Require Import Coqlib Maps. Require Import AST Integers Values Events Memory Globalenvs Smallstep. Require Import RTL Op Registers OptionMonad. Require Import Errors Linking BTLtoRTL. Require Import Linking. Inductive match_fundef: BTL.fundef -> RTL.fundef -> Prop := | match_Internal dupmap f f': match_function dupmap f f' -> match_fundef (Internal f) (Internal f') | match_External ef: match_fundef (External ef) (External ef). Inductive match_stackframes: BTL.stackframe -> RTL.stackframe -> Prop := | match_stackframe_intro dupmap res f sp pc rs f' pc' (TRANSF: match_function dupmap f f') (DUPLIC: dupmap!pc = Some pc') : match_stackframes (BTL.Stackframe res f sp pc rs) (RTL.Stackframe res f' sp pc' rs). Inductive match_states: BTL.state -> RTL.state -> Prop := | match_states_intro dupmap st f sp pc rs m st' f' pc' (STACKS: list_forall2 match_stackframes st st') (TRANSF: match_function dupmap f f') (DUPLIC: dupmap!pc = Some pc') : match_states (State st f sp pc rs m) (RTL.State st' f' sp pc' rs m) | match_states_call st st' f f' args m (STACKS: list_forall2 match_stackframes st st') (TRANSF: match_fundef f f') : match_states (Callstate st f args m) (RTL.Callstate st' f' args m) | match_states_return st st' v m (STACKS: list_forall2 match_stackframes st st') : match_states (Returnstate st v m) (RTL.Returnstate st' v m) . Lemma transf_function_correct f f': transf_function f = OK f' -> exists dupmap, match_function dupmap f f'. Proof. unfold transf_function; unfold bind. repeat autodestruct. intros H _ _ X. inversion X; subst; clear X. eexists; eapply verify_function_correct; simpl; eauto. Qed. Lemma transf_fundef_correct f f': transf_fundef f = OK f' -> match_fundef f f'. Proof. intros TRANSF; destruct f; simpl; monadInv TRANSF. + exploit transf_function_correct; eauto. intros (dupmap & MATCH_F). eapply match_Internal; eauto. + eapply match_External. Qed. Definition match_prog (p: program) (tp: RTL.program) := match_program (fun _ f tf => transf_fundef f = OK tf) eq p tp. Lemma transf_program_match: forall prog tprog, transf_program prog = OK tprog -> match_prog prog tprog. Proof. intros. eapply match_transform_partial_program_contextual; eauto. Qed. Section RTL_SIMULATES_BTL. Variable prog: program. Variable tprog: RTL.program. Hypothesis TRANSL: match_prog prog tprog. Let ge := Genv.globalenv prog. Let tge := Genv.globalenv tprog. Lemma symbols_preserved s: Genv.find_symbol tge s = Genv.find_symbol ge s. Proof. rewrite <- (Genv.find_symbol_match TRANSL). reflexivity. Qed. Lemma senv_preserved: Senv.equiv ge tge. Proof. eapply (Genv.senv_match TRANSL). Qed. Lemma functions_translated (v: val) (f: fundef): Genv.find_funct ge v = Some f -> exists tf cunit, transf_fundef f = OK tf /\ Genv.find_funct tge v = Some tf /\ linkorder cunit prog. Proof. intros. exploit (Genv.find_funct_match TRANSL); eauto. intros (cu & tf & A & B & C). repeat eexists; intuition eauto. + unfold incl; auto. + eapply linkorder_refl. Qed. Lemma function_ptr_translated v f: Genv.find_funct_ptr ge v = Some f -> exists tf, Genv.find_funct_ptr tge v = Some tf /\ transf_fundef f = OK tf. Proof. intros. exploit (Genv.find_funct_ptr_transf_partial TRANSL); eauto. Qed. Lemma function_sig_translated f tf: transf_fundef f = OK tf -> RTL.funsig tf = funsig f. Proof. intros H; apply