(* *************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Léo Gourdin UGA, VERIMAG *) (* *) (* Copyright VERIMAG. All rights reserved. *) (* This file is distributed under the terms of the INRIA *) (* Non-Commercial License Agreement. *) (* *) (* *************************************************************) open RTLpathLivegenaux open RTLpathCommon open Datatypes open Maps open RTL open Op open Asmgen open DebugPrint open RTLpath open! Integers open Camlcoq open Option type sop = Sop of operation * P.t list type sval = Si of RTL.instruction | Sr of P.t let reg = ref 1 let node = ref 1 let p2i r = P.to_int r let r2p () = P.of_int !reg let n2p () = P.of_int !node let r2pi () = reg := !reg + 1; r2p () let n2pi () = node := !node + 1; n2p () type immt = | Addiw | Addil | Andiw | Andil | Oriw | Oril | Xoriw | Xoril | Sltiw | Sltiuw | Sltil | Sltiul let find_or_addnmove op args rd succ map_consts node_dec = let sop = Sop (op, args) in match Hashtbl.find_opt map_consts sop with | Some r -> if node_dec then node := !node - 1; Sr (P.of_int r) | None -> Hashtbl.add map_consts sop (p2i rd); Si (Iop (op, args, rd, succ)) let build_head_tuple head sv = match sv with Si i -> (head @ [ i ], None) | Sr r -> (head, Some r) let unzip_head_tuple ht r = match ht with l, Some r' -> r' | l, None -> r let unzip_head_tuple_move ht r succ = match ht with l, Some r' -> [ Iop (Omove, [ r' ], r, succ) ] | l, None -> l let build_full_ilist op args dest succ hd k map_consts = let sv = find_or_addnmove op args dest succ map_consts false in let ht = build_head_tuple hd sv in unzip_head_tuple_move ht dest succ @ k let load_hilo32 dest hi lo succ map_consts node_dec = let op1 = OEluiw hi in if Int.eq lo Int.zero then let sv = find_or_addnmove op1 [] dest succ map_consts node_dec in build_head_tuple [] sv else let r = r2pi () in let sv1 = find_or_addnmove op1 [] r (n2pi ()) map_consts node_dec in let ht1 = build_head_tuple [] sv1 in let r' = unzip_head_tuple ht1 r in let op2 = OEaddiw lo in let sv2 = find_or_addnmove op2 [ r' ] dest succ map_consts node_dec in build_head_tuple (fst ht1) sv2 let load_hilo64 dest hi lo succ map_consts node_dec = let op1 = OEluil hi in if Int64.eq lo Int64.zero then let sv = find_or_addnmove op1 [] dest succ map_consts node_dec in build_head_tuple [] sv else let r = r2pi () in let sv1 = find_or_addnmove op1 [] r (n2pi ()) map_consts node_dec in let ht1 = build_head_tuple [] sv1 in let r' = unzip_head_tuple ht1 r in let op2 = OEaddil lo in let sv2 = find_or_addnmove op2 [ r' ] dest succ map_consts node_dec in build_head_tuple (fst ht1) sv2 let loadimm32 dest n succ map_consts node_dec = match make_immed32 n with | Imm32_single imm -> let op1 = OEaddiwr0 imm in let sv = find_or_addnmove op1 [] dest succ map_consts node_dec in build_head_tuple [] sv | Imm32_pair (hi, lo) -> load_hilo32 dest hi lo succ map_consts node_dec let loadimm64 dest n succ map_consts node_dec = match make_immed64 n with | Imm64_single imm -> let op1 = OEaddilr0 imm in let sv = find_or_addnmove op1 [] dest succ map_consts node_dec in build_head_tuple [] sv | Imm64_pair (hi, lo) -> load_hilo64 dest hi lo succ map_consts node_dec | Imm64_large imm -> let op1 = OEloadli imm in let sv = find_or_addnmove op1 [] dest succ map_consts node_dec in build_head_tuple [] sv let get_opimm imm = function | Addiw -> OEaddiw imm | Andiw -> OEandiw imm | Oriw -> OEoriw imm | Xoriw -> OExoriw imm | Sltiw -> OEsltiw imm | Sltiuw -> OEsltiuw imm | Addil -> OEaddil imm | Andil -> OEandil imm | Oril -> OEoril imm | Xoril -> OExoril imm | Sltil -> OEsltil imm | Sltiul -> OEsltiul imm let opimm32 a1 dest n succ k op opimm map_consts = match make_immed32 n with | Imm32_single