(* A theory of symbolic execution on RTLpath NB: an efficient implementation with hash-consing will be defined in RTLpathSE_impl.v *) Require Import Coqlib Maps Floats. Require Import AST Integers Values Events Memory Globalenvs Smallstep. Require Import Op Registers. Require Import RTL RTLpath. Require Import Errors Duplicate. Local Open Scope error_monad_scope. (* Enhanced from kvx/Asmblockgenproof.v *) Ltac explore_hyp := repeat match goal with | [ H : match ?var with | _ => _ end = _ |- _ ] => (let EQ1 := fresh "EQ" in (destruct var eqn:EQ1; try discriminate)) | [ H : OK _ = OK _ |- _ ] => monadInv H | [ H : bind _ _ = OK _ |- _ ] => monadInv H | [ H : Error _ = OK _ |- _ ] => inversion H | [ H : Some _ = Some _ |- _ ] => inv H | [ x : unit |- _ ] => destruct x end. Ltac explore := explore_hyp; repeat match goal with | [ |- context[if ?b then _ else _] ] => (let EQ1 := fresh "IEQ" in destruct b eqn:EQ1) | [ |- context[match ?m with | _ => _ end] ] => (let DEQ1 := fresh "DEQ" in destruct m eqn:DEQ1) | [ |- context[match ?m as _ return _ with | _ => _ end]] => (let DREQ1 := fresh "DREQ" in destruct m eqn:DREQ1) end. (* Ltac explore := repeat match goal with | [ H : match ?var with | _ => _ end = _ |- _ ] => (let EQ1 := fresh "EQ" in (destruct var eqn:EQ1; try discriminate)) | [ H : OK _ = OK _ |- _ ] => monadInv H | [ |- context[if ?b then _ else _] ] => (let EQ1 := fresh "IEQ" in destruct b eqn:EQ1) | [ |- context[match ?m with | _ => _ end] ] => (let DEQ1 := fresh "DEQ" in destruct m eqn:DEQ1) | [ |- context[match ?m as _ return _ with | _ => _ end]] => (let DREQ1 := fresh "DREQ" in destruct m eqn:DREQ1) | [ H : bind _ _ = OK _ |- _ ] => monadInv H | [ H : Error _ = OK _ |- _ ] => inversion H | [ H : Some _ = Some _ |- _ ] => inv H | [ x : unit |- _ ] => destruct x end. *) (** * Syntax and semantics of symbolic values *) (* symbolic value *) Inductive sval := | Sinput (r: reg) | Sop (op:operation) (lsv: list_sval) (sm: smem) | Sload (sm: smem) (trap: trapping_mode) (chunk:memory_chunk) (addr:addressing) (lsv:list_sval) with list_sval := | Snil | Scons (sv: sval) (lsv: list_sval) (* symbolic memory *) with smem := | Sinit | Sstore (sm: smem) (chunk:memory_chunk) (addr:addressing) (lsv:list_sval) (srce: sval). Scheme sval_mut := Induction for sval Sort Prop with list_sval_mut := Induction for list_sval Sort Prop with smem_mut := Induction for smem Sort Prop. Fixpoint list_sval_inj (l: list sval): list_sval := match l with | nil => Snil | v::l => Scons v (list_sval_inj l) end. Local Open Scope option_monad_scope. Fixpoint seval_sval (ge: RTL.genv) (sp:val) (sv: sval) (rs0: regset) (m0: mem): option val := match sv with | Sinput r => Some (rs0#r) | Sop op l sm => SOME args <- seval_list_sval ge sp l rs0 m0 IN SOME m <- seval_smem ge sp sm rs0 m0 IN eval_operation ge sp op args m | Sload sm trap chunk addr lsv => match trap with | TRAP => SOME args <- seval_list_sval ge sp lsv rs0 m0 IN SOME a <- eval_addressing ge sp addr args IN SOME m <- seval_smem ge sp sm rs0 m0 IN Mem.loadv chunk m a | NOTRAP => SOME args <- seval_list_sval ge sp lsv rs0 m0 IN match (eval_addressing ge sp addr args) with | None => Some (default_notrap_load_value chunk) | Some a => SOME m <- seval_smem ge sp sm rs0 m0 IN match (Mem.loadv chunk m a) with | None => Some (default_notrap_load_value chunk) | Some val => Some val end end end end with seval_list_sval (ge: RTL.genv) (sp:val) (lsv: list_sval) (rs0: regset) (m0: mem): option (list val) := match lsv with | Snil => Some nil | Scons sv lsv' => SOME v <- seval_sval ge sp sv rs0 m0 IN SOME lv <- seval_list_sval ge sp lsv' rs0 m0 IN Some (v::lv) end with seval_smem (ge: RTL.genv) (sp:val) (sm: smem) (rs0: regset) (m0: mem): option mem := match sm with | Sinit => Some m0 | Sstore sm chunk addr lsv srce => SOME args <- seval_list_sval ge sp lsv rs0 m0 IN SOME a <- eval_addressing ge sp addr args IN SOME m <- seval_smem ge sp sm rs0 m0 IN SOME sv <- seval_sval ge sp srce rs0 m0 IN Mem.storev chunk m a sv end. (* Syntax and Semantics of local symbolic internal states *) (* [si_pre] is a precondition on initial ge, sp, rs0, m0 *) Record sistate_local := { si_pre: RTL.genv -> val -> regset -> mem -> Prop; si_sreg: reg -> sval; si_smem: smem }. (* Predicate on which (rs, m) is a possible final state after evaluating [st] on (rs0, m0) *) Definition ssem_local (ge: RTL.genv) (sp:val) (st: sistate_local) (rs0: regset) (m0: mem) (rs: regset) (m: mem): Prop := st.(si_pre) ge sp rs0 m0 /\ seval_smem ge sp st.(si_smem) rs0 m0 = Some m /\ forall (r:reg), seval_sval ge sp (st.(si_sreg) r) rs0 m0 = Some (rs#r). Definition sabort_local (ge: RTL.genv) (sp:val) (st: sistate_local) (rs0: regset) (m0: mem): Prop := ~(st.(si_pre) ge sp rs0 m0) \/ seval_smem ge sp st.(si_smem) rs0 m0 = None \/ exists (r: reg), seval_sval ge sp (st.(si_sreg) r) rs0 m0 = None. (* Syntax and semantics of symbolic exit states *) Record sistate_exit := mk_sistate_exit { si_cond: condition; si_scondargs: list_sval; si_elocal: sistate_local; si_ifso: node }. Definition seval_condition ge sp (cond: condition) (lsv: list_sval) (sm: smem) rs0 m0 : option bool := SOME args <- seval_list_sval ge sp lsv rs0 m0 IN SOME m <- seval_smem ge sp sm rs0 m0 IN eval_condition cond args m. Definition all_fallthrough ge sp (lx: list sistate_exit) rs0 m0: Prop := forall ext, List.In ext lx -> seval_condition ge sp ext.(si_cond) ext.(si_scondargs) ext.(si_elocal).(si_smem) rs0 m0 = Some false. Lemma all_fallthrough_revcons ge sp ext rs m lx: all_fallthrough ge sp (ext::lx) rs m -> seval_condition ge sp (si_cond ext) (si_scondargs ext) (si_smem (si_elocal ext)) rs m = Some false /\ all_fallthrough ge sp lx rs m. Proof. intros ALLFU. constructor. - assert (In ext (ext::lx)) by (constructor; auto). apply ALLFU in H. assumption. - intros ext' INEXT. assert (In ext' (ext::lx)) by (apply in_cons; auto). apply ALLFU in H. assumption. Qed. (** Semantic of an exit in pseudo code: if si_cond (si_condargs) si_elocal; goto if_so else () *) Definition ssem_exit (ge: RTL.genv) (sp: val) (ext: sistate_exit) (rs: regset) (m: mem) rs' m' (pc': node) : Prop := seval_condition ge sp (si_cond ext) (si_scondargs ext) ext.(si_elocal).(si_smem) rs m = Some true /\ ssem_local ge sp (si_elocal ext) rs m rs' m' /\ (si_ifso ext) = pc'. (* Either an abort on the condition evaluation OR an abort on the sistate_local IF the condition was true *) Definition sabort_exit (ge: RTL.genv) (sp: val) (ext: sistate_exit) (rs: regset) (m: mem) : Prop := let sev_cond := seval_condition ge sp (si_cond ext) (si_scondargs ext) ext.(si_elocal).(si_smem) rs m in sev_cond = None \/ (sev_cond = Some true /\ sabort_local ge sp ext.(si_elocal) rs m). (** * Syntax and Semantics of symbolic internal state *) Record sistate := { si_pc: node; si_exits: list sistate_exit; si_local: sistate_local }. Definition all_fallthrough_upto_exit ge sp ext lx' lx rs m : Prop := is_tail (ext::lx') lx /\ all_fallthrough ge sp lx' rs m. (** Semantic of a sistate in pseudo code: si_exit1; si_exit2; ...; si_exitn; si_local; goto si_pc *) (* Note: in RTLpath, is.(icontinue) = false iff we took an early exit *) Definition ssem_internal (ge: RTL.genv) (sp:val) (st: sistate) (rs: regset) (m: mem) (is: istate): Prop := if (is.(icontinue)) then ssem_local ge sp st.(si_local) rs m is.(irs) is.(imem) /\ st.(si_pc) = is.(ipc) /\ all_fallthrough ge sp st.(si_exits) rs m else exists ext lx, ssem_exit ge sp ext rs m is.(irs) is.(imem) is.(ipc) /\ all_fallthrough_upto_exit ge sp ext lx st.(si_exits) rs m. Definition sabort (ge: RTL.genv) (sp: val) (st: sistate) (rs: regset) (m: mem): Prop := (* No early exit was met but we aborted on the si_local *) (all_fallthrough ge sp st.(si_exits) rs m /\ sabort_local ge sp st.(si_local) rs m) (* OR we aborted on an evaluation of one of the early exits *) \/ (exists ext lx, all_fallthrough_upto_exit ge sp ext lx st.(si_exits) rs m /\ sabort_exit ge sp ext rs m). Definition ssem_internal_opt ge sp (st: sistate) rs0 m0 (ois: option istate): Prop := match ois with | Some is => ssem_internal ge sp st rs0 m0 is | None => sabort ge sp st rs0 m0 end. Definition ssem_internal_opt2 ge sp (ost: option sistate) rs0 m0 (ois: option istate) : Prop := match ost with | Some st => ssem_internal_opt ge sp st rs0 m0 ois | None => ois=None end. (** * An internal state represents a parallel program ! We prove below that the semantics [ssem_internal_opt] is deterministic. *) Definition istate_eq ist1 ist2 := ist1.(icontinue) = ist2.(icontinue) /\ ist1.(ipc) = ist2.(ipc) /\ (forall r, (ist1.(irs)#r) = ist2.(irs)#r) /\ ist1.(imem) = ist2.(imem). Lemma all_fallthrough_noexit ge sp ext lx rs0 m0 rs m pc: ssem_exit ge sp ext rs0 m0 rs m pc -> In ext lx -> all_fallthrough ge sp lx rs0 m0 -> False. Proof. Local Hint Resolve is_tail_in: core. intros SSEM INE ALLF. destruct SSEM as (SSEM & SSEM'). unfold all_fallthrough in ALLF. rewrite ALLF in SSEM; eauto. discriminate. Qed. Lemma ssem_internal_exclude_incompatible_continue ge sp st rs m is1 is2: is1.