(* *************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Léo Gourdin UGA, VERIMAG *) (* *) (* Copyright VERIMAG. All rights reserved. *) (* This file is distributed under the terms of the INRIA *) (* Non-Commercial License Agreement. *) (* *) (* *************************************************************) open RTLpathLivegenaux open RTLpathCommon open Datatypes open Maps open RTL open Op open Asmgen open DebugPrint open RTLpath open! Integers let reg = ref 1 let node = ref 1 let r2p () = Camlcoq.P.of_int !reg let n2p () = Camlcoq.P.of_int !node let r2pi () = reg := !reg + 1; r2p () let n2pi () = node := !node + 1; n2p () type immt = Xoriw | Xoril | Sltiw | Sltiuw | Sltil | Sltiul let load_hilo32 a1 dest hi lo succ is_long k = if Int.eq lo Int.zero then Iop (OEluiw (hi, is_long), [ a1 ], dest, succ) :: k else let r = r2pi () in Iop (OEluiw (hi, is_long), [ a1 ], r, n2pi ()) :: Iop (Oaddimm lo, [ r ], dest, succ) :: k let load_hilo64 a1 dest hi lo succ k = if Int64.eq lo Int64.zero then Iop (OEluil hi, [ a1 ], dest, succ) :: k else let r = r2pi () in Iop (OEluil hi, [ a1 ], r, n2pi ()) :: Iop (Oaddlimm lo, [ r ], dest, succ) :: k let loadimm32 a1 dest n succ is_long k = match make_immed32 n with | Imm32_single imm -> Iop (OEaddiwr0 (imm, is_long), [ a1 ], dest, succ) :: k | Imm32_pair (hi, lo) -> load_hilo32 a1 dest hi lo succ is_long k let loadimm64 a1 dest n succ k = match make_immed64 n with | Imm64_single imm -> Iop (OEaddilr0 imm, [ a1 ], dest, succ) :: k | Imm64_pair (hi, lo) -> load_hilo64 a1 dest hi lo succ k | Imm64_large imm -> Iop (OEloadli imm, [], dest, succ) :: k let get_opimm imm = function | Xoriw -> OExoriw imm | Sltiw -> OEsltiw imm | Sltiuw -> OEsltiuw imm | Xoril -> OExoril imm | Sltil -> OEsltil imm | Sltiul -> OEsltiul imm let opimm32 a1 dest n succ is_long k op opimm = match make_immed32 n with | Imm32_single imm -> Iop (get_opimm imm opimm, [ a1 ], dest, succ) :: k | Imm32_pair (hi, lo) -> let r = r2pi () in load_hilo32 a1 r hi lo (n2pi ()) is_long (Iop (op, [ a1; r ], dest, succ) :: k) let opimm64 a1 dest n succ k op opimm = match make_immed64 n with | Imm64_single imm -> Iop (get_opimm imm opimm, [ a1 ], dest, succ) :: k | Imm64_pair (hi, lo) -> let r = r2pi () in load_hilo64 a1 r hi lo (n2pi ()) (Iop (op, [ a1; r ], dest, succ) :: k) | Imm64_large imm -> let r = r2pi () in Iop (OEloadli imm, [], r, n2pi ()) :: Iop (op, [ a1; r ], dest, succ) :: k let xorimm32 a1 dest n succ is_long k = opimm32 a1 dest n succ is_long k Oxor Xoriw let sltimm32 a1 dest n succ is_long k = opimm32 a1 dest n succ is_long k (OEsltw None) Sltiw let sltuimm32 a1 dest n succ is_long k = opimm32 a1 dest n succ is_long k (OEsltuw None) Sltiuw let xorimm64 a1 dest n succ k = opimm64 a1 dest n succ k Oxorl Xoril let sltimm64 a1 dest n succ k = opimm64 a1 dest n succ k (OEsltl None) Sltil let sltuimm64 a1 dest n succ k = opimm64 a1 dest n succ k (OEsltul None) Sltiul let is_inv_cmp = function Cle | Cgt -> true | _ -> false let make_optR0 is_x0 is_inv = if is_x0 then Some is_inv else None let cbranch_int32s is_x0 cmp a1 a2 info succ1 succ2 