imm -> build_full_ilist (get_opimm imm opimm) [ a1 ] dest succ [] k map_consts | Imm32_pair (hi, lo) -> let r = r2pi () in let ht = load_hilo32 r hi lo (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in build_full_ilist op [ a1; r' ] dest succ (fst ht) k map_consts let opimm64 a1 dest n succ k op opimm map_consts = match make_immed64 n with | Imm64_single imm -> build_full_ilist (get_opimm imm opimm) [ a1 ] dest succ [] k map_consts | Imm64_pair (hi, lo) -> let r = r2pi () in let ht = load_hilo64 r hi lo (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in build_full_ilist op [ a1; r' ] dest succ (fst ht) k map_consts | Imm64_large imm ->( let r = r2pi () in let op1 = OEloadli imm in let inode = n2pi () in let sv = find_or_addnmove op1 [] r inode map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in build_full_ilist op [ a1; r' ] dest succ (fst ht) k map_consts) let addimm32 a1 dest n succ k map_consts = opimm32 a1 dest n succ k Oadd Addiw map_consts let andimm32 a1 dest n succ k map_consts = opimm32 a1 dest n succ k Oand Andiw map_consts let orimm32 a1 dest n succ k map_consts = opimm32 a1 dest n succ k Oor Oriw map_consts let xorimm32 a1 dest n succ k map_consts = opimm32 a1 dest n succ k Oxor Xoriw map_consts let sltimm32 a1 dest n succ k map_consts = opimm32 a1 dest n succ k (OEsltw None) Sltiw map_consts let sltuimm32 a1 dest n succ k map_consts = opimm32 a1 dest n succ k (OEsltuw None) Sltiuw map_consts let addimm64 a1 dest n succ k = opimm64 a1 dest n succ k Oaddl Addil let andimm64 a1 dest n succ k = opimm64 a1 dest n succ k Oandl Andil let orimm64 a1 dest n succ k = opimm64 a1 dest n succ k Oorl Oril let xorimm64 a1 dest n succ k = opimm64 a1 dest n succ k Oxorl Xoril let sltimm64 a1 dest n succ k = opimm64 a1 dest n succ k (OEsltl None) Sltil let sltuimm64 a1 dest n succ k = opimm64 a1 dest n succ k (OEsltul None) Sltiul let is_inv_cmp = function Cle | Cgt -> true | _ -> false let make_optR0 is_x0 is_inv = if is_x0 then Some is_inv else None let cbranch_int32s is_x0 cmp a1 a2 info succ1 succ2 k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Icond (CEbeqw optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cne -> Icond (CEbnew optR0, [ a1; a2 ], succ1, succ2, info) :: k | Clt -> Icond (CEbltw optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cle -> Icond (CEbgew optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cgt -> Icond (CEbltw optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cge -> Icond (CEbgew optR0, [ a1; a2 ], succ1, succ2, info) :: k let cbranch_int32u is_x0 cmp a1 a2 info succ1 succ2 k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Icond (CEbequw optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cne -> Icond (CEbneuw optR0, [ a1; a2 ], succ1, succ2, info) :: k | Clt -> Icond (CEbltuw optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cle -> Icond (CEbgeuw optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cgt -> Icond (CEbltuw optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cge -> Icond (CEbgeuw optR0, [ a1; a2 ], succ1, succ2, info) :: k let cbranch_int64s is_x0 cmp a1 a2 info succ1 succ2 k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Icond (CEbeql optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cne -> Icond (CEbnel optR0, [ a1; a2 ], succ1, succ2, info) :: k | Clt -> Icond (CEbltl optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cle -> Icond (CEbgel optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cgt -> Icond (CEbltl optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cge -> Icond (CEbgel optR0, [ a1; a2 ], succ1, succ2, info) :: k let cbranch_int64u is_x0 cmp a1 a2 info succ1 succ2 