(icontinue) = true -> is2.(icontinue) = false -> ssem_internal ge sp st rs m is1 -> ssem_internal ge sp st rs m is2 -> False. Proof. Local Hint Resolve all_fallthrough_noexit: core. unfold ssem_internal. intros CONT1 CONT2. rewrite CONT1, CONT2; simpl. intuition eauto. destruct H0 as (ext & lx & SSEME & ALLFU). destruct ALLFU as (ALLFU & ALLFU'). eapply all_fallthrough_noexit; eauto. Qed. Lemma ssem_internal_determ_continue ge sp st rs m is1 is2: ssem_internal ge sp st rs m is1 -> ssem_internal ge sp st rs m is2 -> is1.(icontinue) = is2.(icontinue). Proof. Local Hint Resolve ssem_internal_exclude_incompatible_continue: core. destruct (Bool.bool_dec is1.(icontinue) is2.(icontinue)) as [|H]; auto. intros H1 H2. assert (absurd: False); intuition. destruct (icontinue is1) eqn: His1, (icontinue is2) eqn: His2; eauto. Qed. Lemma ssem_local_determ ge sp st rs0 m0 rs1 m1 rs2 m2: ssem_local ge sp st rs0 m0 rs1 m1 -> ssem_local ge sp st rs0 m0 rs2 m2 -> (forall r, rs1#r = rs2#r) /\ m1 = m2. Proof. unfold ssem_local. intuition try congruence. generalize (H5 r); rewrite H4; congruence. Qed. (* TODO: lemma to move in Coqlib *) Lemma is_tail_bounded_total {A} (l1 l2 l3: list A): is_tail l1 l3 -> is_tail l2 l3 -> is_tail l1 l2 \/ is_tail l2 l1. Proof. Local Hint Resolve is_tail_cons: core. induction 1 as [|i l1 l3 T1 IND]; simpl; auto. intros T2; inversion T2; subst; auto. Qed. Lemma exit_cond_determ ge sp rs0 m0 l1 l2: is_tail l1 l2 -> forall ext1 lx1 ext2 lx2, l1=(ext1 :: lx1) -> l2=(ext2 :: lx2) -> all_fallthrough ge sp lx1 rs0 m0 -> seval_condition ge sp (si_cond ext1) (si_scondargs ext1) (si_smem (si_elocal ext1)) rs0 m0 = Some true -> all_fallthrough ge sp lx2 rs0 m0 -> ext1=ext2. Proof. destruct 1 as [l1|i l1 l3 T1]; intros ext1 lx1 ext2 lx2 EQ1 EQ2; subst; inversion EQ2; subst; auto. intros D1 EVAL NYE. Local Hint Resolve is_tail_in: core. unfold all_fallthrough in NYE. rewrite NYE in EVAL; eauto. try congruence. Qed. Lemma ssem_exit_determ ge sp ext rs0 m0 rs1 m1 pc1 rs2 m2 pc2: ssem_exit ge sp ext rs0 m0 rs1 m1 pc1 -> ssem_exit ge sp ext rs0 m0 rs2 m2 pc2 -> pc1 = pc2 /\ (forall r, rs1#r = rs2#r) /\ m1 = m2. Proof. Local Hint Resolve exit_cond_determ eq_sym: core. intros SSEM1 SSEM2. destruct SSEM1 as (SEVAL1 & SLOC1 & PCEQ1). destruct SSEM2 as (SEVAL2 & SLOC2 & PCEQ2). subst. destruct (ssem_local_determ ge sp (si_elocal ext) rs0 m0 rs1 m1 rs2 m2); auto. Qed. Remark is_tail_inv_left {A: Type} (a a': A) l l': is_tail (a::l) (a'::l') -> (a = a' /\ l = l') \/ (In a l' /\ is_tail l (a'::l')). Proof. intros. inv H. - left. eauto. - right. econstructor. + eapply is_tail_in; eauto. + eapply is_tail_cons_left; eauto. Qed. Lemma ssem_internal_determ ge sp st rs m is1 is2: ssem_internal ge sp st rs m is1 -> ssem_internal ge sp st rs m is2 -> istate_eq is1 is2. Proof. unfold istate_eq. intros SEM1 SEM2. exploit (ssem_internal_determ_continue ge sp st rs m is1 is2); eauto. intros CONTEQ. unfold ssem_internal in * |-. rewrite CONTEQ in * |- *. destruct (icontinue is2). - destruct (ssem_local_determ ge sp (si_local st) rs m (irs is1) (imem is1) (irs is2) (imem is2)); intuition (try congruence). - destruct SEM1 as (ext1 & lx1 & SSEME1 & ALLFU1). destruct SEM2 as (ext2 & lx2 & SSEME2 & ALLFU2). destruct ALLFU1 as (ALLFU1 & ALLFU1'). destruct ALLFU2 as (ALLFU2 & ALLFU2'). destruct SSEME1 as (SSEME1 & SSEME1' & SSEME1''). destruct SSEME2 as (SSEME2 & SSEME2' & SSEME2''). assert (X:ext1=ext2). { destruct (is_tail_bounded_total (ext1 :: lx1) (ext2 :: lx2) (si_exits st)) as [TAIL|TAIL]; eauto. } subst. destruct (ssem_local_determ ge sp (si_elocal ext2) rs m (irs is1) (imem is1) (irs is2) (imem is2)); auto. intuition. congruence. Qed. Lemma ssem_local_exclude_sabort_local ge sp loc rs m rs' m': ssem_local ge sp loc rs m rs' m' -> sabort_local ge sp loc rs m -> False. Proof. intros SIML ABORT. inv SIML. destruct H0 as (H0 & H0'). inversion ABORT as [ABORT1 | [ABORT2 | ABORT3]]; [ | | inv ABORT3]; congruence. Qed. Lemma ssem_local_exclude_sabort ge sp st rs m rs' m': ssem_local ge sp (si_local st) rs m rs' m' -> all_fallthrough ge sp (si_exits st) rs m -> sabort ge sp st rs m -> False. Proof. intros SIML ALLF ABORT. inv ABORT. - intuition; eapply ssem_local_exclude_sabort_local; eauto. - destruct H as (ext & lx & ALLFU & SABORT). destruct ALLFU as (TAIL & _). eapply is_tail_in in TAIL. eapply ALLF in TAIL. destruct SABORT as [CONDFAIL | (CONDTRUE & ABORTL)]; congruence. Qed. Lemma ssem_exit_fallthrough_upto_exit ge sp ext ext' lx lx' exits rs m rs' m' pc': ssem_exit ge sp ext rs m rs' m' pc' -> all_fallthrough_upto_exit ge sp ext lx exits rs m -> all_fallthrough_upto_exit ge sp ext' lx' exits rs m -> is_tail (ext'::lx') (ext::lx). Proof. intros SSEME ALLFU ALLFU'. destruct ALLFU as (ISTAIL & ALLFU). destruct ALLFU' as (ISTAIL' & ALLFU'). destruct (is_tail_bounded_total (ext::lx) (ext'::lx') exits); eauto. inv H. - econstructor; eauto. - eapply is_tail_in in H2. eapply ALLFU' in H2. destruct SSEME as (SEVAL & _). congruence. Qed. Lemma ssem_exit_exclude_sabort_exit ge sp ext rs m rs' m' pc': ssem_exit ge sp ext rs m rs' m' pc' -> sabort_exit ge sp ext rs m -> False. Proof. intros A B. destruct A as (A & A' & A''). inv B. - congruence. - destruct H as (_ & H). eapply ssem_local_exclude_sabort_local; eauto. Qed. Lemma ssem_exit_exclude_sabort ge sp ext st lx rs m rs' m' pc': ssem_exit ge sp ext rs m rs' m' pc' -> all_fallthrough_upto_exit ge sp ext lx (si_exits st) rs m -> sabort ge sp st rs m -> False. Proof. intros SSEM ALLFU ABORT. inv ABORT. - destruct H as (ALLF & _). destruct ALLFU as (TAIL & _). eapply is_tail_in in TAIL. destruct SSEM as (SEVAL & _ & _). eapply ALLF in TAIL. congruence. - destruct H as (ext' & lx' & ALLFU' & ABORT). exploit ssem_exit_fallthrough_upto_exit; eauto. intros ITAIL. destruct ALLFU as (ALLFU1 & ALLFU2). destruct ALLFU' as (ALLFU1' & ALLFU2'). exploit (is_tail_inv_left ext' ext lx' lx); eauto. intro. inv H. + inv H0. eapply ssem_exit_exclude_sabort_exit; eauto. + destruct H0 as (INE & TAIL). eapply ALLFU2 in INE. destruct ABORT as [ABORT | (ABORT & ABORT')]; congruence. Qed. Lemma ssem_internal_exclude_sabort ge sp st rs m is: sabort ge sp st rs m -> ssem_internal ge sp st rs m is -> False. Proof. intros ABORT SEM. unfold ssem_internal in SEM. destruct icontinue. - destruct SEM as (SEM1 & SEM2 & SEM3). eapply ssem_local_exclude_sabort; eauto. - destruct SEM as (ext & lx & SEM1 & SEM2). eapply ssem_exit_exclude_sabort; eauto. Qed. Definition istate_eq_opt ist1 oist := exists ist2, oist = Some ist2 /\ istate_eq ist1 ist2. Lemma ssem_internal_opt_determ ge sp st rs m ois is: ssem_internal_opt ge sp st rs m ois -> ssem_internal ge sp st rs m is -> istate_eq_opt is ois. Proof. destruct ois as [is1|]; simpl; eauto. - intros; eexists; intuition; eapply ssem_internal_determ; eauto. - intros; exploit ssem_internal_exclude_sabort; eauto. destruct 1. Qed. (** * Symbolic execution of one internal step *) Definition slocal_set_sreg (st:sistate_local) (r:reg) (sv:sval) := {| si_pre:=(fun ge sp rs m => seval_sval ge sp (st.(si_sreg) r) rs m <> None /\ (st.(si_pre) ge sp rs m)); si_sreg:=fun y => if Pos.eq_dec r y then sv else st.(si_sreg) y; si_smem:= st.(si_smem)|}. Definition slocal_set_smem (st:sistate_local) (sm:smem) := {| si_pre:=(fun ge sp rs m => seval_smem ge sp st.(si_smem) rs m <> None /\ (st.(si_pre) ge sp rs m)); si_sreg:= st.(si_sreg); si_smem:= sm |}. Definition sist_set_local (st: sistate) (pc: node) (nxt: sistate_local): sistate := {| si_pc := pc; si_exits := st.(si_exits); si_local:= nxt |}. Definition slocal_store st chunk addr args src : sistate_local := let args := list_sval_inj (List.map (si_sreg st) args) in let src := si_sreg st src in let sm := Sstore (si_smem st) chunk addr args src in slocal_set_smem st sm. Definition siexec_inst (i: instruction) (st: sistate): option sistate := match i with | Inop pc' => Some (sist_set_local st pc' st.(si_local)) | Iop op args dst pc' => let prev := st.(si_local) in let vargs := list_sval_inj (List.map prev.(si_sreg) args) in let next := slocal_set_sreg prev dst (Sop op vargs prev.(si_smem)) in Some (sist_set_local st pc' next) | Iload trap chunk addr args dst pc' => let prev := st.(si_local) in let vargs := list_sval_inj (List.map prev.(si_sreg) args) in let next := slocal_set_sreg prev dst (Sload prev.(si_smem) trap chunk addr vargs) in Some (sist_set_local st pc' next) | Istore chunk addr args src pc' => let next := slocal_store st.(si_local) chunk addr args src in Some (sist_set_local st pc' next) | Icond cond args ifso ifnot _ => let prev := st.(si_local) in let vargs := list_sval_inj (List.map prev.