k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Icond (CEbeqw optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cne -> Icond (CEbnew optR0, [ a1; a2 ], succ1, succ2, info) :: k | Clt -> Icond (CEbltw optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cle -> Icond (CEbgew optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cgt -> Icond (CEbltw optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cge -> Icond (CEbgew optR0, [ a1; a2 ], succ1, succ2, info) :: k let cbranch_int32u is_x0 cmp a1 a2 info succ1 succ2 k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Icond (CEbequw optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cne -> Icond (CEbneuw optR0, [ a1; a2 ], succ1, succ2, info) :: k | Clt -> Icond (CEbltuw optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cle -> Icond (CEbgeuw optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cgt -> Icond (CEbltuw optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cge -> Icond (CEbgeuw optR0, [ a1; a2 ], succ1, succ2, info) :: k let cbranch_int64s is_x0 cmp a1 a2 info succ1 succ2 k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Icond (CEbeql optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cne -> Icond (CEbnel optR0, [ a1; a2 ], succ1, succ2, info) :: k | Clt -> Icond (CEbltl optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cle -> Icond (CEbgel optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cgt -> Icond (CEbltl optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cge -> Icond (CEbgel optR0, [ a1; a2 ], succ1, succ2, info) :: k let cbranch_int64u is_x0 cmp a1 a2 info succ1 succ2 k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Icond (CEbequl optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cne -> Icond (CEbneul optR0, [ a1; a2 ], succ1, succ2, info) :: k | Clt -> Icond (CEbltul optR0, [ a1; a2 ], succ1, succ2, info) :: k | Cle -> Icond (CEbgeul optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cgt -> Icond (CEbltul optR0, [ a2; a1 ], succ1, succ2, info) :: k | Cge -> Icond (CEbgeul optR0, [ a1; a2 ], succ1, succ2, info) :: k let cond_int32s is_x0 cmp a1 a2 dest succ k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Iop (OEseqw optR0, [ a1; a2 ], dest, succ) :: k | Cne -> Iop (OEsnew optR0, [ a1; a2 ], dest, succ) :: k | Clt -> Iop (OEsltw optR0, [ a1; a2 ], dest, succ) :: k | Cle -> let r = r2pi () in Iop (OEsltw optR0, [ a2; a1 ], r, n2pi ()) :: Iop (OExoriw Int.one, [ r ], dest, succ) :: k | Cgt -> Iop (OEsltw optR0, [ a2; a1 ], dest, succ) :: k | Cge -> let r = r2pi () in Iop (OEsltw optR0, [ a1; a2 ], r, n2pi ()) :: Iop (OExoriw Int.one, [ r ], dest, succ) :: k let cond_int32u is_x0 cmp a1 a2 dest succ k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Iop (OEsequw optR0, [ a1; a2 ], dest, succ) :: k | Cne -> Iop (OEsneuw optR0, [ a1; a2 ], dest, succ) :: k | Clt -> Iop (OEsltuw optR0, [ a1; a2 ], dest, succ) :: k | Cle -> let r = r2pi () in Iop (OEsltuw optR0, [ a2; a1 ], r, n2pi ()) :: Iop (OExoriw Int.one, [ r ], dest, succ) :: k | Cgt -> Iop (OEsltuw optR0, [ a2; a1 ], dest, succ) :: k | Cge -> let r = r2pi () in Iop (OEsltuw optR0, [ a1; a2 ], r, n2pi ()) :: Iop (OExoriw Int.one, [ r ], dest, succ) :: k let cond_int64s is_x0 cmp a1 a2 dest succ k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Iop (OEseql optR0, [ a1; a2 ], dest, succ) :: k | Cne -> Iop (OEsnel optR0, [ a1; a2 ], dest, succ) :: k | Clt -> Iop (OEsltl optR0, [ a1; a2 ], dest, succ) :: k | Cle -> let r = r2pi () in Iop (OEsltl optR0, [ a2; a1 ], r, n2pi ()) :: Iop (OExoriw Int.one, [ r ], dest, succ) :: k | Cgt -> Iop (OEsltl optR0, [ a2; a1 ], dest, succ) :: k | Cge -> let r = r2pi () in Iop (OEsltl optR0, [ a1; a2 ], r, n2pi ()) :: Iop (OExoriw Int.one, [ r ], dest, succ) :: k let cond_int64u is_x0 cmp a1 a2 dest succ k = let optR0 = make_optR0 is_x0 (is_inv_cmp cmp) in match cmp with | Ceq -> Iop (OEsequl optR0, [ a1; a2 ], dest, succ) :: k | Cne -> Iop (OEsneul optR0, [ a1; a2 ], dest, succ) :: k | Clt -> Iop (OEsltul optR0, [ a1; a2 ], dest, succ) :: k | Cle -> let r = r2pi () in Iop (OEsltul optR0, [ a2; a1 ], r, n2pi ()) :: Iop (OExoriw Int.one, [ r ], dest, succ) :: k | Cgt -> Iop (OEsltul optR0, [ a2; a1 ], dest, succ) :: k | Cge -> let r = r2pi () in Iop (OEsltul optR0, [ a1; a2 ], r, n2pi ()) :: Iop (OExoriw Int.one, [ r ], dest, succ) :: k let is_normal_cmp = function Cne -> false | _ -> true let cond_float cmp f1 f2 dest succ = match cmp with | Ceq -> Iop (OEfeqd, [ f1; f2 ], dest, succ) | Cne -> Iop (OEfeqd, [ f1; f2 ], dest, succ) | Clt -> Iop (OEfltd, [ f1; f2 ], dest, succ) | Cle -> Iop (OEfled, [ f1; f2 ], dest, succ) | Cgt -> Iop (OEfltd, [ f2; f1 ], dest, succ) | Cge -> Iop (OEfled, [ f2; f1 ], dest, succ) let cond_single cmp f1 f2 dest succ = match cmp with | Ceq -> Iop (OEfeqs, [ f1; f2 ], dest, succ) | Cne -> Iop (OEfeqs, [ f1; f2 ], dest, succ) | Clt -> Iop (OEflts, [ f1; f2 ], dest, succ) | Cle -> Iop (OEfles, [ f1; f2 ], dest, succ) | Cgt -> Iop (OEflts, [ f2; f1 ], dest, succ) | Cge -> Iop (OEfles, [ f2; f1 ], dest, succ) let expanse_cbranchimm_int32s cmp a1 n info succ1 succ2 k = if Int.eq n Int.zero then cbranch_int32s true cmp a1 a1 info succ1 succ2 k else let r = r2pi () in loadimm32 a1 r n (n2pi ()) false (cbranch_int32s false cmp a1 r info succ1 succ2 k) let expanse_cbranchimm_int32u cmp a1 n info succ1 succ2 k = if Int.eq n Int.zero then cbranch_int32u true cmp a1 a1 info succ1 succ2 k else let r = r2pi () in loadimm32 a1 r n (n2pi ()) false (cbranch_int32u false cmp a1 r info succ1 succ2 k) let expanse_cbranchimm_int64s cmp a1 n info succ1 succ2 k = if Int64.eq n Int64.zero then cbranch_int64s true cmp a1 a1 info succ1 succ2 k else let r = r2pi () in loadimm64 a1 r n (n2pi ()) (cbranch_int64s false cmp a1 r info succ1 succ2 k) let expanse_cbranchimm_int64u cmp a1 n info succ1 succ2 k = if Int64.eq n Int64.zero then cbranch_int64u true cmp a1 a1 info succ1 succ2 k else let r = r2pi () in loadimm64 a1 r n (n2pi ()) (cbranch_int64u false cmp a1 r info succ1 succ2 k) let expanse_condimm_int32s cmp a1 n dest succ k = if Int.eq n Int.zero then cond_int32s true cmp a1 a1 dest succ k else match cmp with | Ceq | Cne -> let r = r2pi () in xorimm32 a1 r n (n2pi ()) false (cond_int32s true cmp r r dest