned n) (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one))) Z.one) Int64.zwordsize))) with (Int.unsigned n) by omega. simpl. destruct (Int.ltu n1 Int64.iwordsize') eqn:Hltu_n1; simpl; trivial. destruct (Int.ltu n Int64.iwordsize') eqn:Hltu_n; simpl; trivial. rewrite Int.repr_unsigned. rewrite Int.repr_unsigned. constructor. + TrivialExists. constructor. econstructor. constructor. eassumption. constructor. simpl. reflexivity. constructor. simpl. reflexivity. - apply DEFAULT. - TrivialExists. constructor; eauto. constructor. EvalOp. simpl; eauto. constructor. auto. Qed. Theorem eval_shrlimm: forall n, unary_constructor_sound (fun e => shrlimm e n) (fun v => Val.shrl v (Vint n)). Proof. intros; unfold shrlimm. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shrlimm; auto. red; intros. predSpec Int.eq Int.eq_spec n Int.zero. exists x; split; auto. subst n; destruct x; simpl; auto. destruct (Int.ltu Int.zero Int64.iwordsize'); auto. change (Int64.shr' i Int.zero) with (Int64.shr i Int64.zero). rewrite Int64.shr_zero; auto. destruct (Int.ltu n Int64.iwordsize') eqn:LT. assert (DEFAULT: exists v, eval_expr ge sp e m le (Eop (Oshrlimm n) (a:::Enil)) v /\ Val.lessdef (Val.shrl x (Vint n)) v) by TrivialExists. destruct (shrlimm_match a); InvEval. - econstructor; split. apply eval_longconst. simpl; rewrite LT; auto. - destruct (Int.ltu (Int.add n n1) Int64.iwordsize') eqn:LT'; auto. subst. econstructor; split. EvalOp. simpl; eauto. destruct v1; simpl; auto. rewrite LT'. destruct (Int.ltu n1 Int64.iwordsize') eqn:LT1; auto. simpl; rewrite LT. rewrite Int.add_commut, Int64.shr'_shr'; auto. rewrite Int.add_commut; auto. - subst x. simpl negb. cbn iota. destruct (is_bitfieldl _ _) eqn:BOUNDS. + exists (extfsl (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)) (Z.sub (Z.add (Z.add (Int.unsigned n) (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one))) Z.one) Int64.zwordsize) v1). split. ++ EvalOp. ++ unfold extfsl. rewrite BOUNDS. destruct v1; try (simpl; apply Val.lessdef_undef). replace (Z.sub Int64.zwordsize (Z.add (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)) Z.one)) with (Int.unsigned n1) by omega. replace (Z.sub Int64.zwordsize (Z.sub (Z.add (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one)) Z.one) (Z.sub (Z.add (Z.add (Int.unsigned n) (Z.sub Int64.zwordsize (Z.add (Int.unsigned n1) Z.one))) Z.one) Int64.zwordsize))) with (Int.unsigned n) by omega. simpl. destruct (Int.ltu n1 Int64.iwordsize') eqn:Hltu_n1; simpl; trivial. destruct (Int.ltu n Int64.iwordsize') eqn:Hltu_n; simpl; trivial. rewrite Int.repr_unsigned. rewrite Int.repr_unsigned. constructor. + TrivialExists. constructor. econstructor. constructor. eassumption. constructor. simpl. reflexivity. constructor. simpl. reflexivity. - apply DEFAULT. - TrivialExists. constructor; eauto. constructor. EvalOp. simpl; eauto. constructor. auto. Qed. Theorem eval_shll: binary_constructor_sound shll Val.shll. Proof. unfold shll. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shll; auto. red; intros. destruct (is_intconst b) as [n2|] eqn:C. - exploit is_intconst_sound; eauto. intros EQ; subst y. apply eval_shllimm; auto. - TrivialExists. Qed. Theorem eval_shrlu: binary_constructor_sound shrlu Val.shrlu. Proof. unfold shrlu. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shrlu; auto. red; intros. destruct (is_intconst b) as [n2|] eqn:C. - exploit is_intconst_sound; eauto. intros EQ; subst y. apply eval_shrluimm; auto. - TrivialExists. Qed. Theorem eval_shrl: binary_constructor_sound shrl Val.shrl. Proof. unfold shrl. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_shrl; auto. red; intros. destruct (is_intconst b) as [n2|] eqn:C. - exploit is_intconst_sound; eauto. intros EQ; subst y. apply eval_shrlimm; auto. - TrivialExists. Qed. Theorem eval_mullimm_base: forall n, unary_constructor_sound (mullimm_base n) (fun v => Val.mull v (Vlong n)). Proof. intros; unfold mullimm_base. red; intros. assert (DEFAULT: exists v, eval_expr ge sp e m le (Eop Omull (a ::: longconst n ::: Enil)) v /\ Val.lessdef (Val.mull x (Vlong n)) v). { econstructor; split. EvalOp. constructor. eauto. constructor. apply eval_longconst. constructor. simpl; eauto. auto. } generalize (Int64.one_bits'_decomp n); intros D. destruct (Int64.one_bits' n) as [ | i [ | j [ | ? ? ]]] eqn:B. - apply DEFAULT. - replace (Val.mull x (Vlong n)) with (Val.shll x (Vint i)). apply eval_shllimm; auto. simpl in D. rewrite D, Int64.add_zero. destruct x; simpl; auto. rewrite (Int64.one_bits'_range n) by (rewrite B; auto with coqlib). rewrite Int64.shl'_mul; auto. - set (le' := x :: le). assert (A0: eval_expr ge sp e m le' (Eletvar O) x) by (constructor; reflexivity). exploit (eval_shllimm i). eexact A0. intros (v1 & A1 & B1). exploit (eval_shllimm j). eexact A0. intros (v2 & A2 & B2). exploit (eval_addl). eexact A1. eexact A2. intros (v3 & A3 & B3). exists v3; split. econstructor; eauto. rewrite D. simpl. rewrite Int64.add_zero. destruct x; auto. simpl in *. rewrite (Int64.one_bits'_range n) in B1 by (rewrite B; auto with coqlib). rewrite (Int64.one_bits'_range n) in B2 by (rewrite B; auto with coqlib). inv B1; inv B2. simpl in B3; inv B3. rewrite Int64.mul_add_distr_r. rewrite <- ! Int64.shl'_mul. auto. - apply DEFAULT. Qed. Theorem eval_mullimm: forall n, unary_constructor_sound (mullimm n) (fun v => Val.mull v (Vlong n)). Proof. unfold mullimm. intros; red; intros. destruct Archi.splitlong eqn:SL. eapply SplitLongproof.eval_mullimm; eauto. predSpec Int64.eq Int64.eq_spec n Int64.zero. exists (Vlong Int64.zero); split. apply eval_longconst. destruct x; simpl; auto. subst n; rewrite Int64.mul_zero; auto. predSpec Int64.eq Int64.eq_spec n Int64.one. exists x; split; auto. destruct x; simpl; auto. subst n; rewrite Int64.mul_one; auto. destruct (mullimm_match a); InvEval. - econstructor; split. apply eval_longconst. rewrite Int64.mul_commut; auto. - exploit (eval_mullimm_base n); eauto. intros (v2 & A2 & B2). exploit (eval_addlimm (Int64.mul n n2)). eexact A2. intros (v3 & A3 & B3). exists v3; split; auto. subst x. destruct v1; simpl; auto. simpl in B2; inv B2. simpl in B3; inv B3. rewrite Int64.mul_add_distr_l. rewrite (Int64.mul_commut n). auto. - apply eval_mullimm_base; auto. Qed. Theorem eval_mull: binary_constructor_sound mull Val.mull. Proof. unfold mull. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_mull; auto. red; intros; destruct (mull_match a b); InvEval. - rewrite Val.mull_commut. apply eval_mullimm; auto. - apply eval_mullimm; auto. - TrivialExists. Qed. Theorem eval_mullhu: forall n, unary_constructor_sound (fun a => mullhu a n) (fun v => Val.mullhu v (Vlong n)). Proof. unfold mullhu; intros. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_mullhu; auto. red; intros. TrivialExists. constructor. eauto. constructor. apply eval_longconst. constructor. auto. Qed. Theorem eval_mullhs: forall n, unary_constructor_sound (fun a => mullhs a n) (fun v => Val.mullhs v (Vlong n)). Proof. unfold mullhs; intros. destruct Archi.splitlong eqn:SL. apply SplitLongproof.eval_mullhs; auto. red; intros. TrivialExists. constructor. eauto. constructor. apply eval_longconst. constructor. auto. Qed. Theorem eval_andlimm: forall n, unary_constructor_sound (andlimm n) (fun v => Val.andl v (Vlong n)). Proof. unfold andlimm; intros; red; intros. predSpec Int64.eq Int64.eq_spec n Int64.zero. exists (Vlong Int64.zero); split. apply eval_longconst. subst. destruct x; simpl; auto. rewrite Int64.and_zero; auto. predSpec Int64.eq Int64.eq_spec n Int64.mone. exists x; split. assumption. subst. destruct x; simpl; auto. rewrite Int64.and_mone; auto. destruct (andlimm_match a); InvEval; subst. - econstructor; split. apply eval_longconst. simpl. rewrite Int64.and_commut; auto. - TrivialExists. simpl. rewrite Val.andl_assoc. rewrite Int64.and_commut; auto. - TrivialExists. - TrivialExists. Qed. Lemma int64_eq_commut: forall x y : int64, (Int64.eq x y) = (Int64.eq y x). Proof. intros. predSpec Int64.eq Int64.eq_spec x y; predSpec Int64.eq Int64.eq_spec y x; congruence. Qed. Theorem eval_andl: binary_constructor_sound andl Val.andl. Proof. unfold andl; destruct Archi.splitlong. apply SplitLongproof.eval_andl. red; intros. destruct (andl_match a b). - InvEval. rewrite Val.andl_commut. apply eval_andlimm; auto. - InvEval. apply eval_andlimm; auto. - (*andn*) InvEval. TrivialExists. simpl. congruence. - (*andn reverse*) InvEval. rewrite Val.andl_commut. TrivialExists; simpl. congruence. (* - (* selectl *) InvEval. predSpec Int64.eq Int64.eq_spec zero1 Int64.zero; simpl; TrivialExists. + constructor. econstructor; constructor. constructor; try constructor; try constructor; try eassumption. + simpl in *. f_equal. inv H6. unfold selectl. simpl. destruct v3; simpl; trivial. rewrite int64_eq_commut. destruct (Int64.eq i Int64.zero); simpl. * replace (Int64.repr (Int.signed (Int.neg Int.zero))) with Int64.zero by Int64.bit_solve. destruct y; simpl; trivial. * replace (Int64.repr (Int.signed (Int.neg Int.one))) with Int64.mone by Int64.bit_solve. destruct y; simpl; trivial. rewrite Int64.and_commut. rewrite Int64.and_mone. reflexivity. + constructor. econstructor. constructor. econstructor. constructor. econstructor. constructor. eassumption. constructor. simpl. f_equal. constructor. simpl. f_equal. constructor. simpl. f_equal. constructor. eassumption. constructor. + simpl in *. congruence. *) - TrivialExists. Qed. Theorem eval_orlimm: forall n, unary_constructor_sound (orlimm n) (fun v => Val.orl v (Vlong n)). Proof. unfold orlimm; intros; red; intros. predSpec Int64.eq Int64.eq_spec n Int64.zero. exists x; split; auto. subst. destruct x; simpl; auto. rewrite Int64.or_zero; auto. predSpec Int64.eq Int64.eq_spec n Int64.mone. econstructor; split. apply eval_longconst. subst. destruct x; simpl; auto. rewrite Int64.or_mone; auto. destruct (orlimm_match a); InvEval; subst. - econstructor; split. apply eval_longconst. simpl. rewrite Int64.or_commut; auto. - TrivialExists. simpl. rewrite