/* * Copyright (c) 2017 Thomas Pornin * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "inner.h" /* * If BR_NO_ARITH_SHIFT is undefined, or defined to 0, then we _assume_ * that right-shifting a signed negative integer copies the sign bit * (arithmetic right-shift). This is "implementation-defined behaviour", * i.e. it is not undefined, but it may differ between compilers. Each * compiler is supposed to document its behaviour in that respect. GCC * explicitly defines that an arithmetic right shift is used. We expect * all other compilers to do the same, because underlying CPU offer an * arithmetic right shift opcode that could not be used otherwise. */ #if BR_NO_ARITH_SHIFT #define ARSH(x, n) (((uint32_t)(x) >> (n)) \ | ((-((uint32_t)(x) >> 31)) << (32 - (n)))) #else #define ARSH(x, n) ((*(int32_t *)&(x)) >> (n)) #endif /* * Convert an integer from unsigned big-endian encoding to a sequence of * 13-bit words in little-endian order. The final "partial" word is * returned. */ static uint32_t be8_to_le13(uint32_t *dst, const unsigned char *src, size_t len) { uint32_t acc; int acc_len; acc = 0; acc_len = 0; while (len -- > 0) { acc |= (uint32_t)src[len] << acc_len; acc_len += 8; if (acc_len >= 13) { *dst ++ = acc & 0x1FFF; acc >>= 13; acc_len -= 13; } } return acc; } /* * Convert an integer (13-bit words, little-endian) to unsigned * big-endian encoding. The total encoding length is provided; all * the destination bytes will be filled. */ static void le13_to_be8(unsigned char *dst, size_t len, const uint32_t *src) { uint32_t acc; int acc_len; acc = 0; acc_len = 0; while (len -- > 0) { if (acc_len < 8) { acc |= (*src ++) << acc_len; acc_len += 13; } dst[len] = (unsigned char)acc; acc >>= 8; acc_len -= 8; } } /* * Normalise an array of words to a strict 13 bits per word. Returned * value is the resulting carry. The source (w) and destination (d) * arrays may be identical, but shall not overlap partially. */ static inline uint32_t norm13(uint32_t *d, const uint32_t *w, size_t len) { size_t u; uint32_t cc; cc = 0; for (u = 0; u < len; u ++) { int32_t z; z = w[u] + cc; d[u] = z & 0x1FFF; cc = ARSH(z, 13); } return cc; } /* * mul20() multiplies two 260-bit integers together. Each word must fit * on 13 bits; source operands use 20 words, destination operand * receives 40 words. All overlaps allowed. * * square20() computes the square of a 260-bit integer. Each word must * fit on 13 bits; source operand uses 20 words, destination operand * receives 40 words. All overlaps allowed. */ #if BR_SLOW_MUL15 static void mul20(uint32_t *d, const uint32_t *a, const uint32_t *b) { /* * Two-level Karatsuba: turns a 20x20 multiplication into * nine 5x5 multiplications. We use 13-bit words but do not * propagate carries immediately, so words may expand: * * - First Karatsuba decomposition turns the 20x20 mul on * 13-bit words into three 10x10 muls, two on 13-bit words * and one on 14-bit words. * * - Second Karatsuba decomposition further splits these into: * * * four 5x5 muls on 13-bit words * * four 5x5 muls on 14-bit words * * one 5x5 mul on 15-bit words * * Highest word value is 8191, 16382 or 32764, for 13-bit, 14-bit * or 15-bit words, respectively. */ uint32_t u[45], v[45], w[90]; uint32_t cc; int i; #define ZADD(dw, d_off, s1w, s1_off, s2w, s2_off) do { \ (dw)[5 * (d_off) + 0] = (s1w)[5 * (s1_off) + 0] \ + (s2w)[5 * (s2_off) + 0]; \ (dw)[5 * (d_off) + 1] = (s1w)[5 * (s1_off) + 1] \ + (s2w)[5 * (s2_off) + 1]; \ (dw)[5 * (d_off) + 2] = (s1w)[5 * (s1_off) + 2] \ + (s2w)[5 * (s2_off) + 2]; \ (dw)[5 * (d_off) + 3] = (s1w)[5 * (s1_off) + 3] \ + (s2w)[5 * (s2_off) + 3]; \ (dw)[5 * (d_off) + 4] = (s1w)[5 * (s1_off) + 4] \ + (s2w)[5 * (s2_off) + 4]; \ } while (0) #define ZADDT(dw, d_off, sw, s_off) do { \ (dw)[5 * (d_off) + 0] += (sw)[5 * (s_off) + 0]; \ (dw)[5 * (d_off) + 1] += (sw)[5 * (s_off) + 1]; \ (dw)[5 * (d_off) + 2] += (sw)[5 * (s_off) + 2]; \ (dw)[5 * (d_off) + 3] += (sw)[5 * (s_off) + 3]; \ (dw)[5 * (d_off) + 4] += (sw)[5 * (s_off) + 4]; \ } while (0) #define ZSUB2F(dw, d_off, s1w, s1_off, s2w, s2_off) do { \ (dw)[5 * (d_off) + 0] -= (s1w)[5 * (s1_off) + 0] \ + (s2w)[5 * (s2_off) + 0]; \ (dw)[5 * (d_off) + 1] -= (s1w)[5 * (s1_off) + 1] \ + (s2w)[5 * (s2_off) + 1]; \ (dw)[5 * (d_off) + 2] -= (s1w)[5 * (s1_off) + 2] \ + (s2w)[5 * (s2_off) + 2]; \ (dw)[5 * (d_off) + 3] -= (s1w)[5 * (s1_off) + 3] \ + (s2w)[5 * (s2_off) + 3]; \ (dw)[5 * (d_off) + 4] -= (s1w)[5 * (s1_off) + 4] \ + (s2w)[5 * (s2_off) + 4]; \ } while (0) #define CPR1(w, cprcc) do { \ uint32_t cprz = (w) + cprcc; \ (w) = cprz & 0x1FFF; \ cprcc = cprz >> 13; \ } while (0) #define CPR(dw, d_off) do { \ uint32_t cprcc; \ cprcc = 0; \ CPR1((dw)[(d_off) + 0], cprcc); \ CPR1((dw)[(d_off) + 1], cprcc); \ CPR1((dw)[(d_off) + 2], cprcc); \ CPR1((dw)[(d_off) + 3], cprcc); \ CPR1((dw)[(d_off) + 4], cprcc); \ CPR1((dw)[(d_off) + 5], cprcc); \ CPR1((dw)[(d_off) + 6], cprcc); \ CPR1((dw)[(d_off) + 7], cprcc); \ CPR1((dw)[(d_off) + 8], cprcc); \ (dw)[(d_off) + 