(si_sreg) args) in let ex := {| si_cond:=cond; si_scondargs:=vargs; si_elocal := prev; si_ifso := ifso |} in Some {| si_pc := ifnot; si_exits := ex::st.(si_exits); si_local := prev |} | _ => None end. Lemma seval_list_sval_inj ge sp l rs0 m0 (sreg: reg -> sval) rs: (forall r : reg, seval_sval ge sp (sreg r) rs0 m0 = Some (rs # r)) -> seval_list_sval ge sp (list_sval_inj (map sreg l)) rs0 m0 = Some (rs ## l). Proof. intros H; induction l as [|r l]; simpl; auto. inversion_SOME v. inversion_SOME lv. generalize (H r). try_simplify_someHyps. Qed. Lemma slocal_set_sreg_preserves_sabort_local ge sp st rs0 m0 r sv: sabort_local ge sp st rs0 m0 -> sabort_local ge sp (slocal_set_sreg st r sv) rs0 m0. Proof. unfold sabort_local. simpl; intuition. destruct H as [r1 H]. destruct (Pos.eq_dec r r1) as [TEST|TEST] eqn: HTEST. - subst; rewrite H; intuition. - right. right. exists r1. rewrite HTEST. auto. Qed. Lemma slocal_set_smem_preserves_sabort_local ge sp st rs0 m0 m: sabort_local ge sp st rs0 m0 -> sabort_local ge sp (slocal_set_smem st m) rs0 m0. Proof. unfold sabort_local. simpl; intuition. Qed. Lemma all_fallthrough_upto_exit_cons ge sp ext lx ext' exits rs m: all_fallthrough_upto_exit ge sp ext lx exits rs m -> all_fallthrough_upto_exit ge sp ext lx (ext'::exits) rs m. Proof. intros. inv H. econstructor; eauto. Qed. Lemma all_fallthrough_cons ge sp exits rs m ext: all_fallthrough ge sp exits rs m -> seval_condition ge sp (si_cond ext) (si_scondargs ext) (si_smem (si_elocal ext)) rs m = Some false -> all_fallthrough ge sp (ext::exits) rs m. Proof. intros. unfold all_fallthrough in *. intros. inv H1; eauto. Qed. Lemma siexec_inst_preserves_sabort i ge sp rs m st st': siexec_inst i st = Some st' -> sabort ge sp st rs m -> sabort ge sp st' rs m. Proof. intros SISTEP ABORT. destruct i; simpl in SISTEP; try discriminate; inv SISTEP; unfold sabort; simpl. (* NOP *) * destruct ABORT as [(ALLF & ABORTL) | (ext0 & lx0 & ALLFU & ABORTE)]. - left. constructor; eauto. - right. exists ext0, lx0. constructor; eauto. (* OP *) * destruct ABORT as [(ALLF & ABORTL) | (ext0 & lx0 & ALLFU & ABORTE)]. - left. constructor; eauto. eapply slocal_set_sreg_preserves_sabort_local; eauto. - right. exists ext0, lx0. constructor; eauto. (* LOAD *) * destruct ABORT as [(ALLF & ABORTL) | (ext0 & lx0 & ALLFU & ABORTE)]. - left. constructor; eauto. eapply slocal_set_sreg_preserves_sabort_local; eauto. - right. exists ext0, lx0. constructor; eauto. (* STORE *) * destruct ABORT as [(ALLF & ABORTL) | (ext0 & lx0 & ALLFU & ABORTE)]. - left. constructor; eauto. eapply slocal_set_smem_preserves_sabort_local; eauto. - right. exists ext0, lx0. constructor; eauto. (* COND *) * remember ({| si_cond := _; si_scondargs := _; si_elocal := _; si_ifso := _ |}) as ext. destruct ABORT as [(ALLF & ABORTL) | (ext0 & lx0 & ALLFU & ABORTE)]. - destruct (seval_condition ge sp (si_cond ext) (si_scondargs ext) (si_smem (si_elocal ext)) rs m) eqn:SEVAL; [destruct b|]. (* case true *) + right. exists ext, (si_exits st). constructor. ++ constructor. econstructor; eauto. eauto. ++ unfold sabort_exit. right. constructor; eauto. subst. simpl. eauto. (* case false *) + left. constructor; eauto. eapply all_fallthrough_cons; eauto. (* case None *) + right. exists ext, (si_exits st). constructor. ++ constructor. econstructor; eauto. eauto. ++ unfold sabort_exit. left. eauto. - right. exists ext0, lx0. constructor; eauto. eapply all_fallthrough_upto_exit_cons; eauto. Qed. Lemma siexec_inst_WF i st: siexec_inst i st = None -> default_succ i = None. Proof. destruct i; simpl; unfold sist_set_local; simpl; congruence. Qed. Lemma siexec_inst_default_succ i st st': siexec_inst i st = Some st' -> default_succ i = Some (st'.(si_pc)). Proof. destruct i; simpl; unfold sist_set_local; simpl; try congruence; intro H; inversion_clear H; simpl; auto. Qed. Lemma seval_list_sval_inj_not_none ge sp st rs0 m0: forall l, (forall r, List.In r l -> seval_sval ge sp (si_sreg st r) rs0 m0 = None -> False) -> seval_list_sval ge sp (list_sval_inj (map (si_sreg st) l)) rs0 m0 = None -> False. Proof. induction l. - intuition discriminate. - intros ALLR. simpl. inversion_SOME v. + intro SVAL. inversion_SOME lv; [discriminate|]. assert (forall r : reg, In r l -> seval_sval ge sp (si_sreg st r) rs0 m0 = None -> False). { intros r INR. eapply ALLR. right. assumption. } intro SVALLIST. intro. eapply IHl; eauto. + intros. exploit (ALLR a); simpl; eauto. Qed. Lemma siexec_inst_correct ge sp i st rs0 m0 rs m: ssem_local ge sp st.(si_local) rs0 m0 rs m -> all_fallthrough ge sp st.(si_exits) rs0 m0 -> ssem_internal_opt2 ge sp (siexec_inst i st) rs0 m0 (istep ge i sp rs m). Proof. intros (PRE & MEM & REG) NYE. destruct i; simpl; auto. + (* Nop *) constructor; [|constructor]; simpl; auto. constructor; auto. + (* Op *) inversion_SOME v; intros OP; simpl. - constructor; [|constructor]; simpl; auto. constructor; simpl; auto. * constructor; auto. congruence. * constructor; auto. intro r0. destruct (Pos.eq_dec r r0); [|rewrite Regmap.gso; auto]. subst. rewrite Regmap.gss; simpl; auto. erewrite seval_list_sval_inj; simpl; auto. try_simplify_someHyps. - left. constructor; simpl; auto. unfold sabort_local. right. right. simpl. exists r. destruct (Pos.eq_dec r r); try congruence. simpl. erewrite seval_list_sval_inj; simpl; auto. try_simplify_someHyps. + (* LOAD *) inversion_SOME a0; intro ADD. { inversion_SOME v; intros LOAD; simpl. - explore_destruct; unfold ssem_internal, ssem_local; simpl; intuition. * unfold ssem_internal. simpl. constructor; [|constructor]; auto. constructor; constructor; simpl; auto. congruence. intro r0. destruct (Pos.eq_dec r r0); [|rewrite Regmap.gso; auto]. subst; rewrite Regmap.gss; simpl. erewrite seval_list_sval_inj; simpl; auto. try_simplify_someHyps. * unfold ssem_internal. simpl. constructor; [|constructor]; auto. constructor; constructor; simpl; auto. congruence. intro r0. destruct (Pos.eq_dec r r0); [|rewrite Regmap.gso; auto]. subst; rewrite Regmap.gss; simpl. inversion_SOME args; intros ARGS. 2: { exploit seval_list_sval_inj_not_none; eauto; intuition congruence. } exploit seval_list_sval_inj; eauto. intro ARGS'. erewrite ARGS in ARGS'. inv ARGS'. rewrite ADD. inversion_SOME m2. intro SMEM. assert (m = m2) by congruence. subst. rewrite LOAD. reflexivity. - explore_destruct; unfold sabort, sabort_local; simpl. * unfold sabort. simpl. left. constructor; auto. right. right. exists r. simpl. destruct (Pos.eq_dec r r); try congruence. simpl. erewrite seval_list_sval_inj; simpl; auto. rewrite ADD; simpl; auto. try_simplify_someHyps. * unfold ssem_internal. simpl. constructor; [|constructor]; auto. constructor; constructor; simpl; auto. congruence. intro r0. destruct (Pos.eq_dec r r0); [|rewrite Regmap.gso; auto]. subst; rewrite Regmap.gss; simpl. erewrite seval_list_sval_inj; simpl; auto. try_simplify_someHyps. } { rewrite ADD. destruct t. - simpl. left; eauto. simpl. econstructor; eauto. right. right. simpl. exists r. destruct (Pos.eq_dec r r); [|contradiction]. simpl. inversion_SOME args. intro SLS. eapply seval_list_sval_inj in REG. rewrite REG in SLS. inv SLS. rewrite ADD. reflexivity. - simpl. constructor; [|constructor]; simpl; auto. constructor; simpl; constructor; auto; [congruence|]. intro r0. destruct (Pos.eq_dec r r0); [|rewrite Regmap.gso; auto]. subst. simpl. rewrite Regmap.gss. erewrite seval_list_sval_inj; simpl; auto. try_simplify_someHyps. } + (* STORE *) inversion_SOME a0; intros ADD. { inversion_SOME m'; intros STORE; simpl. - unfold ssem_internal, ssem_local; simpl; intuition. * congruence. * erewrite seval_list_sval_inj; simpl; auto. erewrite REG. try_simplify_someHyps. - unfold sabort, sabort_local; simpl. left. constructor; auto. right. left. erewrite seval_list_sval_inj; simpl; auto. erewrite REG. try_simplify_someHyps. } { unfold sabort, sabort_local; simpl. left. constructor; auto. right. left. erewrite seval_list_sval_inj; simpl; auto. erewrite ADD; simpl; auto. } + (* COND *) Local Hint Resolve is_tail_refl: core. Local Hint Unfold ssem_local: core. inversion_SOME b; intros COND. { destruct b; simpl; unfold ssem_internal, ssem_local; simpl. - remember (mk_sistate_exit _ _ _ _) as ext. exists ext, (si_exits st). constructor; constructor; subst; simpl; auto. unfold seval_condition. subst; simpl. erewrite seval_list_sval_inj; simpl; auto. try_simplify_someHyps. - intuition. unfold all_fallthrough in * |- *. simpl. intuition. subst. simpl. unfold seval_condition. erewrite seval_list_sval_inj; simpl; auto. try_simplify_someHyps. } { unfold sabort. simpl. right. remember (mk_sistate_exit _ _ _ _) as ext. exists ext, (si_exits st). constructor; [constructor; subst; simpl; auto|]. left. subst; simpl; auto. unfold seval_condition. erewrite seval_list_sval_inj; simpl; auto. try_simplify_someHyps. } Qed. Lemma siexec_inst_correct_None ge sp i st rs0 m0 rs m: ssem_local ge sp (st.(si_local)) rs0 m0 rs m -> siexec_inst i st = None -> istep ge i sp rs m = None. Proof. intros (PRE & MEM & REG). destruct i; simpl; unfold sist_set_local, ssem_internal, ssem_local; simpl; try_simplify_someHyps. Qed. (** * Symbolic execution of the internal steps of a path *) Fixpoint siexec_path (path:nat) (f: function) (st: sistate): option sistate := match path with | O => Some st | S p => SOME i <- (fn_code f)!(st.(si_pc)) IN SOME st1 <- siexec_inst i st IN siexec_path p f st1 end. Lemma siexec_inst_add_exits i st st': siexec_inst i st = Some st' -> ( si_exits st' = si_exits st \/ exists ext, si_exits st' = ext :: si_exits st ). Proof. destruct i; simpl; intro SISTEP; inversion_clear SISTEP; unfold siexec_inst; simpl; (discriminate || eauto). Qed. Lemma siexec_inst_preserves_allfu ge sp ext lx rs0 m0 st st' i: all_fallthrough_upto_exit ge sp ext lx (si_exits st) rs0 m0 -> siexec_inst i st = Some st' -> all_fallthrough_upto_exit ge sp ext lx (si_exits st') rs0 m0. Proof. intros ALLFU SISTEP. destruct ALLFU as (ISTAIL & ALLF). constructor; eauto. destruct i; simpl in SISTEP; inversion_clear SISTEP; simpl; (discriminate || eauto). Qed. Lemma siexec_path_correct_false ge sp f rs0 m0 st' is: forall path, is.(icontinue)=false -> forall st, ssem_internal ge sp st rs0 m0 is -> siexec_path path f st = Some st' -> ssem_internal ge sp st' rs0 m0 is. Proof. induction path; simpl. - intros. congruence. - intros ICF st SSEM STEQ'. destruct ((fn_code f) ! (si_pc st)) eqn:FIC; [|discriminate]. destruct (siexec_inst _ _) eqn:SISTEP; [|discriminate]. eapply IHpath. 3: eapply STEQ'. eauto. unfold ssem_internal in SSEM. rewrite ICF in SSEM. destruct SSEM as (ext & lx & SEXIT & ALLFU). unfold ssem_internal. rewrite ICF. exists ext, lx. constructor; auto. eapply siexec_inst_preserves_allfu; eauto. Qed. Lemma siexec_path_preserves_sabort ge sp path f rs0 m0 st': forall st, siexec_path path f st = Some st' -> sabort ge sp st rs0 m0 -> sabort ge sp st' rs0 m0. Proof. Local Hint Resolve siexec_inst_preserves_sabort: core. induction path; simpl. + unfold sist_set_local; try_simplify_someHyps. + intros st; inversion_SOME i. inversion_SOME st1; eauto. Qed. Lemma siexec_path_WF path f: forall st, siexec_path path f st = None -> nth_default_succ (fn_code f) path st.(si_pc) = None. Proof. induction path; simpl. + unfold sist_set_local. intuition congruence. + intros st; destruct ((fn_code f) ! (si_pc st)); simpl; try tauto. destruct (siexec_inst i st) as [st1|] eqn: Hst1; simpl. - intros; erewrite siexec_inst_default_succ; eauto. - intros; erewrite siexec_inst_WF; eauto. Qed. Lemma siexec_path_default_succ path f st': forall st, siexec_path path f st = Some st' -> nth_default_succ (fn_code f) path st.(si_pc) = Some st'.(si_pc). Proof. induction path; simpl. + unfold sist_set_local. intros st H. inversion_clear H; simpl; try congruence. + intros st; destruct ((fn_code f) ! (si_pc st)); simpl; try congruence. destruct (siexec_inst i st) as [st1|] eqn: Hst1; simpl; try congruence. intros; erewrite siexec_inst_default_succ; eauto. Qed. Lemma siexec_path_correct_true ge sp path (f:function) rs0 m0: forall st is, is.(icontinue)=true -> ssem_internal ge sp st rs0 m0 is -> nth_default_succ (fn_code f) path st.(si_pc) <> None -> ssem_internal_opt2 ge sp (siexec_path path f st) rs0 m0 (isteps ge path f sp is.(irs) is.(imem) is.(ipc)) . Proof. Local Hint Resolve siexec_path_correct_false siexec_path_preserves_sabort siexec_path_WF: core. induction path; simpl. + intros st is CONT INV WF; unfold ssem_internal, sist_set_local in * |- *; try_simplify_someHyps. simpl. destruct is; simpl in * |- *; subst; intuition auto. + intros st is CONT; unfold ssem_internal at 1; rewrite CONT. intros (LOCAL & PC & NYE) WF. rewrite <- PC. inversion_SOME i; intro Hi; rewrite Hi in WF |- *; simpl; auto. exploit siexec_inst_correct; eauto. inversion_SOME st1; intros Hst1; erewrite Hst1; simpl. - inversion_SOME is1; intros His1;rewrite His1; simpl. * destruct (icontinue is1) eqn:CONT1. (* icontinue is0 = true *) intros; eapply IHpath; eauto. destruct i; simpl in * |- *; unfold sist_set_local in * |- *; try_simplify_someHyps. (* icontinue is0 = false -> EARLY EXIT *) destruct (siexec_path path f st1) as [st2|] eqn: Hst2; simpl; eauto. destruct WF. erewrite siexec_inst_default_succ; eauto. (* try_simplify_someHyps; eauto. *) * destruct (siexec_path path f st1) as [st2|] eqn: Hst2; simpl; eauto. - intros His1;rewrite His1; simpl; auto. Qed. (** REM: in the following two unused lemmas *) Lemma siexec_path_right_assoc_decompose f path: forall st st', siexec_path (S path) f st = Some st' -> exists st0, siexec_path path f st = Some st0 /\ siexec_path 1%nat f st0 = Some st'. Proof. induction path; simpl; eauto. intros st st'. inversion_SOME i1. inversion_SOME st1. try_simplify_someHyps; eauto. Qed. Lemma siexec_path_right_assoc_compose f path: forall st st0 st', siexec_path path f st = Some st0 -> siexec_path 1%nat f st0 = Some st' -> siexec_path (S path) f st = Some st'. Proof. induction path. + intros st st0 st' H. simpl in H. try_simplify_someHyps; auto. + intros st st0 st'. assert (X:exists x, x=(S path)); eauto. destruct X as [x X]. intros H1 H2. rewrite <- X. generalize H1; clear H1. simpl. inversion_SOME i1. intros Hi1; rewrite Hi1. inversion_SOME st1. intros Hst1; rewrite Hst1. subst; eauto. Qed. (** * Symbolic (final) value of a path *) Inductive sfval := | Snone | Scall (sig:signature) (svos: sval + ident) (lsv:list_sval) (res:reg) (pc:node) (* NB: [res] the return register is hard-wired ! Is it restrictive ? *) | Stailcall: signature -> sval + ident -> list_sval -> sfval | Sbuiltin (ef:external_function) (sargs: list (builtin_arg sval)) (res: builtin_res reg) (pc:node) | Sjumptable (sv: sval) (tbl: list node) | Sreturn: option sval -> sfval . Definition sfind_function (pge: RTLpath.genv) (ge: RTL.genv) (sp: val) (svos : sval + ident) (rs0: regset) (m0: mem): option fundef := match svos with | inl sv => SOME v <- seval_sval ge sp sv rs0 m0 IN Genv.find_funct pge v | inr symb => SOME b <- Genv.find_symbol pge symb IN Genv.find_funct_ptr pge b end. Section SEVAL_BUILTIN_ARG. (* adapted from Events.v *) Variable ge: RTL.genv. Variable sp: val. Variable m: mem. Variable rs0: regset. Variable m0: mem. Inductive seval_builtin_arg: builtin_arg sval -> val -> Prop := | seval_BA: forall x v, seval_sval ge sp x rs0 m0 = Some v -> seval_builtin_arg (BA x) v | seval_BA_int: forall n, seval_builtin_arg (BA_int n) (Vint n) | seval_BA_long: forall n, seval_builtin_arg (BA_long n) (Vlong n) | seval_BA_float: forall n, seval_builtin_arg (BA_float n) (Vfloat n) | seval_BA_single: forall n, seval_builtin_arg (BA_single n) (Vsingle n) | seval_BA_loadstack: forall chunk ofs v, Mem.loadv chunk m (Val.offset_ptr sp ofs) = Some v -> seval_builtin_arg (BA_loadstack chunk ofs) v | seval_BA_addrstack: forall ofs, seval_builtin_arg (BA_addrstack ofs) (Val.offset_ptr sp ofs) | seval_BA_loadglobal: forall chunk id ofs v, Mem.loadv chunk m (Senv.symbol_address ge id ofs) = Some v -> seval_builtin_arg (BA_loadglobal chunk id ofs) v | seval_BA_addrglobal: forall id ofs, seval_builtin_arg (BA_addrglobal id ofs) (Senv.symbol_address ge id ofs) | seval_BA_splitlong: forall hi lo vhi vlo, seval_builtin_arg hi vhi -> seval_builtin_arg lo vlo -> seval_builtin_arg (BA_splitlong hi lo) (Val.longofwords vhi vlo) | seval_BA_addptr: forall a1 a2 v1 v2, seval_builtin_arg a1 v1 -> seval_builtin_arg a2 v2 -> seval_builtin_arg (BA_addptr a1 a2) (if Archi.ptr64 then Val.addl v1 v2 else Val.add v1 v2). Definition seval_builtin_args (al: list (builtin_arg sval)) (vl: list val) : Prop := list_forall2 seval_builtin_arg al vl. Lemma seval_builtin_arg_determ: forall a v, seval_builtin_arg a v -> forall v', seval_builtin_arg a v' -> v' = v. Proof. induction 1; intros v' EV; inv EV; try congruence. f_equal; eauto. apply IHseval_builtin_arg1 in H3. apply IHseval_builtin_arg2 in H5. subst; auto. Qed. Lemma eval_builtin_args_determ: forall al vl, seval_builtin_args al vl -> forall vl', seval_builtin_args al vl' -> vl' = vl. Proof. induction 1; intros v' EV; inv EV; f_equal; eauto using seval_builtin_arg_determ. Qed. End SEVAL_BUILTIN_ARG. Inductive ssem_final (pge: RTLpath.genv) (ge: RTL.genv) (sp:val) (npc: node) stack (f: function) (rs0: regset) (m0: mem): sfval -> regset -> mem -> trace -> state -> Prop := | exec_Snone rs m: ssem_final pge ge sp npc stack f rs0 m0 Snone rs m E0 (State stack f sp npc rs m) | exec_Scall rs m sig svos lsv args res pc fd: sfind_function pge ge sp svos rs0 m0 = Some fd -> funsig fd = sig -> seval_list_sval ge sp lsv rs0 m0 = Some args -> ssem_final pge ge sp npc stack f rs0 m0 (Scall sig svos lsv res pc) rs m E0 (Callstate (Stackframe res f sp pc rs :: stack) fd args m) | exec_Stailcall stk rs m sig svos args fd m' lsv: sfind_function pge ge sp svos rs0 m0 = Some fd -> funsig fd = sig -> sp = Vptr stk Ptrofs.zero -> Mem.free m stk 0 f.