Val.orl_assoc. rewrite Int64.or_commut; auto. - InvEval. TrivialExists. - TrivialExists. Qed. Theorem eval_orl: binary_constructor_sound orl Val.orl. Proof. unfold orl; destruct Archi.splitlong. apply SplitLongproof.eval_orl. red; intros. destruct (orl_match a b). - InvEval. rewrite Val.orl_commut. apply eval_orlimm; auto. - InvEval. apply eval_orlimm; auto. - (*orn*) InvEval. TrivialExists; simpl; congruence. - (*orn reversed*) InvEval. rewrite Val.orl_commut. TrivialExists; simpl; congruence. - (* selectl *) destruct (same_expr_pure y0 y1) eqn:PURE; simpl; try TrivialExists. predSpec Int64.eq Int64.eq_spec zero0 Int64.zero; simpl; try TrivialExists. predSpec Int64.eq Int64.eq_spec zero1 Int64.zero; simpl; [ | TrivialExists]. inv H. inv H0. inv H6. inv H3. inv H2. inv H7. inv H4. inv H3. inv H6. inv H4. inv H3. inv H14. inv H13. inv H6. inv H4. inv H13. inv H14. inv H9. inv H11. inv H13. inv H3. inv H6. inv H7. inv H3. inv H14. inv H17. simpl in *. inv H8. inv H5. inv H10. inv H12. inv H15. inv H16. inv H11. inv H13. unfold same_expr_pure in PURE. destruct y0; try congruence. destruct y1; try congruence. destruct (ident_eq i i0); try congruence; clear PURE. rewrite <- e0 in *; clear e0. inv H6. inv H7. rename v10 into vtest. replace v11 with vtest in * by congruence. TrivialExists. simpl. f_equal. rewrite eval_selectl_to2. unfold eval_selectl2. destruct vtest; simpl; trivial. rewrite Val.andl_commut. destruct v4; simpl; trivial. rewrite Val.andl_commut. rewrite Val.orl_commut. destruct v9; simpl; trivial. rewrite int64_eq_commut. destruct (Int64.eq Int64.zero i1); simpl. + replace (Int64.repr (Int.signed (Int.neg Int.one))) with Int64.mone by Int64.bit_solve. replace (Int64.repr (Int.signed (Int.neg Int.zero))) with Int64.zero by Int64.bit_solve. rewrite Int64.and_mone. rewrite Int64.and_zero. rewrite Int64.or_commut. rewrite Int64.or_zero. reflexivity. + replace (Int64.repr (Int.signed (Int.neg Int.one))) with Int64.mone by Int64.bit_solve. replace (Int64.repr (Int.signed (Int.neg Int.zero))) with Int64.zero by Int64.bit_solve. rewrite Int64.and_mone. rewrite Int64.and_zero. rewrite Int64.or_zero. reflexivity. - (*insfl first case*) destruct (is_bitfieldl _ _) eqn:Risbitfield. + destruct (and_dec _ _) as [[Rmask Rnmask] | ]. * rewrite Rnmask in *. inv H. inv H0. inv H4. inv H3. inv H9. inv H8. simpl in H6, H7. inv H6. inv H7. inv H4. inv H3. inv H7. simpl in H6. inv H6. set (zstop := (int64_highest_bit mask)) in *. set (zstart := (Int.unsigned start)) in *. TrivialExists. simpl. f_equal. unfold insfl. rewrite Risbitfield. rewrite Rmask. simpl. unfold bitfield_maskl. subst zstart. rewrite Int.repr_unsigned. reflexivity. * TrivialExists. + TrivialExists. - destruct (is_bitfieldl _ _) eqn:Risbitfield. + destruct (and_dec _ _) as [[Rmask Rnmask] | ]. * rewrite Rnmask in *. inv H. inv H0. inv H4. inv H6. inv H8. inv H3. inv H8. inv H0. simpl in H7. inv H7. set (zstop := (int64_highest_bit mask)) in *. set (zstart := 0) in *. TrivialExists. simpl. f_equal. unfold insfl. rewrite Risbitfield. rewrite Rmask. simpl. subst zstart. f_equal. destruct v0; simpl; trivial. unfold Int.ltu, Int64.iwordsize', Int64.zwordsize, Int64.wordsize. rewrite Int.unsigned_repr. ** rewrite Int.unsigned_repr. *** simpl. rewrite Int64.shl'_zero. reflexivity. *** simpl. unfold