k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Icond (CEbequl optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cne -> Icond (CEbneul optR0, [ a1; a2 ], succ1, succ2, info) :: k | Clt -> Icond (CEbltul optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cle -> Icond (CEbgeul optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cgt -> Icond (CEbltul optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cge -> Icond (CEbgeul optR0, [ a1; a2 ], succ1, succ2, info) :: k let cond_int32s is_x0 cmp a1 a2 dest tmp_reg succ map_consts = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> [ Iop (OEseqw optR0, [ a1; a2 ], dest, succ) ] | Cne -> [ Iop (OEsnew optR0, [ a1; a2 ], dest, succ) ] | Clt -> [ Iop (OEsltw optR0, [ a1; a2 ], dest, succ) ] | Cle -> let r = r2pi () in let op = OEsltw optR0 in let sv = find_or_addnmove op [ a2; a1 ] r (get tmp_reg) map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in fst ht @ [ Iop (OExoriw Int.one, [ r' ], dest, succ) ] | Cgt -> [ Iop (OEsltw optR0, [ a2; a1 ], dest, succ) ] | Cge -> let r = r2pi () in let op = OEsltw optR0 in let sv = find_or_addnmove op [ a1; a2 ] r (get tmp_reg) map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in fst ht @ [ Iop (OExoriw Int.one, [ r' ], dest, succ) ] let cond_int32u is_x0 cmp a1 a2 dest tmp_reg succ map_consts = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> [ Iop (OEsequw optR0, [ a1; a2 ], dest, succ) ] | Cne -> [ Iop (OEsneuw optR0, [ a1; a2 ], dest, succ) ] | Clt -> [ Iop (OEsltuw optR0, [ a1; a2 ], dest, succ) ] | Cle -> let r = r2pi () in let op = OEsltuw optR0 in let sv = find_or_addnmove op [ a2; a1 ] r (get tmp_reg) map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in fst ht @ [ Iop (OExoriw Int.one, [ r' ], dest, succ) ] | Cgt -> [ Iop (OEsltuw optR0, [ a2; a1 ], dest, succ) ] | Cge -> let r = r2pi () in let op = OEsltuw optR0 in let sv = find_or_addnmove op [ a1; a2 ] r (get tmp_reg) map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in fst ht @ [ Iop (OExoriw Int.one, [ r' ], dest, succ) ] let cond_int64s is_x0 cmp a1 a2 dest tmp_reg succ map_consts = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> [ Iop (OEseql optR0, [ a1; a2 ], dest, succ) ] | Cne -> [ Iop (OEsnel optR0, [ a1; a2 ], dest, succ) ] | Clt -> [ Iop (OEsltl optR0, [ a1; a2 ], dest, succ) ] | Cle -> let r = r2pi () in let op = OEsltl optR0 in let sv = find_or_addnmove op [ a2; a1 ] r (get tmp_reg) map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in fst ht @ [ Iop (OExoriw Int.one, [ r' ], dest, succ) ] | Cgt -> [ Iop (OEsltl optR0, [ a2; a1 ], dest, succ) ] | Cge -> let r = r2pi () in let op = OEsltl optR0 in let sv = find_or_addnmove op [ a1; a2 ] r (get tmp_reg) map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in fst ht @ [ Iop (OExoriw Int.one, [ r' ], dest, succ) ] let cond_int64u is_x0 cmp a1 a2 dest tmp_reg succ map_consts = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> [ Iop (OEsequl optR0, [ a1; a2 ], dest, succ) ] | Cne -> [ Iop (OEsneul optR0, [ a1; a2 ], dest, succ) ] | Clt -> [ Iop (OEsltul optR0, [ a1; a2 ], dest, succ) ] | Cle -> let r = r2pi () in let op = OEsltul optR0 in let sv = find_or_addnmove op [ a2; a1 ] r (get tmp_reg) map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in fst ht @ [ Iop (OExoriw Int.one, [ r' ], dest, succ) ] | Cgt -> [ Iop (OEsltul optR0, [ a2; a1 ], dest, succ) ] | Cge -> let r = r2pi () in let op = OEsltul optR0 in let sv = find_or_addnmove op [ a1; a2 ] r (get tmp_reg) map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in fst ht @ [ Iop (OExoriw Int.one, [ r' ], dest, succ) ] let is_normal_cmp = function Cne -> false | _ -> true let cond_float cmp f1 f2 dest succ map_consts = match cmp with | Ceq -> [ Iop (OEfeqd, [ f1; f2 ], dest, succ) ] | Cne -> [ Iop (OEfeqd, [ f1; f2 ], dest, succ) ] | Clt -> [ Iop (OEfltd, [ f1; f2 ], dest, succ) ] | Cle -> [ Iop (OEfled, [ f1; f2 ], dest, succ) ] | Cgt -> [ Iop (OEfltd, [ f2; f1 ], dest, succ) ] | Cge -> [ Iop (OEfled, [ f2; f1 ], dest, succ) ] let cond_single cmp f1 f2 dest succ map_consts = match cmp with | Ceq -> [ Iop (OEfeqs, [ f1; f2 ], dest, succ) ] | Cne -> [ Iop (OEfeqs, [ f1; f2 ], dest, succ) ] | Clt -> [ Iop (OEflts, [ f1; f2 ], dest, succ) ] | Cle -> [ Iop (OEfles, [ f1; f2 ], dest, succ) ] | Cgt -> [ Iop (OEflts, [ f2; f1 ], dest, succ) ] | Cge -> [ Iop (OEfles, [ f2; f1 ], dest, succ) ] let expanse_cbranchimm_int32s cmp a1 n info succ1 succ2 k map_consts = if Int.eq n Int.zero then cbranch_int32s true cmp a1 a1 info succ1 succ2 k else let r = r2pi () in let ht = loadimm32 r n (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in fst ht @ cbranch_int32s false cmp a1 r' info succ1 succ2 k let expanse_cbranchimm_int32u cmp a1 n info succ1 succ2 k map_consts = if Int.eq n Int.zero then cbranch_int32u true cmp a1 a1 info succ1 succ2 k else let r = r2pi () in let ht = loadimm32 r n (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in fst ht @ cbranch_int32u false cmp a1 r' info succ1 succ2 k let expanse_cbranchimm_int64s cmp a1 n info succ1 succ2 k map_consts = if Int64.eq n Int64.zero then cbranch_int64s true cmp a1 a1 info succ1 succ2 k else let r = r2pi () in let ht = loadimm64 r n (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in fst ht @ cbranch_int64s false cmp a1 r' info succ1 succ2 k let expanse_cbranchimm_int64u cmp a1 n info succ1 succ2 k map_consts = if Int64.eq n Int64.zero then cbranch_int64u true cmp a1 a1 info succ1 succ2 k else let r = r2pi () in let ht = loadimm64 r n (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in fst ht @ cbranch_int64u false cmp a1 r' info succ1 succ2 k let get_tmp_reg = function Cle | Cge -> Some (n2pi ()) | _ -> None let expanse_condimm_int32s cmp a1 n dest succ map_consts = if Int.eq n Int.zero then let tmp_reg = get_tmp_reg cmp in cond_int32s true cmp a1 a1 dest tmp_reg succ map_consts else match cmp with | Ceq | Cne -> let r = r2pi () in xorimm32 a1 r n (n2pi ()) (cond_int32s true cmp r r dest None succ map_consts) map_consts | Clt -> sltimm32 a1 dest n succ [] map_consts | Cle -> if Int.eq n (Int.repr Int.max_signed) then let ht = loadimm32 dest Int.one succ map_consts false in fst ht else sltimm32 a1 dest (Int.add n Int.one) succ [] map_consts | _ -> let r = r2pi () in let tmp_reg = get_tmp_reg cmp in let ht = loadimm32 r n (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in fst ht @ cond_int32s false cmp a1 r' dest tmp_reg succ map_consts let expanse_condimm_int32u cmp a1 n dest succ map_consts = let tmp_reg = get_tmp_reg cmp in if Int.eq n Int.zero then cond_int32u true cmp a1 a1 dest tmp_reg succ map_consts else match cmp with | Clt -> sltuimm32 a1 dest n succ [] map_consts | _ -> let r = r2pi () in let ht = loadimm32 r n (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in fst ht @ cond_int32u false cmp a1 r' dest tmp_reg succ map_consts let expanse_condimm_int64s cmp a1 n dest succ map_consts = if Int64.eq n Int64.zero then let tmp_reg = get_tmp_reg cmp in cond_int64s true cmp a1 a1 dest tmp_reg succ map_consts else match cmp with | Ceq | Cne -> let r = r2pi () in xorimm64 a1 r n (n2pi ()) (cond_int64s true cmp r r dest None succ map_consts) map_consts | Clt -> sltimm64 a1 dest n succ [] map_consts | Cle -> if Int64.eq n (Int64.repr Int64.max_signed) then let ht = loadimm32 dest Int.one succ map_consts false in fst ht else sltimm64 a1 dest (Int64.add n Int64.one) succ [] map_consts | _ -> let r = r2pi () in let tmp_reg = get_tmp_reg cmp in let ht = loadimm64 r n (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in fst ht @ cond_int64s false cmp a1 r' dest tmp_reg succ map_consts let expanse_condimm_int64u cmp a1 n dest succ map_consts = let tmp_reg = get_tmp_reg cmp in if Int64.eq n Int64.zero then cond_int64u true cmp a1 a1 dest tmp_reg succ map_consts else match cmp with | Clt -> sltuimm64 a1 dest n succ [] map_consts | _ -> let r = r2pi () in let ht = loadimm64 r n (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in fst ht @ cond_int64u false cmp a1 r' dest tmp_reg succ map_consts let expanse_cond_fp cnot fn_cond cmp f1 f2 dest succ map_consts = let normal = is_normal_cmp cmp in let normal' = if cnot then not normal else normal in let succ' = if normal' then succ else n2pi () in let insn = fn_cond cmp f1 f2 dest succ' map_consts in if normal' then insn else build_full_ilist (OExoriw Int.one) [ dest ] dest succ insn [] map_consts let expanse_cbranch_fp cnot fn_cond cmp f1 f2 info succ1 succ2 map_consts = let r = r2pi () in let normal = is_normal_cmp cmp in let normal' = if cnot then not normal else normal in let insn = List.hd (fn_cond cmp f1 f2 r (n2pi ()) map_consts) in insn :: (if normal' then [ Icond (CEbnew (Some false), [ r; r ], succ1, succ2, info) ] else [ Icond (CEbeqw (Some false), [ r; r ], succ1, succ2, info) ]) let get_regindent = function Coq_inr _ -> [] | Coq_inl r -> [ r ] let get_regs_inst = function | Inop _ -> [] | Iop (_, args, dest, _) -> dest :: args | Iload (_, _, _, args, dest, _) -> dest :: args | Istore (_, _, args, src, _) -> src :: args | Icall (_, t, args, dest, _) -> dest :: (get_regindent t @ args) | Itailcall (_, t, args) -> get_regindent t @ args | Ibuiltin (_, args, dest, _) -> AST.params_of_builtin_res dest @ AST.params_of_builtin_args args | Icond (_, args, _, _, _) -> args | Ijumptable (arg, _) -> [ arg ] | Ireturn (Some r) -> [ r ] | _ -> [] let write_initial_node initial code' new_order = code' := PTree.set initial (Inop (n2p ())) !code'; new_order := initial :: !new_order let write_pathmap initial esize pm' = let path = get_some @@ PTree.get initial !pm' in let npsize = Camlcoq.Nat.of_int (esize + Camlcoq.Nat.to_int path.psize) in let path' = { psize = npsize; input_regs = path.input_regs; pre_output_regs = path.pre_output_regs; output_regs = path.output_regs; } in pm' := PTree.set initial path' !pm' let rec write_tree exp initial current code' new_order fturn = (*Printf.eprintf "wt: node is %d\n" !node;*) let target_node, next_node = if fturn then (P.to_int initial, current) else (current, current - 1) in match exp with | inst :: k -> (*let open PrintRTL in*) (*print_instruction stderr (target_node, inst);*) code' := PTree.set (P.of_int target_node) inst !code'; new_order := P.of_int target_node :: !new_order; write_tree k initial next_node code' new_order false | [] -> () let expanse (sb : superblock) code pm = (*debug_flag := true;*) let new_order = ref [] in let liveins = ref sb.liveins in let exp = ref [] in let was_branch = ref false in let was_exp = ref false in let code' = ref code in let pm' = ref pm in let map_consts = Hashtbl.create 100 in Array.iter (fun n -> was_branch := false; was_exp := false; let inst = get_some @@ PTree.get n code in (if !Clflags.option_fexpanse_rtlcond then match inst with (* Expansion of conditions - Ocmp *) | Iop (Ocmp (Ccomp c), a1 :: a2 :: nil, dest, succ) -> debug "Iop/Ccomp\n"; let tmp_reg = get_tmp_reg c in exp := cond_int32s false c a1 a2 dest tmp_reg succ map_consts; was_exp := true | Iop (Ocmp (Ccompu c), a1 :: a2 :: nil, dest, succ) -> debug "Iop/Ccompu\n"; let tmp_reg = get_tmp_reg c in exp := cond_int32u