(fn_stacksize) = Some m' -> seval_list_sval ge sp lsv rs0 m0 = Some args -> ssem_final pge ge sp npc stack f rs0 m0 (Stailcall sig svos lsv) rs m E0 (Callstate stack fd args m') | exec_Sbuiltin m' rs m vres res pc t sargs ef vargs: seval_builtin_args ge sp m rs0 m0 sargs vargs -> external_call ef ge vargs m t vres m' -> ssem_final pge ge sp npc stack f rs0 m0 (Sbuiltin ef sargs res pc) rs m t (State stack f sp pc (regmap_setres res vres rs) m') | exec_Sjumptable sv tbl pc' n rs m: seval_sval ge sp sv rs0 m0 = Some (Vint n) -> list_nth_z tbl (Int.unsigned n) = Some pc' -> ssem_final pge ge sp npc stack f rs0 m0 (Sjumptable sv tbl) rs m E0 (State stack f sp pc' rs m) | exec_Sreturn stk osv rs m m' v: sp = (Vptr stk Ptrofs.zero) -> Mem.free m stk 0 f.(fn_stacksize) = Some m' -> match osv with Some sv => seval_sval ge sp sv rs0 m0 | None => Some Vundef end = Some v -> ssem_final pge ge sp npc stack f rs0 m0 (Sreturn osv) rs m E0 (Returnstate stack v m') . Record sstate := { internal:> sistate; final: sfval }. Inductive ssem pge (ge: RTL.genv) (sp:val) (st: sstate) stack f (rs0: regset) (m0: mem): trace -> state -> Prop := | ssem_early is: is.(icontinue) = false -> ssem_internal ge sp st rs0 m0 is -> ssem pge ge sp st stack f rs0 m0 E0 (State stack f sp is.(ipc) is.(irs) is.(imem)) | ssem_normal is t s: is.(icontinue) = true -> ssem_internal ge sp st rs0 m0 is -> ssem_final pge ge sp st.(si_pc) stack f rs0 m0 st.(final) is.(irs) is.(imem) t s -> ssem pge ge sp st stack f rs0 m0 t s . (* NB: generic function that could be put into [AST] file *) Fixpoint builtin_arg_map {A B} (f: A -> B) (arg: builtin_arg A) : builtin_arg B := match arg with | BA x => BA (f x) | BA_int n => BA_int n | BA_long n => BA_long n | BA_float f => BA_float f | BA_single s => BA_single s | BA_loadstack chunk ptr => BA_loadstack chunk ptr | BA_addrstack ptr => BA_addrstack ptr | BA_loadglobal chunk id ptr => BA_loadglobal chunk id ptr | BA_addrglobal id ptr => BA_addrglobal id ptr | BA_splitlong ba1 ba2 => BA_splitlong (builtin_arg_map f ba1) (builtin_arg_map f ba2) | BA_addptr ba1 ba2 => BA_addptr (builtin_arg_map f ba1) (builtin_arg_map f ba2) end. Lemma seval_builtin_arg_correct ge sp rs m rs0 m0 sreg: forall arg varg, (forall r, seval_sval ge sp (sreg r) rs0 m0 = Some rs # r) -> eval_builtin_arg ge (fun r => rs # r) sp m arg varg -> seval_builtin_arg ge sp m rs0 m0 (builtin_arg_map sreg arg) varg. Proof. induction arg. all: try (intros varg SEVAL BARG; inv BARG; constructor; congruence). - intros varg SEVAL BARG. inv BARG. simpl. constructor. eapply IHarg1; eauto. eapply IHarg2; eauto. - intros varg SEVAL BARG. inv BARG. simpl. constructor. eapply IHarg1; eauto. eapply IHarg2; eauto. Qed. Lemma seval_builtin_args_correct ge sp rs m rs0 m0 sreg args vargs: (forall r, seval_sval ge sp (sreg r) rs0 m0 = Some rs # r) -> eval_builtin_args ge (fun r => rs # r) sp m args vargs -> seval_builtin_args ge sp m rs0 m0 (map (builtin_arg_map sreg) args) vargs. Proof. induction 2. - constructor. - simpl. constructor; [| assumption]. eapply seval_builtin_arg_correct; eauto. Qed. Lemma seval_builtin_arg_complete ge sp rs m rs0 m0 sreg: forall arg varg, (forall r, seval_sval ge sp (sreg r) rs0 m0 = Some rs # r) -> seval_builtin_arg ge sp m rs0 m0 (builtin_arg_map sreg arg) varg -> eval_builtin_arg ge (fun r => rs # r) sp m arg varg. Proof. induction arg. all: intros varg SEVAL BARG; try (inv BARG; constructor; congruence). - inv BARG. rewrite SEVAL in H0. inv H0. constructor. - inv BARG. simpl. constructor. eapply IHarg1; eauto. eapply IHarg2; eauto. - inv BARG. simpl. constructor. eapply IHarg1; eauto. eapply IHarg2; eauto. Qed. Lemma seval_builtin_args_complete ge sp rs m rs0 m0 sreg: forall args vargs, (forall r, seval_sval ge sp (sreg r) rs0 m0 = Some rs # r) -> seval_builtin_args ge sp m rs0 m0 (map (builtin_arg_map sreg) args) vargs -> eval_builtin_args ge (fun r => rs # r) sp m args vargs. Proof. induction args. - simpl. intros. inv H0. constructor. - intros vargs SEVAL BARG. simpl in BARG. inv BARG. constructor; [| eapply IHargs; eauto]. eapply seval_builtin_arg_complete; eauto. Qed. (** * Symbolic execution of final step *) Definition sexec_final (i: instruction) (prev: sistate_local): sfval := match i with | Icall sig ros args res pc => let svos := sum_left_map prev.(si_sreg) ros in let sargs := list_sval_inj (List.map prev.(si_sreg) args) in Scall sig svos sargs res pc | Itailcall sig ros args => let svos := sum_left_map prev.(si_sreg) ros in let sargs := list_sval_inj (List.map prev.(si_sreg) args) in Stailcall sig svos sargs | Ibuiltin ef args res pc => let sargs := List.map (builtin_arg_map prev.(si_sreg)) args in Sbuiltin ef sargs res pc | Ireturn or => let sor := SOME r <- or IN Some (prev.(si_sreg) r) in Sreturn sor | Ijumptable reg tbl => let sv := prev.(si_sreg) reg in Sjumptable sv tbl | _ => Snone end. Lemma sexec_final_correct pge ge sp i (f:function) pc st stack rs0 m0 t rs m s: (fn_code f) ! pc = Some i -> pc = st.(si_pc) -> ssem_local ge sp (si_local st) rs0 m0 rs m -> path_last_step ge pge stack f sp pc rs m t s -> siexec_inst i st = None -> ssem_final pge ge sp pc stack f rs0 m0 (sexec_final i (si_local st)) rs m t s. Proof. intros PC1 PC2 (PRE&MEM®) LAST. destruct LAST; subst; try_simplify_someHyps; simpl. + (* Snone *) intro Hi; destruct i; simpl in Hi |- *; unfold sist_set_local in Hi; try congruence. + (* Icall *) intros; eapply exec_Scall; auto. - destruct ros; simpl in * |- *; auto. rewrite REG; auto. - erewrite seval_list_sval_inj; simpl; auto. + (* Itailcall *) intros. eapply exec_Stailcall; auto. - destruct ros; simpl in * |- *; auto. rewrite REG; auto. - erewrite seval_list_sval_inj; simpl; auto. + (* Ibuiltin *) intros. eapply exec_Sbuiltin; eauto. eapply seval_builtin_args_correct; eauto. + (* Ijumptable *) intros. eapply exec_Sjumptable; eauto. congruence. + (* Ireturn *) intros; eapply exec_Sreturn; simpl; eauto. destruct or; simpl; auto. Qed. Lemma sexec_final_complete i (f:function) pc st ge pge sp stack rs0 m0 t rs m s: (fn_code f) ! pc = Some i -> pc = st.(si_pc) -> ssem_local ge sp (si_local st) rs0 m0 rs m -> ssem_final pge ge sp pc stack f rs0 m0 (sexec_final i (si_local st)) rs m t s -> siexec_inst i st = None -> path_last_step ge pge stack f sp pc rs m t s. Proof. intros PC1 PC2 (PRE&MEM®) LAST HSIS. destruct i as [ (* Inop *) | (* Iop *) | (* Iload *) | (* Istore *) | (* Icall *) sig ros args res pc' | (* Itailcall *) sig ros args | (* Ibuiltin *) ef bargs br pc' | (* Icond *) | (* Ijumptable *) jr tbl | (*Ireturn*) or]; subst; try_simplify_someHyps; try (unfold sist_set_local in HSIS; try congruence); inversion LAST; subst; clear LAST; simpl in * |- *. + (* Icall *) erewrite seval_list_sval_inj in * |- ; simpl; try_simplify_someHyps; auto. intros; eapply exec_Icall; eauto. destruct ros; simpl in * |- *; auto. rewrite REG in * |- ; auto. + (* Itailcall *) intros HPC SMEM. erewrite seval_list_sval_inj in H10; auto. inv H10. eapply exec_Itailcall; eauto. destruct ros; simpl in * |- *; auto. rewrite REG in * |- ; auto. + (* Ibuiltin *) intros HPC SMEM. eapply exec_Ibuiltin; eauto. eapply seval_builtin_args_complete; eauto. + (* Ijumptable *) intros HPC SMEM. eapply exec_Ijumptable; eauto. congruence. + (* Ireturn *) intros; subst. enough (v=regmap_optget or Vundef rs) as ->. * eapply exec_Ireturn; eauto. * intros; destruct or; simpl; congruence. Qed. (** * Main function of the symbolic execution *) Definition init_sistate_local := {| si_pre:= fun _ _ _ _ => True; si_sreg:= fun r => Sinput r; si_smem:= Sinit |}. Definition init_sistate pc := {| si_pc:= pc; si_exits:=nil; si_local:= init_sistate_local |}. Lemma init_ssem_internal ge sp pc rs m: ssem_internal ge sp (init_sistate pc) rs m (mk_istate true pc rs m). Proof. unfold ssem_internal, ssem_local, all_fallthrough; simpl. intuition. Qed. Definition sexec (f: function) (pc:node): option sstate := SOME path <- (fn_path f)!pc IN SOME st <- siexec_path path.(psize) f (init_sistate pc) IN SOME i <- (fn_code f)!(st.(si_pc)) IN Some (match siexec_inst i st with | Some st' => {| internal := st'; final := Snone |} | None => {| internal := st; final := sexec_final i st.(si_local) |} end). Lemma final_node_path_simpl f path pc: (fn_path f)!pc = Some path -> nth_default_succ_inst (fn_code f) path.(psize) pc <> None. Proof. intros; exploit final_node_path; eauto. intros (i & NTH & DUM). congruence. Qed. Lemma symb_path_last_step i st st' ge pge stack (f:function) sp pc rs m t s: (fn_code f) ! pc = Some i -> pc = st.(si_pc) -> siexec_inst i st = Some st' -> path_last_step ge pge stack f sp pc rs m t s -> exists mk_istate, istep ge i sp rs m = Some mk_istate /\ t = E0 /\ s = (State stack f sp mk_istate.(ipc) mk_istate.