9] = cprcc; \ } while (0) memcpy(u, a, 20 * sizeof *a); ZADD(u, 4, a, 0, a, 1); ZADD(u, 5, a, 2, a, 3); ZADD(u, 6, a, 0, a, 2); ZADD(u, 7, a, 1, a, 3); ZADD(u, 8, u, 6, u, 7); memcpy(v, b, 20 * sizeof *b); ZADD(v, 4, b, 0, b, 1); ZADD(v, 5, b, 2, b, 3); ZADD(v, 6, b, 0, b, 2); ZADD(v, 7, b, 1, b, 3); ZADD(v, 8, v, 6, v, 7); /* * Do the eight first 8x8 muls. Source words are at most 16382 * each, so we can add product results together "as is" in 32-bit * words. */ for (i = 0; i < 40; i += 5) { w[(i << 1) + 0] = MUL15(u[i + 0], v[i + 0]); w[(i << 1) + 1] = MUL15(u[i + 0], v[i + 1]) + MUL15(u[i + 1], v[i + 0]); w[(i << 1) + 2] = MUL15(u[i + 0], v[i + 2]) + MUL15(u[i + 1], v[i + 1]) + MUL15(u[i + 2], v[i + 0]); w[(i << 1) + 3] = MUL15(u[i + 0], v[i + 3]) + MUL15(u[i + 1], v[i + 2]) + MUL15(u[i + 2], v[i + 1]) + MUL15(u[i + 3], v[i + 0]); w[(i << 1) + 4] = MUL15(u[i + 0], v[i + 4]) + MUL15(u[i + 1], v[i + 3]) + MUL15(u[i + 2], v[i + 2]) + MUL15(u[i + 3], v[i + 1]) + MUL15(u[i + 4], v[i + 0]); w[(i << 1) + 5] = MUL15(u[i + 1], v[i + 4]) + MUL15(u[i + 2], v[i + 3]) + MUL15(u[i + 3], v[i + 2]) + MUL15(u[i + 4], v[i + 1]); w[(i << 1) + 6] = MUL15(u[i + 2], v[i + 4]) + MUL15(u[i + 3], v[i + 3]) + MUL15(u[i + 4], v[i + 2]); w[(i << 1) + 7] = MUL15(u[i + 3], v[i + 4]) + MUL15(u[i + 4], v[i + 3]); w[(i << 1) + 8] = MUL15(u[i + 4], v[i + 4]); w[(i << 1) + 9] = 0; } /* * For the 9th multiplication, source words are up to 32764, * so we must do some carry propagation. If we add up to * 4 products and the carry is no more than 524224, then the * result fits in 32 bits, and the next carry will be no more * than 524224 (because 4*(32764^2)+524224 < 8192*524225). * * We thus just skip one of the products in the middle word, * then do a carry propagation (this reduces words to 13 bits * each, except possibly the last, which may use up to 17 bits * or so), then add the missing product. */ w[80 + 0] = MUL15(u[40 + 0], v[40 + 0]); w[80 + 1] = MUL15(u[40 + 0], v[40 + 1]) + MUL15(u[40 + 1], v[40 + 0]); w[80 + 2] = MUL15(u[40 + 0], v[40 + 2]) + MUL15(u[40 + 1], v[40 + 1]) + MUL15(u[40 + 2], v[40 + 0]); w[80 + 3] = MUL15(u[40 + 0], v[40 + 3]) + MUL15(u[40 + 1], v[40 + 2]) + MUL15(u[40 + 2], v[40 + 1]) + MUL15(u[40 + 3], v[40 + 0]); w[80 + 4] = MUL15(u[40 + 0], v[40 + 4]) + MUL15(u[40 + 1], v[40 + 3]) + MUL15(u[40 + 2], v[40 + 2]) + MUL15(u[40 + 3], v[40 + 1]); /* + MUL15(u[40 + 4], v[40 + 0]) */ w[80 + 5] = MUL15(u[40 + 1], v[40 + 4]) + MUL15(u[40 + 2], v[40 + 3]) + MUL15(u[40 + 3], v[40 + 2]) + MUL15(u[40 + 4], v[40 + 1]); w[80 + 6] = MUL15(u[40 + 2], v[40 + 4]) + MUL15(u[40 + 3], v[40 + 3]) + MUL15(u[40 + 4], v[40 + 2]); w[80 + 7] = MUL15(u[40 + 3], v[40 + 4]) + MUL15(u[40 + 4], v[40 + 3]); w[80 + 8] = MUL15(u[40 + 4], v[40 + 4]); CPR(w, 80); w[80 + 4] += MUL15(u[40 + 4], v[40 + 0]); /* * The products on 14-bit words in slots 6 and 7 yield values * up to 5*(16382^2) each, and we need to subtract two such * values from the higher word. We need the subtraction to fit * in a _signed_ 32-bit integer, i.e. 31 bits + a sign bit. * However, 10*(16382^2) does not fit. So we must perform a * bit of reduction here. */ CPR(w, 60); CPR(w, 70); /* * Recompose results. */ /* 0..1*0..1 into 0..3 */ ZSUB2F(w, 8, w, 0, w, 2); ZSUB2F(w, 9, w, 1, w, 3); ZADDT(w, 1, w, 8); ZADDT(w, 2, w, 9); /* 2..3*2..3 into 4..7 */ ZSUB2F(w, 10, w, 4, w, 6); ZSUB2F(w, 11, w, 5, w, 7); ZADDT(w, 5, w, 10); ZADDT(w, 6, w, 11); /* (0..1+2..3)*(0..1+2..3) into 12..15 */ ZSUB2F(w, 16, w, 12, w, 14); ZSUB2F(w, 17, w, 13, w, 15); ZADDT(w, 13, w, 16); ZADDT(w, 14, w, 17); /* first-level recomposition */ ZSUB2F(w, 12, w, 0, w, 4); ZSUB2F(w, 13, w, 1, w, 5); ZSUB2F(w, 14, w, 2, w, 6); ZSUB2F(w, 15, w, 3, w, 7); ZADDT(w, 2, w, 12); ZADDT(w, 3, w, 13); ZADDT(w, 4, w, 14); ZADDT(w, 5, w, 15); /* * Perform carry propagation to bring all words down to 13 bits. */ cc = norm13(d, w, 40); d[39] += (cc << 13); #undef ZADD #undef ZADDT #undef ZSUB2F #undef CPR1 #undef CPR } static inline void square20(uint32_t *d, const uint32_t *a) { mul20(d, a, a); } #else static void mul20(uint32_t *d, const uint32_t *a, const uint32_t *b) { uint32_t t[39]; t[ 0] = MUL15(a[ 0], b[ 0]); t[ 1] = MUL15(a[ 0], b[ 1]) + MUL15(a[ 1], b[ 0]); t[ 2] = MUL15(a[ 0], b[ 2]) + MUL15(a[ 1], b[ 1]) + MUL15(a[ 2], b[ 0]); t[ 3] = MUL15(a[ 0], b[ 3]) + MUL15(a[ 1], b[ 2]) + MUL15(a[ 2], b[ 1]) + MUL15(a[ 3], b[ 0]); t[ 4] = MUL15(a[ 0], b[ 4]) + MUL15(a[ 1], b[ 3]) + MUL15(a[ 2], b[ 2]) + MUL15(a[ 3], b[ 1]) + MUL15(a[ 4], b[ 0]); t[ 5] = MUL15(a[ 0], b[ 5]) + MUL15(a[ 1], b[ 4]) + MUL15(a[ 2], b[ 3]) + MUL15(a[ 3], b[ 2]) + MUL15(a[ 4], b[ 1]) + MUL15(a[ 5], b[ 0]); t[ 6] = MUL15(a[ 0], b[ 6]) + MUL15(a[ 1], b[ 5]) + MUL15(a[ 2], b[ 4]) + MUL15(a[ 3], b[ 3]) + MUL15(a[ 4], b[ 2]) + MUL15(a[ 5], b[ 1]) + MUL15(a[ 6], b[ 0]); t[ 7] = MUL15(a[ 0], b[ 7]) + MUL15(a[ 1], b[ 6]) + MUL15(a[ 2], b[ 5]) + MUL15(a[ 3], b[ 4]) + MUL15(a[ 4], b[ 3]) + MUL15(a[ 5], b[ 2]) + MUL15(a[ 6], b[ 1]) + MUL15(a[ 7], b[ 