false c a1 a2 dest tmp_reg succ map_consts; was_exp := true | Iop (Ocmp (Ccompimm (c, imm)), a1 :: nil, dest, succ) -> debug "Iop/Ccompimm\n"; exp := expanse_condimm_int32s c a1 imm dest succ map_consts; was_exp := true | Iop (Ocmp (Ccompuimm (c, imm)), a1 :: nil, dest, succ) -> debug "Iop/Ccompuimm\n"; exp := expanse_condimm_int32u c a1 imm dest succ map_consts; was_exp := true | Iop (Ocmp (Ccompl c), a1 :: a2 :: nil, dest, succ) -> debug "Iop/Ccompl\n"; let tmp_reg = get_tmp_reg c in exp := cond_int64s false c a1 a2 dest tmp_reg succ map_consts; was_exp := true | Iop (Ocmp (Ccomplu c), a1 :: a2 :: nil, dest, succ) -> debug "Iop/Ccomplu\n"; let tmp_reg = get_tmp_reg c in exp := cond_int64u false c a1 a2 dest tmp_reg succ map_consts; was_exp := true | Iop (Ocmp (Ccomplimm (c, imm)), a1 :: nil, dest, succ) -> debug "Iop/Ccomplimm\n"; exp := expanse_condimm_int64s c a1 imm dest succ map_consts; was_exp := true | Iop (Ocmp (Ccompluimm (c, imm)), a1 :: nil, dest, succ) -> debug "Iop/Ccompluimm\n"; exp := expanse_condimm_int64u c a1 imm dest succ map_consts; was_exp := true | Iop (Ocmp (Ccompf c), f1 :: f2 :: nil, dest, succ) -> debug "Iop/Ccompf\n"; exp := expanse_cond_fp false cond_float c f1 f2 dest succ map_consts; was_exp := true | Iop (Ocmp (Cnotcompf c), f1 :: f2 :: nil, dest, succ) -> debug "Iop/Cnotcompf\n"; exp := expanse_cond_fp true cond_float c f1 f2 dest succ map_consts; was_exp := true | Iop (Ocmp (Ccompfs c), f1 :: f2 :: nil, dest, succ) -> debug "Iop/Ccompfs\n"; exp := expanse_cond_fp false cond_single c f1 f2 dest succ map_consts; was_exp := true | Iop (Ocmp (Cnotcompfs c), f1 :: f2 :: nil, dest, succ) -> debug "Iop/Cnotcompfs\n"; exp := expanse_cond_fp true cond_single c f1 f2 dest succ map_consts; was_exp := true (* Expansion of branches - Ccomp *) | Icond (Ccomp c, a1 :: a2 :: nil, succ1, succ2, info) -> debug "Icond/Ccomp\n"; exp := cbranch_int32s false c a1 a2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccompu c, a1 :: a2 :: nil, succ1, succ2, info) -> debug "Icond/Ccompu\n"; exp := cbranch_int32u false c a1 a2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccompimm (c, imm), a1 :: nil, succ1, succ2, info) -> debug "Icond/Ccompimm\n"; exp := expanse_cbranchimm_int32s c a1 imm info succ1 succ2 [] map_consts; was_branch := true; was_exp := true | Icond (Ccompuimm (c, imm), a1 :: nil, succ1, succ2, info) -> debug "Icond/Ccompuimm\n"; exp := expanse_cbranchimm_int32u c a1 imm info succ1 succ2 [] map_consts; was_branch := true; was_exp := true | Icond (Ccompl c, a1 :: a2 :: nil, succ1, succ2, info) -> debug "Icond/Ccompl\n"; exp := cbranch_int64s false c a1 a2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccomplu c, a1 :: a2 :: nil, succ1, succ2, info) -> debug "Icond/Ccomplu\n"; exp := cbranch_int64u false c a1 a2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccomplimm (c, imm), a1 :: nil, succ1, succ2, info) -> debug "Icond/Ccomplimm\n"; exp := expanse_cbranchimm_int64s c a1 imm info succ1 succ2 [] map_consts; was_branch := true; was_exp := true | Icond (Ccompluimm (c, imm), a1 :: nil, succ1, succ2, info) -> debug "Icond/Ccompluimm\n"; exp := expanse_cbranchimm_int64u c a1 imm info succ1 succ2 [] map_consts; was_branch := true; was_exp := true | Icond (Ccompf c, f1 :: f2 :: nil, succ1, succ2, info) -> debug "Icond/Ccompf\n"; exp := expanse_cbranch_fp false cond_float c f1 f2 info succ1 succ2 map_consts; was_branch := true; was_exp := true | Icond (Cnotcompf c, f1 :: f2 :: nil, succ1, succ2, info) -> debug "Icond/Cnotcompf\n"; exp := expanse_cbranch_fp true cond_float c f1 f2 info succ1 succ2 map_consts; was_branch := true; was_exp := true | Icond (Ccompfs c, f1 :: f2 :: nil, succ1, succ2, info) -> debug "Icond/Ccompfs\n"; exp := expanse_cbranch_fp false cond_single c f1 f2 info succ1 succ2 map_consts; was_branch := true; was_exp := true | Icond (Cnotcompfs c, f1 :: f2 :: nil, succ1, succ2, info) -> debug "Icond/Cnotcompfs\n"; exp := expanse_cbranch_fp true cond_single c f1 f2 info succ1 succ2 map_consts; was_branch := true; was_exp := true | _ -> ()); (if !Clflags.option_fexpanse_fpconst && not !was_exp then match inst with (* Expansion of fp constants *) | Iop (Ofloatconst f, nil, dest, succ) -> debug "Iop/Ofloatconst\n"; let r = r2pi () in let ht = loadimm64 r (Floats.Float.to_bits f) (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in exp := build_full_ilist Ofloat_of_bits [ r' ] dest succ (fst ht) [] map_consts; was_exp := true | Iop (Osingleconst f, nil, dest, succ) -> debug "Iop/Osingleconst\n"; let r = r2pi () in let ht = loadimm32 r (Floats.Float32.to_bits f) (n2pi ()) map_consts true in let r' = unzip_head_tuple ht r in exp := build_full_ilist Osingle_of_bits [ r' ] dest succ (fst ht) [] map_consts; was_exp := true | _ -> ()); (* TODO gourdinl flag ? *) (match inst with | Iop (Ointconst n, nil, dest, succ) -> debug "Iop/Ointconst\n"; let ht = loadimm32 dest n succ map_consts false in exp := unzip_head_tuple_move ht dest succ; was_exp := true | Iop (Olongconst n, nil, dest, succ) -> debug "Iop/Olongconst\n"; let ht = loadimm64 dest n succ map_consts false in exp := unzip_head_tuple_move ht dest succ; was_exp := true | Iop (Oaddimm n, a1 :: nil, dest, succ) -> debug "Iop/Oaddimm\n"; exp := addimm32 a1 dest n succ [] map_consts; was_exp := true | Iop (Oaddlimm n, a1 :: nil, dest, succ) -> debug "Iop/Oaddlimm\n"; exp := addimm64 a1 dest n succ [] map_consts; was_exp := true | Iop (Oandimm n, a1 :: nil, dest, succ) -> debug "Iop/Oandimm\n"; exp := andimm32 a1 dest n succ [] map_consts; was_exp := true | Iop (Oandlimm n, a1 :: nil, dest, succ) -> debug "Iop/Oandlimm\n"; exp := andimm64 a1 dest n succ [] map_consts; was_exp := true | Iop (Oorimm n, a1 :: nil, dest, succ) -> debug "Iop/Oorimm\n"; exp := orimm32 a1 dest n succ [] map_consts; was_exp := true | Iop (Oorlimm n, a1 :: nil, dest, succ) -> debug "Iop/Oorlimm\n"; exp := orimm64 a1 dest n succ [] map_consts; was_exp := true | Iop (Ocast8signed, a1 :: nil, dest, succ) -> debug "Iop/cast8signed"; let op = Oshlimm (Int.repr (Z.of_sint 24)) in let r = r2pi () in let sv = find_or_addnmove op [ a1 ] r (n2pi ()) map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in exp := build_full_ilist (Oshrimm (Int.repr (Z.of_sint 24))) [ r' ] dest succ (fst ht) [] map_consts; was_exp := true | Iop (Ocast16signed, a1 :: nil, dest, succ) -> debug "Iop/cast8signed"; let op = Oshlimm (Int.repr (Z.of_sint 16)) in let r = r2pi () in let sv = find_or_addnmove op [ a1 ] r (n2pi ()) map_consts true in let ht = build_head_tuple [] sv in let r' = unzip_head_tuple ht r in exp := build_full_ilist (Oshrimm (Int.repr (Z.of_sint 16))) [ r' ] dest succ (fst ht) [] map_consts; was_exp := true | Iop (Ocast32unsigned, a1 :: nil, dest, succ) -> debug "Iop/Ocast32unsigned"; let n2 = n2pi () in let n1 = n2pi () in let r1 = r2pi () in let r2 = r2pi () in let op1 = Ocast32signed in let sv1 = find_or_addnmove op1 [ a1 ] r1 n1 map_consts true in let ht1 = build_head_tuple [] sv1 in let r1' = unzip_head_tuple ht1 r1 in let op2 = Oshllimm (Int.repr (Z.of_sint 32)) in let sv2 = find_or_addnmove op2 [ r1' ] r2 n2 map_consts true in let ht2 = build_head_tuple (fst ht1) sv2 in let r2' = unzip_head_tuple ht2 r2 in let op3 = Oshrluimm (Int.repr (Z.of_sint 32)) in exp := build_full_ilist op3 [ r2' ] dest succ (fst ht2) [] map_consts | Iop (Oshrximm n, a1 :: nil, dest, succ) -> debug "Iop/Oshrximm"; if