(RTLpath.irs) mk_istate.(imem)). Proof. intros PC1 PC2 Hst' LAST; destruct LAST; subst; try_simplify_someHyps; simpl. Qed. (* NB: each concrete execution can be executed on the symbolic state (produced from [sexec]) (sexec is a correct over-approximation) *) Theorem sexec_correct f pc pge ge sp path stack rs m t s: (fn_path f)!pc = Some path -> path_step ge pge path.(psize) stack f sp rs m pc t s -> exists st, sexec f pc = Some st /\ ssem pge ge sp st stack f rs m t s. Proof. Local Hint Resolve init_ssem_internal: core. intros PATH STEP; unfold sexec; rewrite PATH; simpl. lapply (final_node_path_simpl f path pc); eauto. intro WF. exploit (siexec_path_correct_true ge sp path.(psize) f rs m (init_sistate pc) (mk_istate true pc rs m)); simpl; eauto. { intros ABS. apply WF; unfold nth_default_succ_inst. rewrite ABS; auto. } (destruct (nth_default_succ_inst (fn_code f) path.(psize) pc) as [i|] eqn: Hi; [clear WF|congruence]). destruct STEP as [sti STEPS CONT|sti t s STEPS CONT LAST]; (* intro Hst *) (rewrite STEPS; unfold ssem_internal_opt2; destruct (siexec_path _ _ _) as [st|] eqn: Hst; try congruence); (* intro SEM *) (simpl; unfold ssem_internal; simpl; rewrite CONT; intro SEM); (* intro Hi' *) ( assert (Hi': (fn_code f) ! (si_pc st) = Some i); [ unfold nth_default_succ_inst in Hi; exploit siexec_path_default_succ; eauto; simpl; intros DEF; rewrite DEF in Hi; auto | clear Hi; rewrite Hi' ]); (* eexists *) (eexists; constructor; eauto). - (* early *) eapply ssem_early; eauto. unfold ssem_internal; simpl; rewrite CONT. destruct (siexec_inst i st) as [st'|] eqn: Hst'; simpl; eauto. destruct SEM as (ext & lx & SEM & ALLFU). exists ext, lx. constructor; auto. eapply siexec_inst_preserves_allfu; eauto. - destruct SEM as (SEM & PC & HNYE). destruct (siexec_inst i st) as [st'|] eqn: Hst'; simpl. + (* normal on Snone *) rewrite <- PC in LAST. exploit symb_path_last_step; eauto; simpl. intros (mk_istate & ISTEP & Ht & Hs); subst. exploit siexec_inst_correct; eauto. simpl. erewrite Hst', ISTEP; simpl. clear LAST CONT STEPS PC SEM HNYE Hst Hi' Hst' ISTEP st sti i. intro SEM; destruct (mk_istate.(icontinue)) eqn: CONT. { (* icontinue mk_istate = true *) eapply ssem_normal; simpl; eauto. unfold ssem_internal in SEM. rewrite CONT in SEM. destruct SEM as (SEM & PC & HNYE). rewrite <- PC. eapply exec_Snone. } { eapply ssem_early; eauto. } + (* normal non-Snone instruction *) eapply ssem_normal; eauto. * unfold ssem_internal; simpl; rewrite CONT; intuition. * simpl. eapply sexec_final_correct; eauto. rewrite PC; auto. Qed. (* TODO: déplacer les trucs sur equiv_stackframe dans RTLpath ? *) Inductive equiv_stackframe: stackframe -> stackframe -> Prop := | equiv_stackframe_intro res f sp pc rs1 rs2 (EQUIV: forall r : positive, rs1 !! r = rs2 !! r): equiv_stackframe (Stackframe res f sp pc rs1) (Stackframe res f sp pc rs2). Inductive equiv_state: state -> state -> Prop := | State_equiv stack f sp pc rs1 m rs2 (EQUIV: forall r, rs1#r = rs2#r): equiv_state (State stack f sp pc rs1 m) (State stack f sp pc rs2 m) | Call_equiv stk stk' f args m (STACKS: list_forall2 equiv_stackframe stk stk'): equiv_state (Callstate stk f args m) (Callstate stk' f args m) | Return_equiv stk stk' v m (STACKS: list_forall2 equiv_stackframe stk stk'): equiv_state (Returnstate stk v m) (Returnstate stk' v m). Lemma equiv_stackframe_refl stf: equiv_stackframe stf stf. Proof. destruct stf. constructor; auto. Qed. Lemma equiv_stack_refl stk: list_forall2 equiv_stackframe stk stk. Proof. Local Hint Resolve equiv_stackframe_refl: core. induction stk; simpl; constructor; auto. Qed. Lemma equiv_state_refl s: equiv_state s s. Proof. Local Hint Resolve equiv_stack_refl: core. induction s; simpl; constructor; auto. Qed. (* Lemma equiv_stackframe_trans stf1 stf2 stf3: equiv_stackframe stf1 stf2 -> equiv_stackframe stf2 stf3 -> equiv_stackframe stf1 stf3. Proof. destruct 1; intros EQ; inv EQ; try econstructor; eauto. intros; eapply eq_trans; eauto. Qed. Lemma equiv_stack_trans stk1 stk2: list_forall2 equiv_stackframe stk1 stk2 -> forall stk3, list_forall2 equiv_stackframe stk2 stk3 -> list_forall2 equiv_stackframe stk1 stk3. Proof. Local Hint Resolve equiv_stackframe_trans. induction 1; intros stk3 EQ; inv EQ; econstructor; eauto. Qed. Lemma equiv_state_trans s1 s2 s3: equiv_state s1 s2 -> equiv_state s2 s3 -> equiv_state s1 s3. Proof. Local Hint Resolve equiv_stack_trans. destruct 1; intros EQ; inv EQ; econstructor; eauto. intros; eapply eq_trans; eauto. Qed. *) Lemma regmap_setres_eq (rs rs': regset) res vres: (forall r, rs # r = rs' # r) -> forall r, (regmap_setres res vres rs) # r = (regmap_setres res vres rs') # r. Proof. intros RSEQ r. destruct res; simpl; try congruence. destruct (peq x r). - subst. repeat (rewrite Regmap.gss). reflexivity. - repeat (rewrite Regmap.gso); auto. Qed. Lemma ssem_final_equiv pge ge sp (f:function) st sv stack rs0 m0 t rs1 rs2 m s: ssem_final pge ge sp st stack f rs0 m0 sv rs1 m t s -> (forall r, rs1#r = rs2#r) -> exists s', equiv_state s s' /\ ssem_final pge ge sp st stack f rs0 m0 sv rs2 m t s'. Proof. Local Hint Resolve equiv_stack_refl: core. destruct 1. - (* Snone *) intros; eexists; econstructor. + eapply State_equiv; eauto. + eapply exec_Snone. - (* Scall *) intros; eexists; econstructor. 2: { eapply exec_Scall; eauto. } apply Call_equiv; auto. repeat (constructor; auto). - (* Stailcall *) intros; eexists; econstructor; [| eapply exec_Stailcall; eauto]. apply Call_equiv; auto. - (* Sbuiltin *) intros; eexists; econstructor; [| eapply exec_Sbuiltin; eauto]. constructor. eapply regmap_setres_eq; eauto. - (* Sjumptable *) intros; eexists; econstructor; [| eapply exec_Sjumptable; eauto]. constructor. assumption. - (* Sreturn *) intros; eexists; econstructor; [| eapply exec_Sreturn; eauto]. eapply equiv_state_refl; eauto. Qed. Lemma siexec_inst_early_exit_absurd i st st' ge sp rs m rs' m' pc': siexec_inst i st = Some st' -> (exists ext lx, ssem_exit ge sp ext rs m rs' m' pc' /\ all_fallthrough_upto_exit ge sp ext lx (si_exits st) rs m) -> all_fallthrough ge sp (si_exits st') rs m -> False. Proof. intros SIEXEC (ext & lx & SSEME & ALLFU) ALLF. destruct ALLFU as (TAIL & _). exploit siexec_inst_add_exits; eauto. destruct 1 as [SIEQ | (ext0 & SIEQ)]. - rewrite SIEQ in *. eapply all_fallthrough_noexit. eauto. 2: eapply ALLF. eapply is_tail_in. eassumption. - rewrite SIEQ in *. eapply all_fallthrough_noexit. eauto. 2: eapply ALLF. eapply is_tail_in. constructor. eassumption. Qed. Lemma is_tail_false {A: Type}: forall (l: list A) a, is_tail (a::l) nil -> False. Proof. intros. eapply is_tail_incl in H. unfold incl in H. pose (H a). assert (In a (a::l)) by (constructor; auto). assert (In a nil) by auto. apply in_nil in H1. contradiction. Qed. Lemma cons_eq_false {A: Type}: forall (l: list A) a, a :: l = l -> False. Proof. induction l; intros. - discriminate. - inv H. apply IHl in H2. contradiction. Qed. Lemma app_cons_nil_eq {A: Type}: forall l' l (a:A), (l' ++ a :: nil) ++ l = l' ++ a::l. Proof. induction l'; intros. - simpl. reflexivity. - simpl. rewrite IHl'. reflexivity. Qed. Lemma app_eq_false {A: Type}: forall l (l': list A) a, l' ++ a :: l = l -> False. Proof. induction l; intros. - apply app_eq_nil in H. destruct H as (_ & H). apply cons_eq_false in H. contradiction. - destruct l' as [|a' l']. + simpl in H. apply cons_eq_false in H. contradiction. + rewrite <- app_comm_cons in H. inv H. apply (IHl (l' ++ (a0 :: nil)) a). rewrite app_cons_nil_eq. assumption. Qed. Lemma is_tail_false_gen {A: Type}: forall (l: list A) l' a, is_tail (l'++(a::l)) l -> False. Proof. induction l. - intros. destruct l' as [|a' l']. + simpl in H. apply is_tail_false in H. contradiction. + rewrite <- app_comm_cons in H. apply is_tail_false in H. contradiction. - intros. inv H. + apply app_eq_false in H2. contradiction. + apply (IHl (l' ++ (a0 :: nil)) a). rewrite app_cons_nil_eq. assumption. Qed. Lemma is_tail_eq {A: Type}: forall (l l': list A), is_tail l' l -> is_tail l l' -> l = l'. Proof. destruct l as [|a l]; intros l' ITAIL ITAIL'. - destruct l' as [|i' l']; auto. apply is_tail_false in ITAIL. contradiction. - inv ITAIL; auto. destruct l' as [|i' l']. { apply is_tail_false in ITAIL'. contradiction. } exploit is_tail_trans. eapply ITAIL'. eauto. intro ABSURD. apply (is_tail_false_gen l nil a) in ABSURD. contradiction. Qed. (* NB: each execution of a symbolic state (produced from [sexec]) represents a concrete execution (sexec is exact). *) Theorem sexec_exact f pc pge ge sp path stack st rs m t s1: (fn_path f)!pc = Some path -> sexec f pc = Some st -> ssem pge ge sp st stack f rs m t s1 -> exists s2, path_step ge pge path.(psize) stack f sp rs m pc t s2 /\ equiv_state s1 s2. Proof. Local Hint Resolve init_ssem_internal: core. unfold sexec; intros PATH SSTEP SEM; rewrite PATH in SSTEP. lapply (final_node_path_simpl f path pc); eauto. intro WF. exploit (siexec_path_correct_true ge sp path.