0]); t[ 8] = MUL15(a[ 0], b[ 8]) + MUL15(a[ 1], b[ 7]) + MUL15(a[ 2], b[ 6]) + MUL15(a[ 3], b[ 5]) + MUL15(a[ 4], b[ 4]) + MUL15(a[ 5], b[ 3]) + MUL15(a[ 6], b[ 2]) + MUL15(a[ 7], b[ 1]) + MUL15(a[ 8], b[ 0]); t[ 9] = MUL15(a[ 0], b[ 9]) + MUL15(a[ 1], b[ 8]) + MUL15(a[ 2], b[ 7]) + MUL15(a[ 3], b[ 6]) + MUL15(a[ 4], b[ 5]) + MUL15(a[ 5], b[ 4]) + MUL15(a[ 6], b[ 3]) + MUL15(a[ 7], b[ 2]) + MUL15(a[ 8], b[ 1]) + MUL15(a[ 9], b[ 0]); t[10] = MUL15(a[ 0], b[10]) + MUL15(a[ 1], b[ 9]) + MUL15(a[ 2], b[ 8]) + MUL15(a[ 3], b[ 7]) + MUL15(a[ 4], b[ 6]) + MUL15(a[ 5], b[ 5]) + MUL15(a[ 6], b[ 4]) + MUL15(a[ 7], b[ 3]) + MUL15(a[ 8], b[ 2]) + MUL15(a[ 9], b[ 1]) + MUL15(a[10], b[ 0]); t[11] = MUL15(a[ 0], b[11]) + MUL15(a[ 1], b[10]) + MUL15(a[ 2], b[ 9]) + MUL15(a[ 3], b[ 8]) + MUL15(a[ 4], b[ 7]) + MUL15(a[ 5], b[ 6]) + MUL15(a[ 6], b[ 5]) + MUL15(a[ 7], b[ 4]) + MUL15(a[ 8], b[ 3]) + MUL15(a[ 9], b[ 2]) + MUL15(a[10], b[ 1]) + MUL15(a[11], b[ 0]); t[12] = MUL15(a[ 0], b[12]) + MUL15(a[ 1], b[11]) + MUL15(a[ 2], b[10]) + MUL15(a[ 3], b[ 9]) + MUL15(a[ 4], b[ 8]) + MUL15(a[ 5], b[ 7]) + MUL15(a[ 6], b[ 6]) + MUL15(a[ 7], b[ 5]) + MUL15(a[ 8], b[ 4]) + MUL15(a[ 9], b[ 3]) + MUL15(a[10], b[ 2]) + MUL15(a[11], b[ 1]) + MUL15(a[12], b[ 0]); t[13] = MUL15(a[ 0], b[13]) + MUL15(a[ 1], b[12]) + MUL15(a[ 2], b[11]) + MUL15(a[ 3], b[10]) + MUL15(a[ 4], b[ 9]) + MUL15(a[ 5], b[ 8]) + MUL15(a[ 6], b[ 7]) + MUL15(a[ 7], b[ 6]) + MUL15(a[ 8], b[ 5]) + MUL15(a[ 9], b[ 4]) + MUL15(a[10], b[ 3]) + MUL15(a[11], b[ 2]) + MUL15(a[12], b[ 1]) + MUL15(a[13], b[ 0]); t[14] = MUL15(a[ 0], b[14]) + MUL15(a[ 1], b[13]) + MUL15(a[ 2], b[12]) + MUL15(a[ 3], b[11]) + MUL15(a[ 4], b[10]) + MUL15(a[ 5], b[ 9]) + MUL15(a[ 6], b[ 8]) + MUL15(a[ 7], b[ 7]) + MUL15(a[ 8], b[ 6]) + MUL15(a[ 9], b[ 5]) + MUL15(a[10], b[ 4]) + MUL15(a[11], b[ 3]) + MUL15(a[12], b[ 2]) + MUL15(a[13], b[ 1]) + MUL15(a[14], b[ 0]); t[15] = MUL15(a[ 0], b[15]) + MUL15(a[ 1], b[14]) + MUL15(a[ 2], b[13]) + MUL15(a[ 3], b[12]) + MUL15(a[ 4], b[11]) + MUL15(a[ 5], b[10]) + MUL15(a[ 6], b[ 9]) + MUL15(a[ 7], b[ 8]) + MUL15(a[ 8], b[ 7]) + MUL15(a[ 9], b[ 6]) + MUL15(a[10], b[ 5]) + MUL15(a[11], b[ 4]) + MUL15(a[12], b[ 3]) + MUL15(a[13], b[ 2]) + MUL15(a[14], b[ 1]) + MUL15(a[15], b[ 0]); t[16] = MUL15(a[ 0], b[16]) + MUL15(a[ 1], b[15]) + MUL15(a[ 2], b[14]) + MUL15(a[ 3], b[13]) + MUL15(a[ 4], b[12]) + MUL15(a[ 5], b[11]) + MUL15(a[ 6], b[10]) + MUL15(a[ 7], b[ 9]) + MUL15(a[ 8], b[ 8]) + MUL15(a[ 9], b[ 7]) + MUL15(a[10], b[ 6]) + MUL15(a[11], b[ 5]) + MUL15(a[12], b[ 4]) + MUL15(a[13], b[ 3]) + MUL15(a[14], b[ 2]) + MUL15(a[15], b[ 1]) + MUL15(a[16], b[ 0]); t[17] = MUL15(a[ 0], b[17]) + MUL15(a[ 1], b[16]) + MUL15(a[ 2], b[15]) + MUL15(a[ 3], b[14]) + MUL15(a[ 4], b[13]) + MUL15(a[ 5], b[12]) + MUL15(a[ 6], b[11]) + MUL15(a[ 7], b[10]) + MUL15(a[ 8], b[ 9]) + MUL15(a[ 9], b[ 8]) + MUL15(a[10], b[ 7]) + MUL15(a[11], b[ 6]) + MUL15(a[12], b[ 5]) + MUL15(a[13], b[ 4]) + MUL15(a[14], b[ 3]) + MUL15(a[15], b[ 2]) + MUL15(a[16], b[ 1]) + MUL15(a[17], b[ 0]); t[18] = MUL15(a[ 0], b[18]) + MUL15(a[ 1], b[17]) + MUL15(a[ 2], b[16]) + MUL15(a[ 3], b[15]) + MUL15(a[ 4], b[14]) + MUL15(a[ 5], b[13]) + MUL15(a[ 6], b[12]) + MUL15(a[ 7], b[11]) + MUL15(a[ 8], b[10]) + MUL15(a[ 9], b[ 9]) + MUL15(a[10], b[ 8]) + MUL15(a[11], b[ 7]) + MUL15(a[12], b[ 6]) + MUL15(a[13], b[ 5]) + MUL15(a[14], b[ 4]) + MUL15(a[15], b[ 3]) + MUL15(a[16], b[ 2]) + MUL15(a[17], b[ 1]) + MUL15(a[18], b[ 0]); t[19] = MUL15(a[ 0], b[19]) + MUL15(a[ 1], b[18]) + MUL15(a[ 2], b[17]) + MUL15(a[ 3], b[16]) + MUL15(a[ 4], b[15]) + MUL15(a[ 5], b[14]) + MUL15(a[ 6], b[13]) + MUL15(a[ 7], b[12]) + MUL15(a[ 8], b[11]) + MUL15(a[ 9], b[10]) + MUL15(a[10], b[ 9]) + MUL15(a[11], b[ 8]) + MUL15(a[12], b[ 7]) + MUL15(a[13], b[ 6]) + MUL15(a[14], b[ 5]) + MUL15(a[15], b[ 4]) + MUL15(a[16], b[ 3]) + MUL15(a[17], b[ 2]) + MUL15(a[18], b[ 1]) + MUL15(a[19], b[ 0]); t[20] = MUL15(a[ 1], b[19]) + MUL15(a[ 2], b[18]) + MUL15(a[ 3], b[17]) + MUL15(a[ 4], b[16]) + MUL15(a[ 5], b[15]) + MUL15(a[ 6], b[14]) + MUL15(a[ 7], b[13]) + MUL15(a[ 8], b[12]) + MUL15(a[ 9], b[11]) + MUL15(a[10], b[10]) + MUL15(a[11], b[ 9]) + MUL15(a[12], b[ 8]) + MUL15(a[13], b[ 7]) + MUL15(a[14], b[ 6]) + MUL15(a[15], b[ 5]) + MUL15(a[16], b[ 4]) + MUL15(a[17], b[ 3]) + MUL15(a[18], b[ 2]) + MUL15(a[19], b[ 1]); t[21] = MUL15(a[ 2], b[19]) + MUL15(a[ 3], b[18]) + MUL15(a[ 4], b[17]) + MUL15(a[ 5], b[16]) + MUL15(a[ 6], b[15]) + MUL15(a[ 7], b[14]) + MUL15(a[ 8], b[13]) + MUL15(a[ 9], b[12]) + MUL15(a[10], b[11]) + MUL15(a[11], b[10]) + MUL15(a[12], b[ 9]) + MUL15(a[13], b[ 8]) + MUL15(a[14], b[ 7]) + MUL15(a[15], b[ 6]) + MUL15(a[16], b[ 5]) + MUL15(a[17], b[ 4]) + MUL15(a[18], b[ 3]) + MUL15(a[19], b[ 2]); t[22] = MUL15(a[ 3], b[19]) + MUL15(a[ 4], b[18]) + MUL15(a[ 5], b[17]) + MUL15(a[ 6], b[16]) + MUL15(a[ 7], b[15]) + MUL15(a[ 8], b[14]) + MUL15(a[ 9], b[13]) + MUL15(a[10], b[12]) + MUL15(a[11], b[11]) + MUL15(a[12], b[10]) + MUL15(a[13], b[ 