transf_fundef_correct in H; destruct H; simpl; eauto. erewrite preserv_fnsig; eauto. Qed. Lemma transf_initial_states s1: initial_state prog s1 -> exists s2, RTL.initial_state tprog s2 /\ match_states s1 s2. Proof. intros. inv H. exploit function_ptr_translated; eauto. intros (tf & FIND & TRANSF). eexists. split. - econstructor; eauto. + eapply (Genv.init_mem_transf_partial TRANSL); eauto. + replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved. eauto. symmetry. eapply match_program_main. eauto. + erewrite function_sig_translated; eauto. - constructor; eauto. constructor. apply transf_fundef_correct; auto. Qed. Lemma transf_final_states s1 s2 r: match_states s1 s2 -> final_state s1 r -> RTL.final_state s2 r. Proof. intros. inv H0. inv H. inv STACKS. constructor. Qed. Lemma find_function_preserved ri rs0 fd (FIND : find_function ge ri rs0 = Some fd) : exists fd', RTL.find_function tge ri rs0 = Some fd' /\ transf_fundef fd = OK fd'. Proof. pose symbols_preserved as SYMPRES. destruct ri. + simpl in FIND; apply functions_translated in FIND. destruct FIND as (tf & cunit & TFUN & GFIND & LO). eexists; split. eauto. assumption. + simpl in FIND. destruct (Genv.find_symbol _ _) eqn:GFS; try discriminate. apply function_ptr_translated in FIND. destruct FIND as (tf & GFF & TF). eexists; split. simpl. rewrite symbols_preserved. rewrite GFS. eassumption. assumption. Qed. (* Inspired from Duplicateproof.v *) Lemma list_nth_z_dupmap: forall dupmap ln ln' (pc pc': node) val, list_nth_z ln val = Some pc -> list_forall2 (fun n n' => dupmap!n = Some n') ln ln' -> exists (pc': node), list_nth_z ln' val = Some pc' /\ dupmap!pc = Some pc'. Proof. induction ln; intros until val; intros LNZ LFA. - inv LNZ. - inv LNZ. destruct (zeq val 0) eqn:ZEQ. + inv H0. destruct ln'; inv LFA. simpl. exists n. split; auto. + inv LFA. simpl. rewrite ZEQ. exploit IHln. 2: eapply H0. all: eauto. Qed. (* variant of [star RTL.step] but requiring proposition [P] on the [refl] (stutttering) case. *) Inductive cond_star_step (P: Prop): RTL.state -> trace -> RTL.state -> Prop := | css_refl s: P -> cond_star_step P s E0 s | css_plus s1 t s2: plus RTL.step tge s1 t s2 -> cond_star_step P s1 t s2 . Lemma css_plus_trans P Q s0 s1 s2 t: plus RTL.step tge s0 E0 s1 -> cond_star_step P s1 t s2 -> cond_star_step Q s0 t s2. Proof. intros PLUS STAR. eapply css_plus. inv STAR; auto. eapply plus_trans; eauto. Qed. Lemma css_E0_trans isfst isfst' s0 s1 s2: cond_star_step (isfst=false) s0 E0 s1 -> cond_star_step (false=isfst') s1 E0 s2 -> cond_star_step (isfst=isfst') s0 E0 s2. Proof. intros S1 S2. inversion S1; subst; eauto. inversion S2; subst; eauto. eapply css_plus_trans; eauto. Qed. Lemma css_star P s0 s1 t: cond_star_step P s0 t s1 -> star RTL.step tge s0 t s1. Proof. destruct 1. - eapply star_refl; eauto. - eapply plus_star; eauto. Qed. Local Hint Constructors RTL.step match_states: core. Local Hint Resolve css_refl plus_one transf_fundef_correct: core. Lemma iblock_istep_simulation sp dupmap stack' f' rs0 m0 ib rs1 m1 ofin (IBIS: iblock_istep ge sp rs0 m0 ib rs1 m1 ofin): forall pc0 opc isfst (MIB: match_iblock dupmap (RTL.fn_code f') isfst pc0 ib opc), match ofin with | None => exists pc1,(opc = Some pc1) /\ cond_star_step (isfst = false) (RTL.State stack' f' sp pc0 rs0 m0) E0 (RTL.State