(psize) f rs m (init_sistate pc) (mk_istate true pc rs m)); simpl; eauto. { intros ABS. apply WF; unfold nth_default_succ_inst. rewrite ABS; auto. } (destruct (nth_default_succ_inst (fn_code f) path.(psize) pc) as [i|] eqn: Hi; [clear WF|congruence]). unfold nth_default_succ_inst in Hi. destruct (siexec_path path.(psize) f (init_sistate pc)) as [st0|] eqn: Hst0; simpl. 2:{ (* absurd case *) exploit siexec_path_WF; eauto. simpl; intros NDS; rewrite NDS in Hi; congruence. } exploit siexec_path_default_succ; eauto; simpl. intros NDS; rewrite NDS in Hi. rewrite Hi in SSTEP. intros ISTEPS. try_simplify_someHyps. destruct (siexec_inst i st0) as [st'|] eqn:Hst'; simpl. + (* exit on Snone instruction *) assert (SEM': t = E0 /\ exists is, ssem_internal ge sp st' rs m is /\ s1 = (State stack f sp (if (icontinue is) then (si_pc st') else (ipc is)) (irs is) (imem is))). { destruct SEM as [is CONT SEM|is t s CONT SEM1 SEM2]; simpl in * |- *. - repeat (econstructor; eauto). rewrite CONT; eauto. - inversion SEM2. repeat (econstructor; eauto). rewrite CONT; eauto. } clear SEM; subst. destruct SEM' as [X (is & SEM & X')]; subst. intros. destruct (isteps ge (psize path) f sp rs m pc) as [is0|] eqn:RISTEPS; simpl in *. * unfold ssem_internal in ISTEPS. destruct (icontinue is0) eqn: ICONT0. ** (* icontinue is0=true: path_step by normal_exit *) destruct ISTEPS as (SEMis0&H1&H2). rewrite H1 in * |-. exploit siexec_inst_correct; eauto. rewrite Hst'; simpl. intros; exploit ssem_internal_opt_determ; eauto. destruct 1 as (st & Hst & EQ1 & EQ2 & EQ3 & EQ4). eexists. econstructor 1. *** eapply exec_normal_exit; eauto. eapply exec_istate; eauto. *** rewrite EQ1. enough ((ipc st) = (if icontinue st then si_pc st' else ipc is)) as ->. { rewrite EQ2, EQ4. eapply State_equiv; auto. } destruct (icontinue st) eqn:ICONT; auto. exploit siexec_inst_default_succ; eauto. erewrite istep_normal_exit; eauto. try_simplify_someHyps. ** (* The concrete execution has not reached "i" => early exit *) unfold ssem_internal in SEM. destruct (icontinue is) eqn:ICONT. { destruct SEM as (SEML & SIPC & ALLF). exploit siexec_inst_early_exit_absurd; eauto. contradiction. } eexists. econstructor 1. *** eapply exec_early_exit; eauto. *** destruct ISTEPS as (ext & lx & SSEME & ALLFU). destruct SEM as (ext' & lx' & SSEME' & ALLFU'). eapply siexec_inst_preserves_allfu in ALLFU; eauto. exploit ssem_exit_fallthrough_upto_exit; eauto. exploit ssem_exit_fallthrough_upto_exit. eapply SSEME. eapply ALLFU. eapply ALLFU'. intros ITAIL ITAIL'. apply is_tail_eq in ITAIL; auto. clear ITAIL'. inv ITAIL. exploit ssem_exit_determ. eapply SSEME. eapply SSEME'. intros (IPCEQ & IRSEQ & IMEMEQ). rewrite <- IPCEQ. rewrite <- IMEMEQ. constructor. congruence. * (* The concrete execution has not reached "i" => abort case *) eapply siexec_inst_preserves_sabort in ISTEPS; eauto. exploit ssem_internal_exclude_sabort; eauto. contradiction. + destruct SEM as [is CONT SEM|is t s CONT SEM1 SEM2]; simpl in * |- *. - (* early exit *) intros. exploit ssem_internal_opt_determ; eauto. destruct 1 as (st & Hst & EQ1 & EQ2 & EQ3 & EQ4). eexists. econstructor 1. * eapply exec_early_exit; eauto. * rewrite EQ2, EQ4; eapply State_equiv. auto. - (* normal exit non-Snone instruction *) intros. exploit ssem_internal_opt_determ; eauto. destruct 1 as (st & Hst & EQ1 & EQ2 & EQ3 & EQ4). unfold ssem_internal in SEM1. rewrite CONT in SEM1. destruct SEM1 as (SEM1 & PC0 & NYE0). exploit ssem_final_equiv; eauto. clear SEM2; destruct 1 as (s' & Ms' & SEM2). rewrite ! EQ4 in * |-; clear EQ4. rewrite ! EQ2 in * |-; clear EQ2. exists s'; intuition. eapply exec_normal_exit; eauto. eapply sexec_final_complete; eauto. * congruence. * unfold ssem_local in * |- *. destruct SEM1 as (A & B & C). constructor; [|constructor]; eauto. intro r. congruence. * congruence. Qed. (** * Simulation of RTLpath code w.r.t symbolic execution *) Section SymbValPreserved. Variable ge ge': RTL.genv. Hypothesis symbols_preserved_RTL: forall s, Genv.find_symbol ge' s = Genv.find_symbol ge s. Hypothesis senv_preserved_RTL: Senv.equiv ge ge'. Lemma senv_find_symbol_preserved id: Senv.find_symbol ge id = Senv.find_symbol ge' id. Proof. destruct senv_preserved_RTL as (A & B & C). congruence. Qed. Lemma senv_symbol_address_preserved id ofs: Senv.symbol_address ge id ofs = Senv.symbol_address ge' id ofs. Proof. unfold Senv.symbol_address. rewrite senv_find_symbol_preserved. reflexivity. Qed. Lemma seval_preserved sp sv rs0 m0: seval_sval ge sp sv rs0 m0 = seval_sval ge' sp sv rs0 m0. Proof. Local Hint Resolve symbols_preserved_RTL: core. induction sv using sval_mut with (P0 := fun lsv => seval_list_sval ge sp lsv rs0 m0 = seval_list_sval ge' sp lsv rs0 m0) (P1 := fun sm => seval_smem ge sp sm rs0 m0 = seval_smem ge' sp sm rs0 m0); simpl; auto. + rewrite IHsv; clear IHsv. destruct (seval_list_sval _ _ _ _); auto. rewrite IHsv0; clear IHsv0. destruct (seval_smem _ _ _ _); auto. erewrite eval_operation_preserved; eauto. + rewrite IHsv0; clear IHsv0. destruct (seval_list_sval _ _ _ _); auto. erewrite <- eval_addressing_preserved; eauto. destruct (eval_addressing _ sp _ _); auto. rewrite IHsv; auto. + rewrite IHsv; clear IHsv. destruct (seval_sval _ _ _ _); auto. rewrite IHsv0; auto. + rewrite IHsv0; clear IHsv0. destruct (seval_list_sval _ _ _ _); auto. erewrite <- eval_addressing_preserved; eauto. destruct (eval_addressing _ sp _ _); auto. rewrite IHsv; clear IHsv. destruct (seval_smem _ _ _ _); auto. rewrite IHsv1; auto. Qed. Lemma seval_builtin_arg_preserved sp m rs0 m0: forall bs varg, seval_builtin_arg ge sp m rs0 m0 bs varg -> seval_builtin_arg ge' sp m rs0 m0 bs varg. Proof. induction 1. all: try (constructor; auto). - rewrite <- seval_preserved. assumption. - rewrite <- senv_symbol_address_preserved. assumption. - rewrite senv_symbol_address_preserved. eapply seval_BA_addrglobal. Qed. Lemma seval_builtin_args_preserved sp m rs0 m0 lbs vargs: seval_builtin_args ge sp m rs0 m0 lbs vargs -> seval_builtin_args ge' sp m rs0 m0 lbs vargs. Proof. induction 1; constructor; eauto. eapply seval_builtin_arg_preserved; auto. Qed. Lemma list_sval_eval_preserved sp lsv rs0 m0: seval_list_sval ge sp lsv rs0 m0 = seval_list_sval ge' sp lsv rs0 m0. Proof. induction lsv; simpl; auto. rewrite seval_preserved. destruct (seval_sval _ _ _ _); auto. rewrite IHlsv; auto. Qed. Lemma smem_eval_preserved sp sm rs0 m0: seval_smem ge sp sm rs0 m0 = seval_smem ge' sp sm rs0 m0. Proof. induction sm; simpl; auto. rewrite list_sval_eval_preserved. destruct (seval_list_sval _ _ _ _); auto. erewrite <- eval_addressing_preserved; eauto. destruct (eval_addressing _ sp _ _); auto. rewrite IHsm; clear IHsm. destruct (seval_smem _ _ _ _); auto. rewrite seval_preserved; auto. Qed. Lemma seval_condition_preserved sp cond lsv sm rs0 m0: seval_condition ge sp cond lsv sm rs0 m0 = seval_condition ge' sp cond lsv sm rs0 m0. Proof. unfold seval_condition. rewrite list_sval_eval_preserved. destruct (seval_list_sval _ _ _ _); auto. rewrite smem_eval_preserved; auto. Qed. End SymbValPreserved. Require Import RTLpathLivegen RTLpathLivegenproof. (** * DEFINITION OF SIMULATION BETWEEN (ABSTRACT) SYMBOLIC EXECUTIONS *) Definition istate_simulive alive (srce: PTree.t node) (is1 is2: istate): Prop := is1.(icontinue) = is2.(icontinue) /\ eqlive_reg alive is1.(irs) is2.(irs) /\ is1.(imem) = is2.(imem). Definition istate_simu f (srce: PTree.t node) outframe is1 is2: Prop := if is1.(icontinue) then istate_simulive (fun r => Regset.In r outframe) srce is1 is2 else exists path, f.(fn_path)!(is1.(ipc)) = Some path /\ istate_simulive (fun r => Regset.In r path.(input_regs)) srce is1 is2 /\ srce!(is2.(ipc)) = Some is1.