Int.max_unsigned. unfold Int.modulus. simpl. omega. ** unfold Int.max_unsigned. unfold Int.modulus. simpl. omega. * TrivialExists. + TrivialExists. - TrivialExists. Qed. Theorem eval_xorlimm: forall n, unary_constructor_sound (xorlimm n) (fun v => Val.xorl v (Vlong n)). Proof. unfold xorlimm; intros; red; intros. predSpec Int64.eq Int64.eq_spec n Int64.zero. - exists x; split; auto. subst. destruct x; simpl; auto. rewrite Int64.xor_zero; auto. - predSpec Int64.eq Int64.eq_spec n Int64.mone. -- subst n. intros. rewrite <- Val.notl_xorl. TrivialExists. -- destruct (xorlimm_match a); InvEval; subst. + econstructor; split. apply eval_longconst. simpl. rewrite Int64.xor_commut; auto. + rewrite Val.xorl_assoc. simpl. rewrite (Int64.xor_commut n2). predSpec Int64.eq Int64.eq_spec (Int64.xor n n2) Int64.zero. * rewrite H. exists v1; split; auto. destruct v1; simpl; auto. rewrite Int64.xor_zero; auto. * TrivialExists. + TrivialExists. Qed. Theorem eval_xorl: binary_constructor_sound xorl Val.xorl. Proof. unfold xorl; destruct Archi.splitlong. apply SplitLongproof.eval_xorl. red; intros. destruct (xorl_match a b). - InvEval. rewrite Val.xorl_commut. apply eval_xorlimm; auto. - InvEval. apply eval_xorlimm; auto. - TrivialExists. Qed. Theorem eval_notl: unary_constructor_sound notl Val.notl. Proof. assert (forall v, Val.lessdef (Val.notl (Val.notl v)) v). destruct v; simpl; auto. rewrite Int64.not_involutive; auto. unfold notl; red; intros until x; case (notl_match a); intros; InvEval. - TrivialExists; simpl; congruence. - TrivialExists; simpl; congruence. - TrivialExists; simpl; congruence. - TrivialExists; simpl; congruence. - TrivialExists; simpl; congruence. - TrivialExists; simpl; congruence. - subst x. exists (Val.andl v1 v0); split; trivial. econstructor. constructor. eassumption. constructor. eassumption. constructor. simpl. reflexivity. - subst x. exists (Val.andl v1 (Vlong n)); split; trivial. econstructor. constructor. eassumption. constructor. simpl. reflexivity. - subst x. exists (Val.orl v1 v0); split; trivial. econstructor. constructor. eassumption. constructor. eassumption. constructor. simpl. reflexivity. - subst x. exists (Val.orl v1 (Vlong n)); split; trivial. econstructor. constructor. eassumption. constructor. simpl. reflexivity. - subst x. exists (Val.xorl v1 v0); split; trivial. econstructor. constructor. eassumption. constructor. eassumption. constructor. simpl. reflexivity. - subst x. exists (Val.xorl v1 (Vlong n)); split; trivial. econstructor. constructor. eassumption. constructor. simpl. reflexivity. (* andn *) - subst x. TrivialExists. simpl. destruct v0; destruct v1; simpl; trivial. f_equal. f_equal. rewrite Int64.not_and_or_not. rewrite Int64.not_involutive. apply Int64.or_commut. - subst x. TrivialExists. simpl. destruct v1; simpl; trivial. f_equal. f_equal. rewrite Int64.not_and_or_not. rewrite Int64.not_involutive. reflexivity. (* orn *) - subst x. TrivialExists. simpl. destruct v0; destruct v1; simpl; trivial. f_equal. f_equal. rewrite Int64.not_or_and_not. rewrite Int64.not_involutive. apply Int64.and_commut. - subst x. TrivialExists. simpl. destruct v1; simpl; trivial. f_equal. f_equal. rewrite Int64.not_or_and_not. rewrite Int64.not_involutive. reflexivity. - subst x. exists v1; split; trivial. - TrivialExists. - TrivialExists. Qed. Theorem