(** RTLpath Scheduling from an external oracle. This module is inspired from [Duplicate] and [Duplicateproof] *) Require Import AST Linking Values Maps Globalenvs Smallstep Registers. Require Import Coqlib Maps Events Errors Op. Require Import RTL RTLpath RTLpathLivegen RTLpathLivegenproof RTLpathSE_theory RTLpathSE_impl. Require RTLpathWFcheck. Notation "'ASSERT' A 'WITH' MSG 'IN' B" := (if A then B else Error (msg MSG)) (at level 200, A at level 100, B at level 200) : error_monad_scope. Local Open Scope error_monad_scope. Local Open Scope positive_scope. (** External oracle returning the new RTLpath function and a mapping of new path_entries to old path_entries NB: the new RTLpath function is generated from the fn_code, the fn_entrypoint and the fn_path It requires to check that the path structure is wf ! *) (* Returns: new code, new entrypoint, new pathmap, revmap * Indeed, the entrypoint might not be the same if the entrypoint node is moved further down * a path ; same reasoning for the pathmap *) Axiom untrusted_scheduler: RTLpath.function -> code * node * path_map * (PTree.t node). Extract Constant untrusted_scheduler => "RTLpathScheduleraux.scheduler". Program Definition function_builder (tfr: RTL.function) (tpm: path_map) : { r : res RTLpath.function | forall f', r = OK f' -> fn_RTL f' = tfr} := match RTLpathWFcheck.function_checker tfr tpm with | false => Error (msg "In function_builder: (tfr, tpm) is not wellformed") | true => OK {| fn_RTL := tfr; fn_path := tpm |} end. Next Obligation. apply RTLpathWFcheck.function_checker_path_entry. auto. Defined. Next Obligation. apply RTLpathWFcheck.function_checker_wellformed_path_map. auto. Defined. Definition entrypoint_check (dm: PTree.t node) (fr tfr: RTL.function) : res unit := match dm ! (fn_entrypoint tfr) with | None => Error (msg "No mapping for (entrypoint tfr)") | Some etp => if (Pos.eq_dec (fn_entrypoint fr) etp) then OK tt else Error (msg "Entrypoints do not match") end. Lemma entrypoint_check_correct fr tfr dm: entrypoint_check dm fr tfr = OK tt -> dm ! (fn_entrypoint tfr) = Some (fn_entrypoint fr). Proof. unfold entrypoint_check. explore; try discriminate. congruence. Qed. Definition path_entry_check_single (pm tpm: path_map) (m: node * node) := let (pc2, pc1) := m in match (tpm ! pc2) with | None => Error (msg "pc2 isn't an entry of tpm") | Some _ => match (pm ! pc1) with | None => Error (msg "pc1 isn't an entry of pm") | Some _ => OK tt end end. Lemma path_entry_check_single_correct pm tpm pc1 pc2: path_entry_check_single pm tpm (pc2, pc1) = OK tt -> path_entry tpm pc2 /\ path_entry pm pc1. Proof. unfold path_entry_check_single. intro. explore. constructor; congruence. Qed. (* Inspired from Duplicate.verify_mapping_rec *) Fixpoint path_entry_check_rec (pm tpm: path_map) lm := match lm with | nil => OK tt | m :: lm => do u1 <- path_entry_check_single pm tpm m; do u2 <- path_entry_check_rec pm tpm lm; OK tt end. Lemma path_entry_check_rec_correct pm tpm pc1 pc2: forall lm, path_entry_check_rec pm tpm lm = OK tt -> In (pc2, pc1) lm -> path_entry tpm pc2 /\ path_entry pm pc1. Proof. induction lm. - simpl. intuition. - simpl. intros. explore. destruct H0. + subst. eapply path_entry_check_single_correct; eauto. + eapply IHlm; assumption. Qed. Definition path_entry_check (dm: PTree.t node) (pm tpm: path_map) := path_entry_check_rec pm tpm (PTree.elements dm). Lemma path_entry_check_correct dm pm tpm: path_entry_check dm pm tpm = OK tt -> forall pc1 pc2, dm ! pc2 = Some pc1 -> path_entry tpm pc2 /\ path_entry pm pc1. Proof. unfold path_entry_check. intros. eapply PTree.elements_correct in H0. eapply path_entry_check_rec_correct; eassumption. Qed. Definition function_equiv_checker (dm: PTree.t node) (f: RTLpath.function) (tf: RTLpath.function) : res unit := let pm := fn_path f in let fr := fn_RTL f in let tpm := fn_path tf in let tfr := fn_RTL tf in do _ <- entrypoint_check dm fr tfr; do _ <- path_entry_check dm pm tpm; do _ <- simu_check dm f tf; OK tt. Lemma function_equiv_checker_entrypoint f tf dm: function_equiv_checker dm f tf = OK tt -> dm ! (fn_entrypoint tf) = Some (fn_entrypoint f). Proof. unfold function_equiv_checker. intros. explore. eapply entrypoint_check_correct; eauto. Qed. Lemma function_equiv_checker_pathentry1 f tf dm: function_equiv_checker dm f tf = OK tt -> forall pc1 pc2, dm ! pc2 = Some pc1 -> path_entry (fn_path tf) pc2. Proof. unfold function_equiv_checker. intros. explore. exploit path_entry_check_correct. eassumption. all: eauto. intuition. Qed. Lemma function_equiv_checker_pathentry2 f tf dm: function_equiv_checker dm f tf = OK tt -> forall pc1 pc2, dm ! pc2 = Some pc1 -> path_entry (fn_path f) pc1. Proof. unfold function_equiv_checker. intros. explore. exploit path_entry_check_correct. eassumption. all: eauto. intuition. Qed. Lemma function_equiv_checker_correct f tf dm: function_equiv_checker dm f tf = OK tt -> forall pc1 pc2, dm ! pc2 = Some pc1 -> sexec_simu dm f tf pc1 pc2. Proof. unfold function_equiv_checker. intros. explore. eapply simu_check_correct; eauto. Qed. Definition verified_scheduler (f: RTLpath.function) : res (RTLpath.function * (PTree.t node)) := let (tctetpm, dm) := untrusted_scheduler f in let (tcte, tpm) := tctetpm in let (tc, te) := tcte in let tfr := mkfunction (fn_sig f) (fn_params f) (fn_stacksize f) tc te in do tf <- proj1_sig (function_builder tfr tpm); do tt <- function_equiv_checker dm f tf; OK (tf, dm). Theorem verified_scheduler_correct f tf dm: verified_scheduler f = OK (tf, dm) -> fn_sig f = fn_sig tf /\ fn_params f = fn_params tf /\ fn_stacksize f = fn_stacksize tf /\ dm ! (fn_entrypoint tf) = Some (fn_entrypoint f) /\ (forall pc1 pc2, dm ! pc2 = Some pc1 -> path_entry (fn_path f) pc1) /\ (forall pc1 pc2, dm ! pc2 = Some pc1 -> path_entry (fn_path tf) pc2) /\ (forall pc1 pc2, dm ! pc2 = Some pc1 -> sexec_simu dm f tf pc1 pc2) . Proof. intros VERIF. unfold verified_scheduler in VERIF. explore. Local Hint Resolve function_equiv_checker_entrypoint function_equiv_checker_pathentry1 function_equiv_checker_pathentry2 function_equiv_checker_correct: core. destruct (function_builder _ _) as [res H]; simpl in * |- *; auto. apply H in EQ2. rewrite EQ2. simpl. repeat (constructor; eauto). exploit function_equiv_checker_entrypoint. eapply EQ4. rewrite EQ2. intuition. Qed. Record match_function (dupmap: PTree.t node) (f1 f2: RTLpath.function): Prop := { preserv_fnsig: fn_sig f1 = fn_sig f2; preserv_fnparams: fn_params f1 = fn_params f2; preserv_fnstacksize: fn_stacksize f1 = fn_stacksize f2; preserv_entrypoint: dupmap!(f2.(fn_entrypoint)) = Some f1.(fn_entrypoint); dupmap_path_entry1: forall pc1 pc2, dupmap!pc2 = Some pc1 -> path_entry (fn_path f1) pc1; dupmap_path_entry2: forall pc1 pc2, dupmap!pc2 = Some pc1 -> path_entry (fn_path f2) pc2; dupmap_correct: forall pc1 pc2, dupmap!pc2 = Some pc1 -> sexec_simu dupmap f1 f2 pc1 pc2; }. Program Definition transf_function (f: RTLpath.function): { r : res RTLpath.function | forall f', r = OK f' -> exists dm, match_function dm f f'} := match (verified_scheduler f) with | Error e => Error e | OK (tf, dm) => OK tf end. Next Obligation. exploit verified_scheduler_correct; eauto. intros (A & B & C & D & E & F & G (* & H *)). exists dm. econstructor; eauto. Defined. Theorem match_function_preserves f f' dm: match_function dm f f' -> fn_sig f = fn_sig f' /\ fn_params f = fn_params f' /\ fn_stacksize f = fn_stacksize f'. Proof. intros. destruct H as [SIG PARAM SIZE ENTRY CORRECT]. intuition. Qed. Definition transf_fundef (f: fundef) : res fundef := transf_partial_fundef (fun f => proj1_sig (transf_function f)) f. Definition transf_program (p: program) : res program := transform_partial_program transf_fundef p. (** * Preservation proof *) Local Notation ext alive := (fun r => Regset.In r alive). Inductive match_fundef: RTLpath.fundef -> RTLpath.fundef -> Prop := | match_Internal dupmap f f': match_function dupmap f f' -> match_fundef (Internal f) (Internal f') | match_External ef: match_fundef (External ef) (External ef). Inductive match_stackframes: stackframe -> stackframe -> Prop := | match_stackframe_intro dupmap res f sp pc rs1 rs2 f' pc' path (TRANSF: match_function dupmap f f') (DUPLIC: dupmap!pc' = Some pc) (LIVE: liveness_ok_function f) (PATH: f.