(ipc). Record simu_proof_context {f1: RTLpath.function} := { liveness_hyps: liveness_ok_function f1; the_ge1: RTL.genv; the_ge2: RTL.genv; genv_match: forall s, Genv.find_symbol the_ge1 s = Genv.find_symbol the_ge2 s; the_sp: val; the_rs0: regset; the_m0: mem }. Arguments simu_proof_context: clear implicits. (* NOTE: a pure semantic definition on [sistate], for a total freedom in refinements *) Definition sistate_simu (dm: PTree.t node) (f: RTLpath.function) outframe (st1 st2: sistate) (ctx: simu_proof_context f): Prop := forall is1, ssem_internal (the_ge1 ctx) (the_sp ctx) st1 (the_rs0 ctx) (the_m0 ctx) is1 -> exists is2, ssem_internal (the_ge2 ctx) (the_sp ctx) st2 (the_rs0 ctx) (the_m0 ctx) is2 /\ istate_simu f dm outframe is1 is2. Inductive svident_simu (f: RTLpath.function) (ctx: simu_proof_context f): (sval + ident) -> (sval + ident) -> Prop := | Sleft_simu sv1 sv2: (seval_sval (the_ge1 ctx) (the_sp ctx) sv1 (the_rs0 ctx) (the_m0 ctx)) = (seval_sval (the_ge2 ctx) (the_sp ctx) sv2 (the_rs0 ctx) (the_m0 ctx)) -> svident_simu f ctx (inl sv1) (inl sv2) | Sright_simu id1 id2: id1 = id2 -> svident_simu f ctx (inr id1) (inr id2) . Fixpoint ptree_get_list (pt: PTree.t node) (lp: list positive) : option (list positive) := match lp with | nil => Some nil | p1::lp => SOME p2 <- pt!p1 IN SOME lp2 <- (ptree_get_list pt lp) IN Some (p2 :: lp2) end. Lemma ptree_get_list_nth dm p2: forall lp2 lp1, ptree_get_list dm lp2 = Some lp1 -> forall n, list_nth_z lp2 n = Some p2 -> exists p1, list_nth_z lp1 n = Some p1 /\ dm ! p2 = Some p1. Proof. induction lp2. - simpl. intros. inv H. simpl in *. discriminate. - intros lp1 PGL n LNZ. simpl in PGL. explore. inv LNZ. destruct (zeq n 0) eqn:ZEQ. + subst. inv H0. exists n0. simpl; constructor; auto. + exploit IHlp2; eauto. intros (p1 & LNZ & DMEQ). eexists. simpl. rewrite ZEQ. constructor; eauto. Qed. Lemma ptree_get_list_nth_rev dm p1: forall lp2 lp1, ptree_get_list dm lp2 = Some lp1 -> forall n, list_nth_z lp1 n = Some p1 -> exists p2, list_nth_z lp2 n = Some p2 /\ dm ! p2 = Some p1. Proof. induction lp2. - simpl. intros. inv H. simpl in *. discriminate. - intros lp1 PGL n LNZ. simpl in PGL. explore. inv LNZ. destruct (zeq n 0) eqn:ZEQ. + subst. inv H0. exists a. simpl; constructor; auto. + exploit IHlp2; eauto. intros (p2 & LNZ & DMEQ). eexists. simpl. rewrite ZEQ. constructor; eauto. congruence. Qed. Fixpoint seval_builtin_sval ge sp bsv rs0 m0 := match bsv with | BA sv => SOME v <- seval_sval ge sp sv rs0 m0 IN Some (BA v) | BA_splitlong sv1 sv2 => SOME v1 <- seval_builtin_sval ge sp sv1 rs0 m0 IN SOME v2 <- seval_builtin_sval ge sp sv2 rs0 m0 IN Some (BA_splitlong v1 v2) | BA_addptr sv1 sv2 => SOME v1 <- seval_builtin_sval ge sp sv1 rs0 m0 IN SOME v2 <- seval_builtin_sval ge sp sv2 rs0 m0 IN Some (BA_addptr v1 v2) | BA_int i => Some (BA_int i) | BA_long l => Some (BA_long l) | BA_float f => Some (BA_float f) | BA_single s => Some (BA_single s) | BA_loadstack chk ptr => Some (BA_loadstack chk ptr) | BA_addrstack ptr => Some (BA_addrstack ptr) | BA_loadglobal chk id ptr => Some (BA_loadglobal chk id ptr) | BA_addrglobal id ptr => Some (BA_addrglobal id ptr) end. Fixpoint seval_list_builtin_sval ge sp lbsv rs0 m0 := match lbsv with | nil => Some nil | bsv::lbsv => SOME v <- seval_builtin_sval ge sp bsv rs0 m0 IN SOME lv <- seval_list_builtin_sval ge sp lbsv rs0 m0 IN Some (v::lv) end. Lemma seval_list_builtin_sval_nil ge sp rs0 m0 lbs2: seval_list_builtin_sval ge sp lbs2 rs0 m0 = Some nil -> lbs2 = nil. Proof. destruct lbs2; simpl; auto. intros. destruct (seval_builtin_sval _ _ _ _ _); try destruct (seval_list_builtin_sval _ _ _ _ _); discriminate. Qed. Lemma seval_builtin_sval_arg (ge:RTL.genv) sp rs0 m0 bs: forall ba m v, seval_builtin_sval ge sp bs rs0 m0 = Some ba -> eval_builtin_arg ge (fun id => id) sp m ba v -> seval_builtin_arg ge sp m rs0 m0 bs v. Proof. induction bs; simpl; try (intros ba m v H; inversion H; subst; clear H; intros H; inversion H; subst; econstructor; auto; fail). - intros ba m v; destruct (seval_sval _ _ _ _ _) eqn: SV; intros H; inversion H; subst; clear H. intros H; inversion H; subst. econstructor; auto. - intros ba m v. destruct (seval_builtin_sval _ _ bs1 _ _) eqn: SV1; try congruence. destruct (seval_builtin_sval _ _ bs2 _ _) eqn: SV2; try congruence. intros H; inversion H; subst; clear H. intros H; inversion H; subst. econstructor; eauto. - intros ba m v. destruct (seval_builtin_sval _ _ bs1 _ _) eqn: SV1; try congruence. destruct (seval_builtin_sval _ _ bs2 _ _) eqn: SV2; try congruence. intros H; inversion H; subst; clear H. intros H; inversion H; subst. econstructor; eauto. Qed. Lemma seval_builtin_arg_sval ge sp m rs0 m0 v: forall bs, seval_builtin_arg ge sp m rs0 m0 bs v -> exists ba, seval_builtin_sval ge sp bs rs0 m0 = Some ba /\ eval_builtin_arg ge (fun id => id) sp m ba v. Proof. induction 1. all: try (eexists; constructor; [simpl; reflexivity | constructor]). 2-3: try assumption. - eexists. constructor. + simpl. rewrite H. reflexivity. + constructor. - destruct IHseval_builtin_arg1 as (ba1 & A1 & B1). destruct IHseval_builtin_arg2 as (ba2 & A2 & B2). eexists. constructor. + simpl. rewrite A1. rewrite A2. reflexivity. + constructor; assumption. - destruct IHseval_builtin_arg1 as (ba1 & A1 & B1). destruct IHseval_builtin_arg2 as (ba2 & A2 & B2). eexists. constructor. + simpl. rewrite A1. rewrite A2. reflexivity. + constructor; assumption. Qed. Lemma seval_builtin_sval_args (ge:RTL.genv) sp rs0 m0 lbs: forall lba m v, seval_list_builtin_sval ge sp lbs rs0 m0 = Some lba -> list_forall2 (eval_builtin_arg ge (fun id => id) sp m) lba v -> seval_builtin_args ge sp m rs0 m0 lbs v. Proof. unfold seval_builtin_args; induction lbs; simpl; intros lba m v. - intros H; inversion H; subst; clear H. intros H; inversion H. econstructor. - destruct (seval_builtin_sval _ _ _ _ _) eqn:SV; try congruence. destruct (seval_list_builtin_sval _ _ _ _ _) eqn: SVL; try congruence. intros H; inversion H; subst; clear H. intros H; inversion H; subst; clear H. econstructor; eauto. eapply seval_builtin_sval_arg; eauto. Qed. Lemma seval_builtin_args_sval ge sp m rs0 m0 lv: forall lbs, seval_builtin_args ge sp m rs0 m0 lbs lv -> exists lba, seval_list_builtin_sval ge sp lbs rs0 m0 = Some lba /\ list_forall2 (eval_builtin_arg ge (fun id => id) sp m) lba lv. Proof. induction 1. - eexists. constructor. + simpl. reflexivity. + constructor. - destruct IHlist_forall2 as (lba & A & B). apply seval_builtin_arg_sval in H. destruct H as (ba & A' & B'). eexists. constructor. + simpl. rewrite A'. rewrite A. reflexivity. + constructor; assumption. Qed. Lemma seval_builtin_sval_correct ge sp m rs0 m0: forall bs1 v bs2, seval_builtin_arg ge sp m rs0 m0 bs1 v -> (seval_builtin_sval ge sp bs1 rs0 m0) = (seval_builtin_sval ge sp bs2 rs0 m0) -> seval_builtin_arg ge sp m rs0 m0 bs2 v. Proof. intros. exploit seval_builtin_arg_sval; eauto. intros (ba & X1 & X2). eapply seval_builtin_sval_arg; eauto. congruence. Qed. Lemma seval_list_builtin_sval_correct ge sp m rs0 m0 vargs: forall lbs1, seval_builtin_args ge sp m rs0 m0 lbs1 vargs -> forall lbs2, (seval_list_builtin_sval ge sp lbs1 rs0 m0) = (seval_list_builtin_sval ge sp lbs2 rs0 m0) -> seval_builtin_args ge sp m rs0 m0 lbs2 vargs. Proof. intros. exploit seval_builtin_args_sval; eauto. intros (ba & X1 & X2). eapply seval_builtin_sval_args; eauto. congruence. Qed. (* NOTE: we need to mix semantical simulation and syntactic definition on [sfval] in order to abstract the [match_states] *) Inductive sfval_simu (dm: PTree.t node) (f: RTLpath.function) (opc1 opc2: node) (ctx: simu_proof_context f): sfval -> sfval -> Prop := | Snone_simu: dm!opc2 = Some opc1 -> sfval_simu dm f opc1 opc2 ctx Snone Snone | Scall_simu sig svos1 svos2 lsv1 lsv2 res pc1 pc2: dm!pc2 = Some pc1 -> svident_simu f ctx svos1 svos2 -> (seval_list_sval (the_ge1 ctx) (the_sp ctx) lsv1 (the_rs0 ctx) (the_m0 ctx)) = (seval_list_sval (the_ge2 ctx) (the_sp ctx) lsv2 (the_rs0 ctx) (the_m0 ctx)) -> sfval_simu dm f opc1 opc2 ctx (Scall sig svos1 lsv1 res pc1) (Scall sig svos2 lsv2 res pc2) | Stailcall_simu sig svos1 svos2 lsv1 lsv2: svident_simu f ctx svos1 svos2 -> (seval_list_sval (the_ge1 ctx) (the_sp ctx) lsv1 (the_rs0 ctx) (the_m0 ctx)) = (seval_list_sval (the_ge2 ctx) (the_sp ctx) lsv2 (the_rs0 ctx) (the_m0 ctx)) -> sfval_simu dm f opc1 opc2 ctx (Stailcall sig svos1 lsv1) (Stailcall sig svos2 lsv2) | Sbuiltin_simu ef lbs1 lbs2 br pc1 pc2: dm!pc2 = Some pc1 -> (seval_list_builtin_sval (the_ge1 ctx) (the_sp ctx) lbs1 (the_rs0 ctx) (the_m0 ctx)) = (seval_list_builtin_sval (the_ge2 ctx) (the_sp ctx) lbs2 (the_rs0 ctx) (the_m0 ctx)) -> sfval_simu dm f opc1 opc2 ctx (Sbuiltin ef lbs1 br pc1) (Sbuiltin ef lbs2 br pc2) | Sjumptable_simu sv1 sv2 lpc1 lpc2: ptree_get_list dm lpc2 = Some lpc1 -> (seval_sval (the_ge1 ctx) (the_sp ctx) sv1 (the_rs0 ctx) (the_m0 ctx)) = (seval_sval (the_ge2 ctx) (the_sp ctx) sv2 (the_rs0 ctx) (the_m0 ctx)) -> sfval_simu dm f opc1 opc2 ctx (Sjumptable sv1 lpc1) (Sjumptable sv2 lpc2) | Sreturn_simu_none: sfval_simu dm f opc1 opc2 ctx (Sreturn None) (Sreturn None) | Sreturn_simu_some sv1 sv2: (seval_sval (the_ge1 ctx) (the_sp ctx) sv1 (the_rs0 ctx) (the_m0 ctx)) = (seval_sval (the_ge2 ctx) (the_sp ctx) sv2 (the_rs0 ctx) (the_m0 ctx)) -> sfval_simu dm f opc1 opc2 ctx (Sreturn (Some sv1)) (Sreturn (Some sv2)). Definition sstate_simu dm f outframe (s1 s2: sstate) (ctx: simu_proof_context f): Prop := sistate_simu dm f outframe s1.(internal) s2.(internal) ctx /\ forall is1, ssem_internal (the_ge1 ctx) (the_sp ctx) s1 (the_rs0 ctx) (the_m0 ctx) is1 -> is1.(icontinue) = true -> sfval_simu dm f s1.(si_pc) s2.(si_pc) ctx s1.(final) s2.(final). Definition sexec_simu dm (f1 f2: RTLpath.function) pc1 pc2: Prop := forall st1, sexec f1 pc1 = Some st1 -> exists path st2, (fn_path f1)!pc1 = Some path /\ sexec f2 pc2 = Some st2 /\ forall ctx, sstate_simu dm f1 path.(pre_output_regs) st1 st2 ctx.