Int.eq n Int.zero then exp := [ Iop (Omove, [ a1 ], dest, succ) ] else if Int.eq n Int.one then let n2 = n2pi () in let n1 = n2pi () in let r1 = r2pi () in let r2 = r2pi () in let op1 = Oshruimm (Int.repr (Z.of_sint 31)) in let sv1 = find_or_addnmove op1 [ a1 ] r1 n1 map_consts true in let ht1 = build_head_tuple [] sv1 in let r1' = unzip_head_tuple ht1 r1 in let op2 = Oadd in let sv2 = find_or_addnmove op2 [ a1; r1' ] r2 n2 map_consts true in let ht2 = build_head_tuple (fst ht1) sv2 in let r2' = unzip_head_tuple ht2 r2 in let op3 = Oshrimm Int.one in exp := build_full_ilist op3 [ r2' ] dest succ (fst ht2) [] map_consts else let n3 = n2pi () in let n2 = n2pi () in let n1 = n2pi () in let r1 = r2pi () in let r2 = r2pi () in let r3 = r2pi () in let op1 = Oshrimm (Int.repr (Z.of_sint 31)) in let sv1 = find_or_addnmove op1 [ a1 ] r1 n1 map_consts true in let ht1 = build_head_tuple [] sv1 in let r1' = unzip_head_tuple ht1 r1 in let op2 = Oshruimm (Int.sub Int.iwordsize n) in let sv2 = find_or_addnmove op2 [ r1' ] r2 n2 map_consts true in let ht2 = build_head_tuple (fst ht1) sv2 in let r2' = unzip_head_tuple ht2 r2 in let op3 = Oadd in let sv3 = find_or_addnmove op3 [ a1; r2' ] r3 n3 map_consts true in let ht3 = build_head_tuple (fst ht2) sv3 in let r3' = unzip_head_tuple ht3 r3 in let op4 = Oshrimm n in exp := build_full_ilist op4 [ r3' ] dest succ (fst ht3) [] map_consts | Iop (Oshrxlimm n, a1 :: nil, dest, succ) -> debug "Iop/Oshrxlimm"; if Int.eq n Int.zero then exp := [ Iop (Omove, [ a1 ], dest, succ) ] else if Int.eq n Int.one then let n2 = n2pi () in let n1 = n2pi () in let r1 = r2pi () in let r2 = r2pi () in let op1 = Oshrluimm (Int.repr (Z.of_sint 63)) in let sv1 = find_or_addnmove op1 [ a1 ] r1 n1 map_consts true in let ht1 = build_head_tuple [] sv1 in let r1' = unzip_head_tuple ht1 r1 in let op2 = Oaddl in let sv2 = find_or_addnmove op2 [ a1; r1' ] r2 n2 map_consts true in let ht2 = build_head_tuple (fst ht1) sv2 in let r2' = unzip_head_tuple ht2 r2 in let op3 = Oshrlimm Int.one in exp := build_full_ilist op3 [ r2' ] dest succ (fst ht2) [] map_consts else let n3 = n2pi () in let n2 = n2pi () in let n1 = n2pi () in let r1 = r2pi () in let r2 = r2pi () in let r3 = r2pi () in let op1 = Oshrlimm (Int.repr (Z.of_sint 63)) in let sv1 = find_or_addnmove op1 [ a1 ] r1 n1 map_consts true in let ht1 = build_head_tuple [] sv1 in let r1' = unzip_head_tuple ht1 r1 in let op2 = Oshrluimm (Int.sub Int64.iwordsize' n) in let sv2 = find_or_addnmove op2 [ r1' ] r2 n2 map_consts true in let ht2 = build_head_tuple (fst ht1) sv2 in let r2' = unzip_head_tuple ht2 r2 in let op3 = Oaddl in let sv3 = find_or_addnmove op3 [ a1; r2' ] r3 n3 map_consts true in let ht3 = build_head_tuple (fst ht2) sv3 in let r3' = unzip_head_tuple ht3 r3 in let op4 = Oshrlimm n in exp := build_full_ilist op4 [ r3' ] dest succ (fst ht3) [] map_consts | _ -> ()); if !was_exp then ( (if !was_branch && List.length !exp > 1 then let lives = PTree.get n !liveins in match lives with | Some lives -> let new_branch_pc = n2p () in liveins := PTree.set new_branch_pc lives !liveins; liveins := PTree.remove n !liveins | _ -> ()); write_pathmap sb.instructions.(0) (List.length !exp - 1) pm'; write_tree !exp n !node code' new_order true) else new_order := n :: !new_order) sb.instructions; sb.instructions <- Array.of_list (List.rev !new_order); sb.liveins <- !liveins; (*debug_flag := false;*) (!code', !pm') let rec find_last_node_reg = function | [] -> () | (pc, i) :: k -> let rec traverse_list var = function | [] -> () | e :: t -> let e' = p2i e in if e' > !var then var := e'; traverse_list var t in traverse_list node [ pc ]; traverse_list reg (get_regs_inst i); find_last_node_reg k