9]) + MUL15(a[14], b[ 8]) + MUL15(a[15], b[ 7]) + MUL15(a[16], b[ 6]) + MUL15(a[17], b[ 5]) + MUL15(a[18], b[ 4]) + MUL15(a[19], b[ 3]); t[23] = MUL15(a[ 4], b[19]) + MUL15(a[ 5], b[18]) + MUL15(a[ 6], b[17]) + MUL15(a[ 7], b[16]) + MUL15(a[ 8], b[15]) + MUL15(a[ 9], b[14]) + MUL15(a[10], b[13]) + MUL15(a[11], b[12]) + MUL15(a[12], b[11]) + MUL15(a[13], b[10]) + MUL15(a[14], b[ 9]) + MUL15(a[15], b[ 8]) + MUL15(a[16], b[ 7]) + MUL15(a[17], b[ 6]) + MUL15(a[18], b[ 5]) + MUL15(a[19], b[ 4]); t[24] = MUL15(a[ 5], b[19]) + MUL15(a[ 6], b[18]) + MUL15(a[ 7], b[17]) + MUL15(a[ 8], b[16]) + MUL15(a[ 9], b[15]) + MUL15(a[10], b[14]) + MUL15(a[11], b[13]) + MUL15(a[12], b[12]) + MUL15(a[13], b[11]) + MUL15(a[14], b[10]) + MUL15(a[15], b[ 9]) + MUL15(a[16], b[ 8]) + MUL15(a[17], b[ 7]) + MUL15(a[18], b[ 6]) + MUL15(a[19], b[ 5]); t[25] = MUL15(a[ 6], b[19]) + MUL15(a[ 7], b[18]) + MUL15(a[ 8], b[17]) + MUL15(a[ 9], b[16]) + MUL15(a[10], b[15]) + MUL15(a[11], b[14]) + MUL15(a[12], b[13]) + MUL15(a[13], b[12]) + MUL15(a[14], b[11]) + MUL15(a[15], b[10]) + MUL15(a[16], b[ 9]) + MUL15(a[17], b[ 8]) + MUL15(a[18], b[ 7]) + MUL15(a[19], b[ 6]); t[26] = MUL15(a[ 7], b[19]) + MUL15(a[ 8], b[18]) + MUL15(a[ 9], b[17]) + MUL15(a[10], b[16]) + MUL15(a[11], b[15]) + MUL15(a[12], b[14]) + MUL15(a[13], b[13]) + MUL15(a[14], b[12]) + MUL15(a[15], b[11]) + MUL15(a[16], b[10]) + MUL15(a[17], b[ 9]) + MUL15(a[18], b[ 8]) + MUL15(a[19], b[ 7]); t[27] = MUL15(a[ 8], b[19]) + MUL15(a[ 9], b[18]) + MUL15(a[10], b[17]) + MUL15(a[11], b[16]) + MUL15(a[12], b[15]) + MUL15(a[13], b[14]) + MUL15(a[14], b[13]) + MUL15(a[15], b[12]) + MUL15(a[16], b[11]) + MUL15(a[17], b[10]) + MUL15(a[18], b[ 9]) + MUL15(a[19], b[ 8]); t[28] = MUL15(a[ 9], b[19]) + MUL15(a[10], b[18]) + MUL15(a[11], b[17]) + MUL15(a[12], b[16]) + MUL15(a[13], b[15]) + MUL15(a[14], b[14]) + MUL15(a[15], b[13]) + MUL15(a[16], b[12]) + MUL15(a[17], b[11]) + MUL15(a[18], b[10]) + MUL15(a[19], b[ 9]); t[29] = MUL15(a[10], b[19]) + MUL15(a[11], b[18]) + MUL15(a[12], b[17]) + MUL15(a[13], b[16]) + MUL15(a[14], b[15]) + MUL15(a[15], b[14]) + MUL15(a[16], b[13]) + MUL15(a[17], b[12]) + MUL15(a[18], b[11]) + MUL15(a[19], b[10]); t[30] = MUL15(a[11], b[19]) + MUL15(a[12], b[18]) + MUL15(a[13], b[17]) + MUL15(a[14], b[16]) + MUL15(a[15], b[15]) + MUL15(a[16], b[14]) + MUL15(a[17], b[13]) + MUL15(a[18], b[12]) + MUL15(a[19], b[11]); t[31] = MUL15(a[12], b[19]) + MUL15(a[13], b[18]) + MUL15(a[14], b[17]) + MUL15(a[15], b[16]) + MUL15(a[16], b[15]) + MUL15(a[17], b[14]) + MUL15(a[18], b[13]) + MUL15(a[19], b[12]); t[32] = MUL15(a[13], b[19]) + MUL15(a[14], b[18]) + MUL15(a[15], b[17]) + MUL15(a[16], b[16]) + MUL15(a[17], b[15]) + MUL15(a[18], b[14]) + MUL15(a[19], b[13]); t[33] = MUL15(a[14], b[19]) + MUL15(a[15], b[18]) + MUL15(a[16], b[17]) + MUL15(a[17], b[16]) + MUL15(a[18], b[15]) + MUL15(a[19], b[14]); t[34] = MUL15(a[15], b[19]) + MUL15(a[16], b[18]) + MUL15(a[17], b[17]) + MUL15(a[18], b[16]) + MUL15(a[19], b[15]); t[35] = MUL15(a[16], b[19]) + MUL15(a[17], b[18]) + MUL15(a[18], b[17]) + MUL15(a[19], b[16]); t[36] = MUL15(a[17], b[19]) + MUL15(a[18], b[18]) + MUL15(a[19], b[17]); t[37] = MUL15(a[18], b[19]) + MUL15(a[19], b[18]); t[38] = MUL15(a[19], b[19]); d[39] = norm13(d, t, 39); } static void square20(uint32_t *d, const uint32_t *a) { uint32_t t[39]; t[ 0] = MUL15(a[ 0], a[ 0]); t[ 1] = ((MUL15(a[ 0], a[ 1])) << 1); t[ 2] = MUL15(a[ 1], a[ 1]) + ((MUL15(a[ 0], a[ 2])) << 1); t[ 3] = ((MUL15(a[ 0], a[ 3]) + MUL15(a[ 1], a[ 2])) << 1); t[ 4] = MUL15(a[ 2], a[ 2]) + ((MUL15(a[ 0], a[ 4]) + MUL15(a[ 1], a[ 3])) << 1); t[ 5] = ((MUL15(a[ 0], a[ 5]) + MUL15(a[ 1], a[ 4]) + MUL15(a[ 2], a[ 3])) << 1); t[ 6] = MUL15(a[ 3], a[ 3]) + ((MUL15(a[ 0], a[ 6]) + MUL15(a[ 1], a[ 5]) + MUL15(a[ 2], a[ 4])) << 1); t[ 7] = ((MUL15(a[ 0], a[ 7]) + MUL15(a[ 1], a[ 6]) + MUL15(a[ 2], a[ 5]) + MUL15(a[ 3], a[ 4])) << 1); t[ 8] = MUL15(a[ 4], a[ 4]) + ((MUL15(a[ 0], a[ 8]) + MUL15(a[ 1], a[ 7]) + MUL15(a[ 2], a[ 6]) + MUL15(a[ 3], a[ 5])) << 1); t[ 9] = ((MUL15(a[ 0], a[ 9]) + MUL15(a[ 1], a[ 8]) + MUL15(a[ 2], a[ 7]) + MUL15(a[ 3], a[ 6]) + MUL15(a[ 4], a[ 5])) << 1); t[10] = MUL15(a[ 5], a[ 5]) + ((MUL15(a[ 0], a[10]) + MUL15(a[ 1], a[ 9]) + MUL15(a[ 2], a[ 8]) + MUL15(a[ 3], a[ 7]) + MUL15(a[ 4], a[ 6])) << 1); t[11] = ((MUL15(a[ 0], a[11]) + MUL15(a[ 1], a[10]) + MUL15(a[ 2], a[ 9]) + MUL15(a[ 3], a[ 8]) + MUL15(a[ 4], a[ 7]) + MUL15(a[ 5], a[ 6])) << 1); t[12] = MUL15(a[ 6], a[ 6]) + ((MUL15(a[ 0], a[12]) + MUL15(a[ 1], a[11]) + MUL15(a[ 2], a[10]) + MUL15(a[ 3], a[ 9]) + MUL15(a[ 4], a[ 8]) + MUL15(a[ 5], a[ 7])) << 1); t[13] = ((MUL15(a[ 0], a[13]) + MUL15(a[ 1], a[12]) + MUL15(a[ 2], a[11]) + MUL15(a[ 3], a[10]) + MUL15(a[ 4], a[ 9]) + MUL15(a[ 5], a[ 8]) + MUL15(a[ 6], a[ 7])) << 1); t[14] = MUL15(a[ 7], a[ 7]) + ((MUL15(a[ 0], a[14]) + MUL15(a[ 1], a[13]) + MUL15(a[ 2], a[12]) + MUL15(a[ 3], a[11]) + MUL15(a[ 4], a[10]) + MUL15(a[ 5], a[ 9]) + MUL15(a[ 6], a[ 8])) << 