(fn_path)!pc = Some path) (EQUIV: forall v, eqlive_reg (ext path.(input_regs)) (rs1 # res <- v) (rs2 # res <- v)): match_stackframes (Stackframe res f sp pc rs1) (Stackframe res f' sp pc' rs2). Inductive match_states: state -> state -> Prop := | match_states_intro dupmap st f sp pc rs1 rs2 m st' f' pc' path (STACKS: list_forall2 match_stackframes st st') (TRANSF: match_function dupmap f f') (DUPLIC: dupmap!pc' = Some pc) (LIVE: liveness_ok_function f) (PATH: f.(fn_path)!pc = Some path) (EQUIV: eqlive_reg (ext path.(input_regs)) rs1 rs2): match_states (State st f sp pc rs1 m) (State st' f' sp pc' rs2 m) | match_states_call st st' f f' args m (STACKS: list_forall2 match_stackframes st st') (TRANSF: match_fundef f f') (LIVE: liveness_ok_fundef f): match_states (Callstate st f args m) (Callstate st' f' args m) | match_states_return st st' v m (STACKS: list_forall2 match_stackframes st st'): match_states (Returnstate st v m) (Returnstate st' v m). Lemma match_stackframes_equiv stf1 stf2 stf3: match_stackframes stf1 stf2 -> equiv_stackframe stf2 stf3 -> match_stackframes stf1 stf3. Proof. destruct 1; intros EQ; inv EQ; try econstructor; eauto. intros; eapply eqlive_reg_trans; eauto. rewrite eqlive_reg_triv in * |-. eapply eqlive_reg_update. eapply eqlive_reg_monotonic; eauto. simpl; auto. Qed. Lemma match_stack_equiv stk1 stk2: list_forall2 match_stackframes stk1 stk2 -> forall stk3, list_forall2 equiv_stackframe stk2 stk3 -> list_forall2 match_stackframes stk1 stk3. Proof. Local Hint Resolve match_stackframes_equiv: core. induction 1; intros stk3 EQ; inv EQ; econstructor; eauto. Qed. Lemma match_states_equiv s1 s2 s3: match_states s1 s2 -> equiv_state s2 s3 -> match_states s1 s3. Proof. Local Hint Resolve match_stack_equiv: core. destruct 1; intros EQ; inv EQ; econstructor; eauto. intros; eapply eqlive_reg_triv_trans; eauto. Qed. Lemma eqlive_match_stackframes stf1 stf2 stf3: eqlive_stackframes stf1 stf2 -> match_stackframes stf2 stf3 -> match_stackframes stf1 stf3. Proof. destruct 1; intros MS; inv MS; try econstructor; eauto. try_simplify_someHyps. intros; eapply eqlive_reg_trans; eauto. Qed. Lemma eqlive_match_stack stk1 stk2: list_forall2 eqlive_stackframes stk1 stk2 -> forall stk3, list_forall2 match_stackframes stk2 stk3 -> list_forall2 match_stackframes stk1 stk3. Proof. induction 1; intros stk3 MS; inv MS; econstructor; eauto. eapply eqlive_match_stackframes; eauto. Qed. Lemma eqlive_match_states s1 s2 s3: eqlive_states s1 s2 -> match_states s2 s3 -> match_states s1 s3. Proof. Local Hint Resolve eqlive_match_stack: core. destruct 1; intros MS; inv MS; try_simplify_someHyps; econstructor; eauto. eapply eqlive_reg_trans; eauto. Qed. Lemma eqlive_stackframes_refl stf1 stf2: match_stackframes stf1 stf2 -> eqlive_stackframes stf1 stf1. Proof. destruct 1; econstructor; eauto. intros; eapply eqlive_reg_refl; eauto. Qed. Lemma eqlive_stacks_refl stk1 stk2: list_forall2 match_stackframes stk1 stk2 -> list_forall2 eqlive_stackframes stk1 stk1. Proof. induction 1; simpl; econstructor; eauto. eapply eqlive_stackframes_refl; eauto. Qed. Lemma transf_fundef_correct f f': transf_fundef f = OK f' -> match_fundef f f'. Proof. intros TRANSF; destruct f; simpl; monadInv TRANSF. + destruct (transf_function f) as [res H]; simpl in * |- *; auto. destruct (H _ EQ). intuition subst; auto. eapply match_Internal; eauto. + eapply match_External. Qed.