eval_divls_base: partial_binary_constructor_sound divls_base Val.divls. Proof. unfold divls_base; red; intros. eapply SplitLongproof.eval_divls_base; eauto. Qed. Theorem eval_modls_base: partial_binary_constructor_sound modls_base Val.modls. Proof. unfold modls_base; red; intros. eapply SplitLongproof.eval_modls_base; eauto. Qed. Theorem eval_divlu_base: partial_binary_constructor_sound divlu_base Val.divlu. Proof. unfold divlu_base; red; intros. eapply SplitLongproof.eval_divlu_base; eauto. Qed. Theorem eval_modlu_base: partial_binary_constructor_sound modlu_base Val.modlu. Proof. unfold modlu_base; red; intros. eapply SplitLongproof.eval_modlu_base; eauto. Qed. Theorem eval_shrxlimm: forall le a n x z, eval_expr ge sp e m le a x -> Val.shrxl x (Vint n) = Some z -> exists v, eval_expr ge sp e m le (shrxlimm a n) v /\ Val.lessdef z v. Proof. unfold shrxlimm; intros. destruct Archi.splitlong eqn:SL. + eapply SplitLongproof.eval_shrxlimm; eauto using Archi.splitlong_ptr32. + predSpec Int.eq Int.eq_spec n Int.zero. - subst n. destruct x; simpl in H0; inv H0. econstructor; split; eauto. change (Int.ltu Int.zero (Int.repr 63)) with true. simpl. rewrite Int64.shrx'_zero; auto. - TrivialExists. (* intros. unfold shrxlimm. destruct Archi.splitlong eqn:SL. + eapply SplitLongproof.eval_shrxlimm; eauto using Archi.splitlong_ptr32. + destruct x; simpl in H0; try discriminate. destruct (Int.ltu n (Int.repr 63)) eqn:LTU; inv H0. predSpec Int.eq Int.eq_spec n Int.zero. - subst n. exists (Vlong i); split; auto. rewrite Int64.shrx'_zero. auto. - assert (NZ: Int.unsigned n <> 0). { intro EQ; elim H0. rewrite <- (Int.repr_unsigned n). rewrite EQ; auto. } assert (LT: 0 <= Int.unsigned n < 63) by (apply Int.ltu_inv in LTU; assumption). assert (LTU2: Int.ltu (Int.sub Int64.iwordsize' n) Int64.iwordsize' = true). { unfold Int.ltu; apply zlt_true. unfold Int.sub. change (Int.unsigned Int64.iwordsize') with 64. rewrite Int.unsigned_repr. omega. assert (64 < Int.max_unsigned) by reflexivity. omega. } assert (X: eval_expr ge sp e m le (Eop (Oshrlimm (Int.repr (Int64.zwordsize - 1))) (a ::: Enil)) (Vlong (Int64.shr' i (Int.repr (Int64.zwordsize - 1))))). { EvalOp. } assert (Y: eval_expr ge sp e m le (shrxlimm_inner a n) (Vlong (Int64.shru' (Int64.shr' i (Int.repr (Int64.zwordsize - 1))) (Int.sub Int64.iwordsize' n)))). { EvalOp. simpl. rewrite LTU2. auto. } TrivialExists. constructor. EvalOp. simpl; eauto. constructor. simpl. unfold Int.ltu; rewrite zlt_true. rewrite Int64.shrx'_shr_2 by auto. reflexivity. change (Int.unsigned Int64.iwordsize') with 64; omega. *) Qed. Theorem eval_cmplu: forall c le a x b y v, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.cmplu (Mem.valid_pointer m) c x y = Some v -> eval_expr ge sp e m le (cmplu c a b) v. Proof. unfold cmplu; intros. destruct Archi.splitlong eqn:SL. eapply SplitLongproof.eval_cmplu; eauto using Archi.splitlong_ptr32. unfold Val.cmplu in H1. destruct (Val.cmplu_bool (Mem.valid_pointer m) c x y) as [vb|] eqn:C; simpl in H1; inv H1. destruct (is_longconst a) as [n1|] eqn:LC1; destruct (is_longconst b) as [n2|] eqn:LC2; try (assert (x = Vlong n1) by (eapply is_longconst_sound; eauto)); try (assert (y = Vlong n2) by (eapply is_longconst_sound; eauto)); subst. - simpl in C; inv C. EvalOp. destruct (Int64.cmpu c n1 