succ k) | Clt -> sltimm32 a1 dest n succ false k | Cle -> if Int.eq n (Int.repr Int.max_signed) then loadimm32 a1 dest Int.one succ false k else sltimm32 a1 dest (Int.add n Int.one) succ false k | _ -> let r = r2pi () in loadimm32 a1 r n (n2pi ()) false (cond_int32s false cmp a1 r dest succ k) let expanse_condimm_int32u cmp a1 n dest succ k = if Int.eq n Int.zero then cond_int32u true cmp a1 a1 dest succ k else match cmp with | Clt -> sltuimm32 a1 dest n succ false k | _ -> let r = r2pi () in loadimm32 a1 r n (n2pi ()) false (cond_int32u false cmp a1 r dest succ k) let expanse_condimm_int64s cmp a1 n dest succ k = if Int64.eq n Int64.zero then cond_int64s true cmp a1 a1 dest succ k else match cmp with | Ceq | Cne -> let r = r2pi () in xorimm64 a1 r n (n2pi ()) (cond_int64s true cmp r r dest succ k) | Clt -> sltimm64 a1 dest n succ k | Cle -> if Int64.eq n (Int64.repr Int64.max_signed) then loadimm32 a1 dest Int.one succ true k else sltimm64 a1 dest (Int64.add n Int64.one) succ k | _ -> let r = r2pi () in loadimm64 a1 r n (n2pi ()) (cond_int64s false cmp a1 r dest succ k) let expanse_condimm_int64u cmp a1 n dest succ k = if Int64.eq n Int64.zero then cond_int64u true cmp a1 a1 dest succ k else match cmp with | Clt -> sltuimm64 a1 dest n succ k | _ -> let r = r2pi () in loadimm64 a1 r n (n2pi ()) (cond_int64u false cmp a1 r dest succ k) let expanse_cond_fp cnot fn_cond cmp f1 f2 dest succ k = let normal = is_normal_cmp cmp in let normal' = if cnot then not normal else normal in let succ' = if normal' then succ else n2pi () in let insn = fn_cond cmp f1 f2 dest succ' in insn :: (if normal' then k else Iop (OExoriw Int.one, [ dest ], dest, succ) :: k) let expanse_cbranch_fp cnot fn_cond cmp f1 f2 info succ1 succ2 k = let r = r2pi () in let normal = is_normal_cmp cmp in let normal' = if cnot then not normal else normal in let insn = fn_cond cmp f1 f2 r (n2pi ()) in insn :: (if normal' then Icond (CEbnew (Some false), [ r; r ], succ1, succ2, info) else Icond (CEbeqw (Some false), [ r; r ], succ1, succ2, info)) :: k let get_regindent = function Coq_inr _ -> [] | Coq_inl r -> [ r ] let get_regs_inst = function | Inop _ -> [] | Iop (_, args, dest, _) -> dest :: args | Iload (_, _, _, args, dest, _) -> dest :: args | Istore (_, _, args, src, _) -> src :: args | Icall (_, t, args, dest, _) -> dest :: (get_regindent t @ args) | Itailcall (_, t, args) -> get_regindent t @ args | Ibuiltin (_, args, dest, _) -> AST.params_of_builtin_res dest @ AST.params_of_builtin_args args | Icond (_, args, _, _, _) -> args | Ijumptable (arg, _) -> [ arg ] | Ireturn (Some r) -> [ r ] | _ -> [] let write_initial_node initial code' new_order = code' := PTree.set initial (Inop (n2p ())) !code'; new_order := initial :: !new_order let write_pathmap initial esize pm' = let path = get_some @@ PTree.get initial !pm' in let npsize = Camlcoq.Nat.of_int (esize + Camlcoq.Nat.to_int path.psize) in let path' = { psize = npsize; input_regs = path.input_regs; pre_output_regs = path.pre_output_regs; output_regs = path.output_regs; } in pm' := PTree.set initial path' !pm' let rec write_tree exp current code' new_order = match exp with | (Iop (_, _, _, succ) as inst) :: k -> code' := PTree.set (Camlcoq.P.of_int current) inst !code'; new_order := Camlcoq.P.of_int current :: !new_order; write_tree k (current - 1) code' new_order | (Icond (_, _, succ1, succ2, _) as inst) :: k -> code' := PTree.set (Camlcoq.P.of_int current) inst !code'; new_order := Camlcoq.P.of_int current :: !new_order; write_tree k (current - 1) code' new_order | [] -> () | _ -> failwith "ExpansionOracle.write_tree: inconsistent instruction." let expanse (sb : superblock) code pm = debug_flag := true; let new_order = ref [] in let liveins = ref sb.liveins in let exp = ref [] in let was_branch = ref false in let was_exp = ref false in let code' = ref code in let pm' = ref pm in Array.iter (fun n -> was_branch := false; was_exp := false; let inst = get_some @@ PTree.get n code in (match inst with (* Expansion of conditions - Ocmp *) | Iop (Ocmp (Ccomp c), a1 :: a2 :: nil, dest, succ) -> debug "Iop/Ccomp\n"; exp := cond_int32s false c a1 a2 dest succ []; was_exp := true | Iop (Ocmp (Ccompu c), a1 :: a2 :: nil, dest, succ) -> debug "Iop/Ccompu\n"; exp := cond_int32u false c a1 a2 dest succ []; was_exp := true | Iop (Ocmp (Ccompimm (c, imm)), a1 :: nil, dest, succ) -> debug "Iop/Ccompimm\n"; exp := expanse_condimm_int32s c a1 imm dest succ []; was_exp := true | Iop (Ocmp (Ccompuimm (c, imm)), a1 :: nil, dest, succ) -> debug "Iop/Ccompuimm\n"; exp := expanse_condimm_int32u c a1 imm dest succ []; was_exp := true | Iop (Ocmp (Ccompl c), a1 :: a2 :: nil, dest, succ) -> debug "Iop/Ccompl\n"; exp := cond_int64s false c a1 a2 dest succ []; was_exp := true | Iop (Ocmp (Ccomplu c), a1 :: a2 :: nil, dest, succ) -> debug "Iop/Ccomplu\n"; exp := cond_int64u false c a1 a2 dest succ []; was_exp := true | Iop (Ocmp (Ccomplimm (c, imm)), a1 :: nil, dest, succ) -> debug "Iop/Ccomplimm\n"; exp := expanse_condimm_int64s c a1 imm dest succ []; was_exp := true | Iop (Ocmp (Ccompluimm (c, imm)), a1 :: nil, dest, succ) -> debug "Iop/Ccompluimm\n"; exp := expanse_condimm_int64u c a1 imm dest succ []; was_exp := true | Iop (Ocmp (Ccompf c), f1 :: f2 :: nil, dest, succ) -> debug "Iop/Ccompf\n"; exp := expanse_cond_fp false cond_float c f1 f2 dest succ []; was_exp := true | Iop (Ocmp (Cnotcompf c), f1 :: f2 :: nil, dest, succ) -> debug "Iop/Cnotcompf\n"; exp := expanse_cond_fp true cond_float c f1 f2 dest succ []; was_exp := true | Iop (Ocmp (Ccompfs c), f1 :: f2 :: nil, dest, succ) -> debug "Iop/Ccompfs\n"; exp := expanse_cond_fp false cond_single c f1 f2 dest succ []; was_exp := true | Iop (Ocmp (Cnotcompfs c), f1 :: f2 :: nil, dest, succ) -> debug "Iop/Cnotcompfs\n"; exp := expanse_cond_fp true cond_single c f1 f2 dest succ []; was_exp := true (* Expansion of branches - Ccomp *) | Icond (Ccomp c, a1 :: a2 :: nil, succ1, succ2, info) -> debug "Icond/Ccomp\n"; exp := cbranch_int32s false c a1 a2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccompu c, a1 :: a2 :: nil, succ1, succ2, info) -> debug "Icond/Ccompu\n"; exp := cbranch_int32u false c a1 a2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccompimm (c, imm), a1 :: nil, succ1, succ2, info) -> debug "Icond/Ccompimm\n"; exp := expanse_cbranchimm_int32s c a1 imm info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccompuimm (c, imm), a1 :: nil, succ1, succ2, info) -> debug "Icond/Ccompuimm\n"; exp := expanse_cbranchimm_int32u c a1 imm info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccompl c, a1 :: a2 :: nil, succ1, succ2, info) -> debug "Icond/Ccompl\n"; exp := cbranch_int64s false c a1 a2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccomplu c, a1 :: a2 :: nil, succ1, succ2, info) -> debug "Icond/Ccomplu\n"; exp := cbranch_int64u false c a1 a2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccomplimm (c, imm), a1 :: nil, succ1, succ2, info) -> debug "Icond/Ccomplimm\n"; exp := expanse_cbranchimm_int64s c a1 imm info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccompluimm (c, imm), a1 :: nil, succ1, succ2, info) -> debug "Icond/Ccompluimm\n"; exp := expanse_cbranchimm_int64u c a1 imm info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccompf c, f1 :: f2 :: nil, succ1, succ2, info) -> debug "Icond/Ccompf\n"; exp := expanse_cbranch_fp false cond_float c f1 f2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Cnotcompf c, f1 :: f2 :: nil, succ1, succ2, info) -> debug "Icond/Cnotcompf\n"; exp := expanse_cbranch_fp true cond_float c f1 f2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Ccompfs c, f1 :: f2 :: nil, succ1, succ2, info) -> debug "Icond/Ccompfs\n"; exp := expanse_cbranch_fp false cond_single c f1 f2 info succ1 succ2 []; was_branch := true; was_exp := true | Icond (Cnotcompfs c, f1 :: f2 :: nil, succ1, succ2, info) -> debug "Icond/Cnotcompfs\n"; exp := expanse_cbranch_fp true cond_single c f1 f2 info succ1 succ2 []; was_branch := true; was_exp := true (* Expansion of fp constants *) | Iop (Ofloatconst f, nil, dest, succ) -> debug "Iop/Ofloatconst\n"; let r = r2pi () in exp := [ Iop (Olongconst (Floats.Float.to_bits f), [], r, n2pi ()); Iop (Ofloat_of_bits, [ r ], dest, succ); ]; was_exp := true | Iop (Osingleconst f, nil, dest, succ) -> debug "Iop/Osingleconst\n"; let r = r2pi () in exp := [ Iop (Ointconst (Floats.Float32.to_bits f), [], r, n2pi ()); Iop (Osingle_of_bits, [ r ], dest, succ); ]; was_exp := true | _ -> new_order := n :: !new_order); if !was_exp then ( node := !node + 1; (if !was_branch then let lives = PTree.get n !liveins in match lives with | Some lives -> let new_branch_pc = Camlcoq.P.of_int (!node - (List.length !exp - 1)) in liveins := PTree.set new_branch_pc lives !liveins; liveins := PTree.remove n !liveins | _ -> ()); write_pathmap sb.instructions.(0) (List.length !exp) pm'; write_initial_node n code' new_order; write_tree !exp !node code' new_order)) sb.instructions; sb.instructions <- Array.of_list (List.rev !new_order); sb.liveins <- !liveins; debug_flag := false; (!code', !pm') let rec find_last_node_reg = function | [] -> () | (pc, i) :: k -> let rec traverse_list var = function | [] -> () | e :: t -> let e' = Camlcoq.P.to_int e in if e' > !var then var := e'; traverse_list var t in traverse_list node [ pc ]; traverse_list reg (get_regs_inst i); find_last_node_reg k