stack' f' sp pc1 rs1 m1) | Some fin => exists isfst' pc1 iinfo, match_iblock dupmap (RTL.fn_code f') isfst' pc1 (BF fin iinfo) None /\ cond_star_step (isfst = isfst') (RTL.State stack' f' sp pc0 rs0 m0) E0 (RTL.State stack' f' sp pc1 rs1 m1) end. Proof. induction IBIS; simpl; intros. - (* exec_final *) assert (X: opc = None). { inv MIB; auto. } subst. repeat eexists; eauto. - (* exec_nop *) inv MIB; eexists; split; econstructor; eauto. - (* exec_op *) inv MIB. exists pc'; split; auto; constructor. apply plus_one. eapply exec_Iop; eauto. erewrite <- eval_operation_preserved; eauto. intros; rewrite symbols_preserved; trivial. - (* exec_load *) inv MIB. exists pc'; split; auto; constructor. apply plus_one. inversion LOAD; subst. + try (eapply exec_Iload; eauto; eapply has_loaded_normal; eauto; rewrite <- EVAL; erewrite <- eval_addressing_preserved; eauto; intros; rewrite symbols_preserved; trivial). + destruct (eval_addressing) eqn:EVAL in LOAD0. * specialize (LOAD0 v). eapply exec_Iload; eauto. eapply has_loaded_default; eauto. rewrite eval_addressing_preserved with (ge1:=ge). intros a EVAL'; rewrite EVAL in EVAL'; inv EVAL'. apply LOAD0; auto. intros; rewrite symbols_preserved; trivial. * eapply exec_Iload; eauto. eapply has_loaded_default; eauto. rewrite eval_addressing_preserved with (ge1:=ge). intros a EVAL'; rewrite EVAL in EVAL'; inv EVAL'. intros; rewrite symbols_preserved; trivial. - (* exec_store *) inv MIB. exists pc'; split; auto; constructor. apply plus_one. eapply exec_Istore; eauto. all: erewrite <- eval_addressing_preserved; eauto; intros; rewrite symbols_preserved; trivial. - (* exec_seq_stop *) inv MIB; eauto. - (* exec_seq_continue *) inv MIB. exploit IHIBIS1; eauto. intros (pc1 & EQpc1 & STEP1); inv EQpc1. exploit IHIBIS2; eauto. destruct ofin; simpl. + intros (ifst2 & pc2 & iinfo & M2 & STEP2). repeat eexists; eauto. eapply css_E0_trans; eauto. + intros (pc2 & EQpc2 & STEP2); inv EQpc2. eexists; split; auto. eapply css_E0_trans; eauto. - (* exec_cond *) inv MIB. rename H10 into JOIN. (* is_join_opt opc1 opc2 opc *) destruct b; exploit IHIBIS; eauto. + (* taking ifso *) destruct ofin; simpl. * (* ofin is Some final *) intros (isfst' & pc1 & iinfo' & MI & STAR). repeat eexists; eauto. eapply css_plus_trans; eauto. * (* ofin is None *) intros (pc1 & OPC & PLUS). inv OPC. inv JOIN; eexists; split; eauto. all: eapply css_plus_trans; eauto. + (* taking ifnot *) destruct ofin; simpl. * (* ofin is Some final *) intros (isfst' & pc1 & iinfo' & MI & STAR). repeat eexists; eauto. eapply css_plus_trans; eauto. * (* ofin is None *) intros (pc1 & OPC & PLUS). subst. inv JOIN; eexists; split; eauto. all: eapply css_plus_trans; eauto. Qed. Lemma final_simu_except_goto sp dupmap stack stack' f f' rs1 m1 pc1 fin t s (STACKS : list_forall2 match_stackframes stack stack') (TRANSF : match_function dupmap f f') (FS : final_step tid ge stack f sp rs1 m1 fin t s) (i : instruction) (ATpc1 : (RTL.fn_code f') ! pc1 = Some i) (MF : match_final_inst dupmap fin i) : exists s', RTL.step tge (RTL.State stack' f' sp pc1 rs1 m1) t s' /\ match_states s s'. Proof. inv MF; inv FS. - (* return *) eexists; split. eapply exec_Ireturn; eauto. erewrite <- preserv_fnstacksize; eauto. econstructor; eauto. - (* call *) rename H7 into FIND. exploit