n2); reflexivity. - EvalOp. simpl. rewrite Val.swap_cmplu_bool. rewrite C; auto. - EvalOp. simpl; rewrite C; auto. - EvalOp. simpl; rewrite C; auto. Qed. Theorem eval_cmpl: forall c le a x b y v, eval_expr ge sp e m le a x -> eval_expr ge sp e m le b y -> Val.cmpl c x y = Some v -> eval_expr ge sp e m le (cmpl c a b) v. Proof. unfold cmpl; intros. destruct Archi.splitlong eqn:SL. eapply SplitLongproof.eval_cmpl; eauto. unfold Val.cmpl in H1. destruct (Val.cmpl_bool c x y) as [vb|] eqn:C; simpl in H1; inv H1. destruct (is_longconst a) as [n1|] eqn:LC1; destruct (is_longconst b) as [n2|] eqn:LC2; try (assert (x = Vlong n1) by (eapply is_longconst_sound; eauto)); try (assert (y = Vlong n2) by (eapply is_longconst_sound; eauto)); subst. - simpl in C; inv C. EvalOp. destruct (Int64.cmp c n1 n2); reflexivity. - EvalOp. simpl. rewrite Val.swap_cmpl_bool. rewrite C; auto. - EvalOp. simpl; rewrite C; auto. - EvalOp. simpl; rewrite C; auto. Qed. Theorem eval_longoffloat: partial_unary_constructor_sound longoffloat Val.longoffloat. Proof. unfold longoffloat; red; intros. destruct Archi.splitlong eqn:SL. eapply SplitLongproof.eval_longoffloat; eauto. TrivialExists. Qed. Theorem eval_longuoffloat: partial_unary_constructor_sound longuoffloat Val.longuoffloat. Proof. unfold longuoffloat; red; intros. destruct Archi.splitlong eqn:SL. eapply SplitLongproof.eval_longuoffloat; eauto. TrivialExists. Qed. Theorem eval_floatoflong: partial_unary_constructor_sound floatoflong Val.floatoflong. Proof. unfold floatoflong; red; intros. destruct Archi.splitlong eqn:SL. eapply SplitLongproof.eval_floatoflong; eauto. TrivialExists. Qed. Theorem eval_floatoflongu: partial_unary_constructor_sound floatoflongu Val.floatoflongu. Proof. unfold floatoflongu; red; intros. destruct Archi.splitlong eqn:SL. eapply SplitLongproof.eval_floatoflongu; eauto. TrivialExists. Qed. Theorem eval_longofsingle: partial_unary_constructor_sound longofsingle Val.longofsingle. Proof. unfold longofsingle; red; intros. destruct x; simpl in H0; inv H0. destruct (Float32.to_long f) as [n|] eqn:EQ; simpl in H2; inv H2. exploit eval_floatofsingle; eauto. intros (v & A & B). simpl in B. inv B. apply Float32.to_long_double in EQ. eapply eval_longoffloat; eauto. simpl. change (Float.of_single f) with (Float32.to_double f); rewrite EQ; auto. Qed. Theorem eval_longuofsingle: partial_unary_constructor_sound longuofsingle Val.longuofsingle. Proof. unfold longuofsingle; red; intros. (* destruct Archi.splitlong eqn:SL. *) destruct x; simpl in H0; inv H0. destruct (Float32.to_longu f) as [n|] eqn:EQ; simpl in H2; inv H2. exploit eval_floatofsingle; eauto. intros (v & A & B). simpl in B. inv B. apply Float32.to_longu_double in EQ. eapply eval_longuoffloat; eauto. simpl. change (Float.of_single f) with (Float32.to_double f); rewrite EQ; auto. Qed. Theorem eval_singleoflong: partial_unary_constructor_sound singleoflong Val.singleoflong. Proof. unfold singleoflong; red; intros. (* destruct Archi.splitlong eqn:SL. *) eapply SplitLongproof.eval_singleoflong; eauto. (* TrivialExists. *) Qed. Theorem eval_singleoflongu: partial_unary_constructor_sound singleoflongu Val.singleoflongu. Proof. unfold singleoflongu; red; intros. (* destruct Archi.splitlong eqn:SL. *) eapply SplitLongproof.eval_singleoflongu; eauto. (* TrivialExists. *) Qed. End CMCONSTR.