1); t[15] = ((MUL15(a[ 0], a[15]) + MUL15(a[ 1], a[14]) + MUL15(a[ 2], a[13]) + MUL15(a[ 3], a[12]) + MUL15(a[ 4], a[11]) + MUL15(a[ 5], a[10]) + MUL15(a[ 6], a[ 9]) + MUL15(a[ 7], a[ 8])) << 1); t[16] = MUL15(a[ 8], a[ 8]) + ((MUL15(a[ 0], a[16]) + MUL15(a[ 1], a[15]) + MUL15(a[ 2], a[14]) + MUL15(a[ 3], a[13]) + MUL15(a[ 4], a[12]) + MUL15(a[ 5], a[11]) + MUL15(a[ 6], a[10]) + MUL15(a[ 7], a[ 9])) << 1); t[17] = ((MUL15(a[ 0], a[17]) + MUL15(a[ 1], a[16]) + MUL15(a[ 2], a[15]) + MUL15(a[ 3], a[14]) + MUL15(a[ 4], a[13]) + MUL15(a[ 5], a[12]) + MUL15(a[ 6], a[11]) + MUL15(a[ 7], a[10]) + MUL15(a[ 8], a[ 9])) << 1); t[18] = MUL15(a[ 9], a[ 9]) + ((MUL15(a[ 0], a[18]) + MUL15(a[ 1], a[17]) + MUL15(a[ 2], a[16]) + MUL15(a[ 3], a[15]) + MUL15(a[ 4], a[14]) + MUL15(a[ 5], a[13]) + MUL15(a[ 6], a[12]) + MUL15(a[ 7], a[11]) + MUL15(a[ 8], a[10])) << 1); t[19] = ((MUL15(a[ 0], a[19]) + MUL15(a[ 1], a[18]) + MUL15(a[ 2], a[17]) + MUL15(a[ 3], a[16]) + MUL15(a[ 4], a[15]) + MUL15(a[ 5], a[14]) + MUL15(a[ 6], a[13]) + MUL15(a[ 7], a[12]) + MUL15(a[ 8], a[11]) + MUL15(a[ 9], a[10])) << 1); t[20] = MUL15(a[10], a[10]) + ((MUL15(a[ 1], a[19]) + MUL15(a[ 2], a[18]) + MUL15(a[ 3], a[17]) + MUL15(a[ 4], a[16]) + MUL15(a[ 5], a[15]) + MUL15(a[ 6], a[14]) + MUL15(a[ 7], a[13]) + MUL15(a[ 8], a[12]) + MUL15(a[ 9], a[11])) << 1); t[21] = ((MUL15(a[ 2], a[19]) + MUL15(a[ 3], a[18]) + MUL15(a[ 4], a[17]) + MUL15(a[ 5], a[16]) + MUL15(a[ 6], a[15]) + MUL15(a[ 7], a[14]) + MUL15(a[ 8], a[13]) + MUL15(a[ 9], a[12]) + MUL15(a[10], a[11])) << 1); t[22] = MUL15(a[11], a[11]) + ((MUL15(a[ 3], a[19]) + MUL15(a[ 4], a[18]) + MUL15(a[ 5], a[17]) + MUL15(a[ 6], a[16]) + MUL15(a[ 7], a[15]) + MUL15(a[ 8], a[14]) + MUL15(a[ 9], a[13]) + MUL15(a[10], a[12])) << 1); t[23] = ((MUL15(a[ 4], a[19]) + MUL15(a[ 5], a[18]) + MUL15(a[ 6], a[17]) + MUL15(a[ 7], a[16]) + MUL15(a[ 8], a[15]) + MUL15(a[ 9], a[14]) + MUL15(a[10], a[13]) + MUL15(a[11], a[12])) << 1); t[24] = MUL15(a[12], a[12]) + ((MUL15(a[ 5], a[19]) + MUL15(a[ 6], a[18]) + MUL15(a[ 7], a[17]) + MUL15(a[ 8], a[16]) + MUL15(a[ 9], a[15]) + MUL15(a[10], a[14]) + MUL15(a[11], a[13])) << 1); t[25] = ((MUL15(a[ 6], a[19]) + MUL15(a[ 7], a[18]) + MUL15(a[ 8], a[17]) + MUL15(a[ 9], a[16]) + MUL15(a[10], a[15]) + MUL15(a[11], a[14]) + MUL15(a[12], a[13])) << 1); t[26] = MUL15(a[13], a[13]) + ((MUL15(a[ 7], a[19]) + MUL15(a[ 8], a[18]) + MUL15(a[ 9], a[17]) + MUL15(a[10], a[16]) + MUL15(a[11], a[15]) + MUL15(a[12], a[14])) << 1); t[27] = ((MUL15(a[ 8], a[19]) + MUL15(a[ 9], a[18]) + MUL15(a[10], a[17]) + MUL15(a[11], a[16]) + MUL15(a[12], a[15]) + MUL15(a[13], a[14])) << 1); t[28] = MUL15(a[14], a[14]) + ((MUL15(a[ 9], a[19]) + MUL15(a[10], a[18]) + MUL15(a[11], a[17]) + MUL15(a[12], a[16]) + MUL15(a[13], a[15])) << 1); t[29] = ((MUL15(a[10], a[19]) + MUL15(a[11], a[18]) + MUL15(a[12], a[17]) + MUL15(a[13], a[16]) + MUL15(a[14], a[15])) << 1); t[30] = MUL15(a[15], a[15]) + ((MUL15(a[11], a[19]) + MUL15(a[12], a[18]) + MUL15(a[13], a[17]) + MUL15(a[14], a[16])) << 1); t[31] = ((MUL15(a[12], a[19]) + MUL15(a[13], a[18]) + MUL15(a[14], a[17]) + MUL15(a[15], a[16])) << 1); t[32] = MUL15(a[16], a[16]) + ((MUL15(a[13], a[19]) + MUL15(a[14], a[18]) + MUL15(a[15], a[17])) << 1); t[33] = ((MUL15(a[14], a[19]) + MUL15(a[15], a[18]) + MUL15(a[16], a[17])) << 1); t[34] = MUL15(a[17], a[17]) + ((MUL15(a[15], a[19]) + MUL15(a[16], a[18])) << 1); t[35] = ((MUL15(a[16], a[19]) + MUL15(a[17], a[18])) << 1); t[36] = MUL15(a[18], a[18]) + ((MUL15(a[17], a[19])) << 1); t[37] = ((MUL15(a[18], a[19])) << 1); t[38] = MUL15(a[19], a[19]); d[39] = norm13(d, t, 39); } #endif /* * Modulus for field F256 (field for point coordinates in curve P-256). */ static const uint32_t F256[] = { 0x1FFF, 0x1FFF, 0x1FFF, 0x1FFF, 0x1FFF, 0x1FFF, 0x1FFF, 0x001F, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0400, 0x0000, 0x0000, 0x1FF8, 0x1FFF, 0x01FF }; /* * The 'b' curve equation coefficient for P-256. */ static const uint32_t P256_B[] = { 0x004B, 0x1E93, 0x0F89, 0x1C78, 0x03BC, 0x187B, 0x114E, 0x1619, 0x1D06, 0x0328, 0x01AF, 0x0D31, 0x1557, 0x15DE, 0x1ECF, 0x127C, 0x0A3A, 0x0EC5, 0x118D, 0x00B5 }; /* * Perform a "short reduction" in field F256 (field for curve P-256). * The source value should be less than 262 bits; on output, it will * be at most 257 bits, and less than twice the modulus. */ static void reduce_f256(uint32_t *d) { uint32_t x; x = d[19] >> 9; d[19] &= 0x01FF; d[17] += x << 3; d[14] -= x << 10; d[7] -= x << 5; d[0] += x; norm13(d, d, 20); } /* * Perform a "final reduction" in field F256 (field for curve P-256). * The source value must be less than twice the modulus. If the value * is not lower than the modulus, then the modulus is subtracted and * this function returns 1; otherwise, it leaves it untouched and it * returns 0. */ static uint32_t reduce_final_f256(uint32_t *d) { uint32_t t[20]; uint32_t cc; int i; memcpy(t, d, sizeof t); cc = 0; for (i = 0; i < 20; i ++) { uint32_t w; w = t[i] - F256[i] - cc; cc = w >> 31; t[i] = w & 0x1FFF; } cc ^= 1; CCOPY(cc, d, t, sizeof t); return cc; } /* * Perform a multiplication of two integers modulo * 2^256-2^224+2^192+2^96-1 (for NIST curve P-256). Operands are arrays * of 20 words, each containing 13 bits of data, in little-endian order. * On input, upper word may be up to 13 bits (hence value up to 2^260-1); * on output, value fits on 257 bits and is lower than twice the modulus. */ static void mul_f256(uint32_t *d, const uint32_t *a, const uint32_t *b) { uint32_t t[40], cc; int i; /* * Compute raw multiplication. All result words fit in 13 bits * each. */ mul20(t, a, b); /* * Modular reduction: each high word in added/subtracted where * necessary. * * The modulus is: * p = 2^256 - 2^224 + 2^192 + 2^96 - 1 * Therefore: * 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p * * For a word x at bit offset n (n >= 256), we have: * x*2^n = x*2^(n-32) - x*2^(n-64) * - x*2^(n - 160) + x*2^(n-256) mod p * * Thus, we can nullify the high word if we reinject it at some * proper emplacements. */ for (i = 39; i >= 20; i --) { uint32_t x; x = t[i]; t[i - 2] += ARSH(x, 6); t[i - 3] += (x << 7) & 0x1FFF; t[i - 4] -= ARSH(x, 12); t[i - 5] -= (x << 1) & 0x1FFF; t[i - 12] -= ARSH(x, 4); t[i - 13] -= (x << 9) & 0x1FFF; t[i - 19] += ARSH(x, 9); t[i - 20] += (x << 4) & 0x1FFF; } /* * Propagate carries. This is a signed propagation, and the * result may be negative. The loop above may enlarge values, * but not two much: worst case is the chain involving t[i - 3], * in which a value may be added to itself up to 7 times. Since * starting values are 13-bit each, all words fit on 20 bits * (21 to account for the sign bit). */ cc = norm13(t, t, 20); /* * Perform modular reduction again for the bits beyond 256 (the carry * and the bits 256..259). Since the largest shift below is by 10 * bits, and the values fit on 21 bits, values fit in 32-bit words, * thereby allowing injecting full word values. */ cc = (cc << 4) | (t[19] >> 9); t[19] &= 0x01FF; t[17] += cc << 3; t[14] -= cc << 10; t[7] -= cc << 5; t[0] += cc; /* * If the carry is negative, then after carry propagation, we may * end up with a value which is negative, and we don't want that. * Thus, in that case, we add the modulus. Note that the subtraction * result, when the carry is negative, is always smaller than the * modulus, so the extra addition will not make the value exceed * twice the modulus. */ cc >>= 31; t[0] -= cc; t[7] += cc << 5; t[14] += cc << 10; t[17] -= cc << 3; t[19] += cc << 9; norm13(d, t, 20); } /* * Square an integer modulo 2^256-2^224+2^192+2^96-1 (for NIST curve * P-256). Operand is an array of 20 words, each containing 13 bits of * data, in little-endian order. On input, upper word may be up to 13 * bits (hence value up to 2^260-1); on output, value fits on 257 bits * and is lower than twice the modulus. */ static void square_f256(uint32_t *d, const uint32_t *a) { uint32_t t[40], cc; int i; /* * Compute raw square. All result words fit in 13 bits each. */ square20(t, a); /* * Modular reduction: each high word in added/subtracted where * necessary. * * The modulus is: * p = 2^256 - 2^224 + 2^192 + 2^96 - 1 * Therefore: * 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p * * For a word x at bit offset n (n >= 256), we have: * x*2^n = x*2^(n-32) - x*2^(n-64) * - x*2^(n - 160) + x*2^(n-256) mod p * * Thus, we can nullify the high word if we reinject it at some * proper emplacements. */ for (i = 39; i >= 20; i --) { uint32_t x; x = t[i]; t[i - 2] += ARSH(x, 6); t[i - 3] += (x << 7) & 0x1FFF; t[i - 4] -= ARSH(x, 12); t[i - 5] -= (x << 1) & 0x1FFF; t[i - 12] -= ARSH(x, 4); t[i - 13] -= (x << 9) & 0x1FFF; t[i - 19] += ARSH(x, 9); t[i - 20] += (x << 4) & 0x1FFF; } /* * Propagate carries. This is a signed propagation, and the * result may be negative. The loop above may enlarge values, * but not two much: worst case is the chain involving t[i - 3], * in which a value may be added to itself up to 7 times. Since * starting values are 13-bit each, all words fit on 20 bits * (21 to account for the sign bit). */ cc = norm13(t, t, 20); /* * Perform modular reduction again for the bits beyond 256 (the carry * and the bits 256..259). Since the largest shift below is by 10 * bits, and the values fit on 21 bits, values fit in 32-bit words, * thereby allowing injecting full word values. */ cc = (cc << 4) | (t[19] >> 9); t[19] &= 0x01FF; t[17] += cc << 3; t[14] -= cc << 10; t[7] -= cc << 5; t[0] += cc; /* * If the carry is negative, then after carry propagation, we may * end up with a value which is negative, and we don't want that. * Thus, in that case, we add the modulus. Note that the subtraction * result, when the carry is negative, is always smaller than the * modulus, so the extra addition will not make the value exceed * twice the modulus. */ cc >>= 31; t[0] -= cc; t[7] += cc << 5; t[14] += cc << 10; t[17] -= cc << 3; t[19] += cc << 9; norm13(d, t, 20); } /* * Jacobian coordinates for a point in P-256: affine coordinates (X,Y) * are such that: * X = x / z^2 * Y = y / z^3 * For the point at infinity, z = 0. * Each point thus admits many possible representations. * * Coordinates are represented in arrays of 32-bit integers, each holding * 13 bits of data. Values may also be slightly greater than the modulus, * but they will always be lower than twice the modulus. */ typedef struct { uint32_t x[20]; uint32_t y[20]; uint32_t z[20]; } p256_jacobian; /* * Convert a point to affine coordinates: * - If the point is the point at infinity, then all three coordinates * are set to 0. * - Otherwise, the 'z' coordinate is set to 1, and the 'x' and 'y' * coordinates are the 'X' and 'Y' affine coordinates. * The coordinates are guaranteed to be lower than the modulus. */ static void p256_to_affine(p256_jacobian *P) { uint32_t t1[20], t2[20]; int i; /* * Invert z with a modular exponentiation: the modulus is * p = 2^256 - 2^224 + 2^192 + 2^96 - 1, and the exponent is * p-2. Exponent bit pattern (from high to low) is: * - 32 bits of value 1 * - 31 bits of value 0 * - 1 bit of value 1 * - 96 bits of value 0 * - 94 bits of value 1 * - 1 bit of value 0 * - 1 bit of value 1 * Thus, we precompute z^(2^31-1) to speed things up. * * If z = 0 (point at infinity) then the modular exponentiation * will yield 0, which leads to the expected result (all three * coordinates set to 0). */ /* * A simple square-and-multiply for z^(2^31-1). We could save about * two dozen multiplications here with an addition chain, but * this would require a bit more code, and extra stack buffers. */ memcpy(t1, P->z, sizeof P->z); for (i = 0; i < 30; i ++) { square_f256(t1, t1); mul_f256(t1, t1, P->z); } /* * Square-and-multiply. Apart from the squarings, we have a few * multiplications to set bits to 1; we multiply by the original z * for setting 1 bit, and by t1 for setting 31 bits. */ memcpy(t2, P->z, sizeof P->z); for (i = 1; i < 256; i ++) { square_f256(t2, t2); switch (i) { case 31: case 190: case 221: case 252: mul_f256(t2, t2, t1); break; case 63: case 253: case 255: mul_f256(t2, t2, P->z); break; } } /* * Now that we have 1/z, multiply x by 1/z^2 and y by 1/z^3. */ mul_f256(t1, t2, t2); mul_f256(P->x, t1, P->x); mul_f256(t1, t1, t2); mul_f256(P->y, t1, P->y); reduce_final_f256(P->x); reduce_final_f256(P->y); /* * Multiply z by 1/z. If z = 0, then this will yield 0, otherwise * this will set z to 1. */ mul_f256(P->z, P->z, t2); reduce_final_f256(P->z); } /* * Double a point in P-256. This function works for all valid points, * including the point at infinity. */ static void p256_double(p256_jacobian *Q) { /* * Doubling formulas are: * * s = 4*x*y^2 * m = 3*(x + z^2)*(x - z^2) * x' = m^2 - 2*s * y' = m*(s - x') - 8*y^4 * z' = 2*y*z * * These formulas work for all points, including points of order 2 * and points at infinity: * - If y = 0 then z' = 0. But there is no such point in P-256 * anyway. * - If z = 0 then z' = 0. */ uint32_t t1[20], t2[20], t3[20], t4[20]; int i; /* * Compute z^2 in t1. */ square_f256(t1, Q->z); /* * Compute x-z^2 in t2 and x+z^2 in t1. */ for (i = 0; i < 20; i ++) { t2[i] = (F256[i] << 1) + Q->x[i] - t1[i]; t1[i] += Q->x[i]; } norm13(t1, t1, 20); norm13(t2, t2, 20); /* * Compute 3*(x+z^2)*(x-z^2) in t1. */ mul_f256(t3, t1, t2); for (i = 0; i < 20; i ++) { t1[i] = MUL15(3, t3[i]); } norm13(t1, t1, 20); /* * Compute 4*x*y^2 (in t2) and 2*y^2 (in t3). */ square_f256(t3, Q->y); for (i = 0; i < 20; i ++) { t3[i] <<= 1; } norm13(t3, t3, 20); mul_f256(t2, Q->x, t3); for (i = 0; i < 20; i ++) { t2[i] <<= 1; } norm13(t2, t2, 20); reduce_f256(t2); /* * Compute x' = m^2 - 2*s. */ square_f256(Q->x, t1); for (i = 0; i < 20; i ++) { Q->x[i] += (F256[i] << 2) - (t2[i] << 1); } norm13(Q->x, Q->x, 20); reduce_f256(Q->x); /* * Compute z' = 2*y*z. */ mul_f256(t4, Q->y, Q->z); for (i = 0; i < 20; i ++) { Q->z[i] = t4[i] << 1; } norm13(Q->z, Q->z, 20); reduce_f256(Q->z); /* * Compute y' = m*(s - x') - 8*y^4. Note that we already have * 2*y^2 in t3. */ for (i = 0; i < 20; i ++) { t2[i] += (F256[i] << 1) - Q->x[i]; } norm13(t2, t2, 20); mul_f256(Q->y, t1, t2); square_f256(t4, t3); for (i = 0; i < 20; i ++) { Q->y[i] += (F256[i] << 2) - (t4[i] << 1); } norm13(Q->y, Q->y, 20); reduce_f256(Q->y); } /* * Add point P2 to point P1. * * This function computes the wrong result in the following cases: * * - If P1 == 0 but P2 != 0 * - If P1 != 0 but P2 == 0 * - If P1 == P2 * * In all three cases, P1 is set to the point at infinity. * * Returned value is 0 if one of the following occurs: * * - P1 and P2 have the same Y coordinate * - P1 == 0 and P2 == 0 * - The Y coordinate of one of the points is 0 and the other point is * the point at infinity. * * The third case cannot actually happen with valid points, since a point * with Y == 0 is a point of order 2, and there is no point of order 2 on * curve P-256. * * Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller * can apply the following: * * - If the result is not the point at infinity, then