find_function_preserved; eauto. intros (fd' & FIND' & TRANSFU). eexists; split. eapply exec_Icall; eauto. apply function_sig_translated. assumption. repeat (econstructor; eauto). - (* tailcall *) rename H2 into FIND. exploit find_function_preserved; eauto. intros (fd' & FIND' & TRANSFU). eexists; split. eapply exec_Itailcall; eauto. apply function_sig_translated. assumption. erewrite <- preserv_fnstacksize; eauto. repeat (econstructor; eauto). - (* builtin *) pose symbols_preserved as SYMPRES. eexists. split. eapply exec_Ibuiltin; eauto. eapply eval_builtin_args_preserved; eauto. eapply external_call_symbols_preserved; eauto. eapply senv_preserved. econstructor; eauto. - (* jumptable *) pose symbols_preserved as SYMPRES. exploit list_nth_z_dupmap; eauto. intros (pc'1 & LNZ & REVM). eexists. split. eapply exec_Ijumptable; eauto. econstructor; eauto. Qed. Lemma iblock_step_simulation sp dupmap stack stack' f f' ib rs0 m0 rs1 m1 pc0 fin t s (STACKS: list_forall2 match_stackframes stack stack') (TRANSF: match_function dupmap f f') (IBIS: iblock_istep ge sp rs0 m0 ib rs1 m1 (Some fin)) (MIB : match_iblock dupmap (RTL.fn_code f') true pc0 ib None) (FS : final_step tid ge stack f sp rs1 m1 fin t s) : exists s', plus RTL.step tge (RTL.State stack' f' sp pc0 rs0 m0) t s' /\ match_states s s'. Proof. intros; exploit iblock_istep_simulation; eauto. simpl. intros (isfst' & pc1 & iinfo & MI & STAR). clear IBIS MIB. inv MI. - (* final inst except goto *) exploit final_simu_except_goto; eauto. intros (s' & STEP & MS). eexists; split. + eapply plus_right. eapply css_star; eauto. eapply STEP. econstructor. + eapply MS. - (* goto *) inv FS. inv STAR; try congruence. eexists; split. eauto. econstructor; eauto. Qed. Theorem plus_simulation s1 t s1': step tid ge s1 t s1' -> forall s2 (MS: match_states s1 s2), exists s2', plus RTL.step tge s2 t s2' /\ match_states s1' s2'. Proof. destruct 1; intros; inv MS. - eapply dupmap_correct in DUPLIC; eauto. destruct DUPLIC as (ib' & FNC & MIB). try_simplify_someHyps. destruct STEP as (rs' & m' & fin & IBIS & FS). intros; exploit iblock_step_simulation; eauto. (* exec_function_internal *) - inversion TRANSF as [dupmap f0 f0' MATCHF|]; subst. eexists. split. + eapply plus_one. apply RTL.exec_function_internal. erewrite <- preserv_fnstacksize; eauto. + erewrite <- preserv_fnparams; eauto. eapply match_states_intro; eauto. apply dupmap_entrypoint. assumption. (* exec_function_external *) - inversion TRANSF as [|]; subst. eexists. split. + eapply plus_one. econstructor. eapply external_call_symbols_preserved; eauto. apply senv_preserved. + constructor. assumption. (* exec_return *) - inversion STACKS as [|a1 al b1 bl H1 HL]; subst. destruct b1 as [res' f' sp' pc' rs']. eexists. split. + eapply plus_one. constructor. + inv H1. econstructor; eauto. Qed. Theorem transf_program_correct_cfg: forward_simulation (BTLmatchRTL.cfgsem prog) (RTL.semantics tprog). Proof. eapply forward_simulation_plus with match_states. - eapply senv_preserved. - eapply transf_initial_states. - eapply transf_final_states. - eapply plus_simulation. Qed. Theorem transf_program_correct: forward_simulation (BTL.fsem prog) (RTL.semantics tprog). Proof. eapply compose_forward_simulations. - eapply fsem2cfgsem. - eapply transf_program_correct_cfg. Qed. End RTL_SIMULATES_BTL.