it is correct. * - Otherwise, if the returned value is 1, then this is a case of * P1+P2 == 0, so the result is indeed the point at infinity. * - Otherwise, P1 == P2, so a "double" operation should have been * performed. */ static uint32_t p256_add(p256_jacobian *P1, const p256_jacobian *P2) { /* * Addtions formulas are: * * u1 = x1 * z2^2 * u2 = x2 * z1^2 * s1 = y1 * z2^3 * s2 = y2 * z1^3 * h = u2 - u1 * r = s2 - s1 * x3 = r^2 - h^3 - 2 * u1 * h^2 * y3 = r * (u1 * h^2 - x3) - s1 * h^3 * z3 = h * z1 * z2 */ uint32_t t1[20], t2[20], t3[20], t4[20], t5[20], t6[20], t7[20]; uint32_t ret; int i; /* * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3). */ square_f256(t3, P2->z); mul_f256(t1, P1->x, t3); mul_f256(t4, P2->z, t3); mul_f256(t3, P1->y, t4); /* * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4). */ square_f256(t4, P1->z); mul_f256(t2, P2->x, t4); mul_f256(t5, P1->z, t4); mul_f256(t4, P2->y, t5); /* * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4). * We need to test whether r is zero, so we will do some extra * reduce. */ for (i = 0; i < 20; i ++) { t2[i] += (F256[i] << 1) - t1[i]; t4[i] += (F256[i] << 1) - t3[i]; } norm13(t2, t2, 20); norm13(t4, t4, 20); reduce_f256(t4); reduce_final_f256(t4); ret = 0; for (i = 0; i < 20; i ++) { ret |= t4[i]; } ret = (ret | -ret) >> 31; /* * Compute u1*h^2 (in t6) and h^3 (in t5); */ square_f256(t7, t2); mul_f256(t6, t1, t7); mul_f256(t5, t7, t2); /* * Compute x3 = r^2 - h^3 - 2*u1*h^2. */ square_f256(P1->x, t4); for (i = 0; i < 20; i ++) { P1->x[i] += (F256[i] << 3) - t5[i] - (t6[i] << 1); } norm13(P1->x, P1->x, 20); reduce_f256(P1->x); /* * Compute y3 = r*(u1*h^2 - x3) - s1*h^3. */ for (i = 0; i < 20; i ++) { t6[i] += (F256[i] << 1) - P1->x[i]; } norm13(t6, t6, 20); mul_f256(P1->y, t4, t6); mul_f256(t1, t5, t3); for (i = 0; i < 20; i ++) { P1->y[i] += (F256[i] << 1) - t1[i]; } norm13(P1->y, P1->y, 20); reduce_f256(P1->y); /* * Compute z3 = h*z1*z2. */ mul_f256(t1, P1->z, P2->z); mul_f256(P1->z, t1, t2); return ret; } /* * Add point P2 to point P1. This is a specialised function for the * case when P2 is a non-zero point in affine coordinate. * * This function computes the wrong result in the following cases: * * - If P1 == 0 * - If P1 == P2 * * In both cases, P1 is set to the point at infinity. * * Returned value is 0 if one of the following occurs: * * - P1 and P2 have the same Y coordinate * - The Y coordinate of P2 is 0 and P1 is the point at infinity. * * The second case cannot actually happen with valid points, since a point * with Y == 0 is a point of order 2, and there is no point of order 2 on * curve P-256. * * Therefore, assuming that P1 != 0 on input, then the caller * can apply the following: * * - If the result is not the point at infinity, then it is correct. * - Otherwise, if the returned value is 1, then this is a case of * P1+P2 == 0, so the result is indeed the point at infinity. * - Otherwise, P1 == P2, so a "double" operation should have been * performed. */ static uint32_t p256_add_mixed(p256_jacobian *P1, const p256_jacobian *P2) { /* * Addtions formulas are: * * u1 = x1 * u2 = x2 * z1^2 * s1 = y1 * s2 = y2 * z1^3 * h = u2 - u1 * r = s2 - s1 * x3 = r^2 - h^3 - 2 * u1 * h^2 * y3 = r * (u1 * h^2 - x3) - s1 * h^3 * z3 = h * z1 */ uint32_t t1[20], t2[20], t3[20], t4[20], t5[20], t6[20], t7[20]; uint32_t ret; int i; /* * Compute u1 = x1 (in t1) and s1 = y1 (in t3). */ memcpy(t1, P1->x, sizeof t1); memcpy(t3, P1->y, sizeof t3); /* * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4). */ square_f256(t4, P1->z); mul_f256(t2, P2->x, t4); mul_f256(t5, P1->z, t4); mul_f256(t4, P2->y, t5); /* * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4). * We need to test whether r is zero, so we will do some extra * reduce. */ for (i = 0; i < 20; i ++) { t2[i] += (F256[i] << 1) - t1[i]; t4[i] += (F256[i] << 1) - t3[i]; } norm13(t2, t2, 20); norm13(t4, t4, 20); reduce_f256(t4); reduce_final_f256(t4); ret = 0; for (i = 0; i < 20; i ++) { ret |= t4[i]; } ret = (ret | -ret) >> 31; /* * Compute u1*h^2 (in t6) and h^3 (in t5); */ square_f256(t7, t2); mul_f256(t6, t1, t7); mul_f256(t5, t7, t2); /* * Compute x3 = r^2 - h^3 - 2*u1*h^2. */ square_f256(P1->x, t4); for (i = 0; i < 20; i ++) { P1->x[i] += (F256[i] << 3) - t5[i] - (t6[i] << 1); } norm13(P1->x, P1->x, 20); reduce_f256(P1->x); /* * Compute y3 = r*(u1*h^2 - x3) - s1*h^3. */ for (i = 0; i < 20; i ++) { t6[i] += (F256[i] << 1) - P1->x[i]; } norm13(t6, t6, 20); mul_f256(P1->y, t4, t6); mul_f256(t1, t5, t3); for (i = 0; i < 20; i ++) { P1->y[i] += (F256[i] << 1) - t1[i]; } norm13(P1->y, P1->y, 20); reduce_f256(P1->y); /* * Compute z3 = h*z1*z2. */ mul_f256(P1->z, P1->z, t2); return ret; } /* * Decode a P-256 point. This function does not support the point at * infinity. Returned value is 0 if the point is invalid, 1 otherwise. */ static uint32_t p256_decode(p256_jacobian *P, const void *src, size_t len) { const unsigned char *buf; uint32_t tx[20], ty[20], t1[20], t2[20]; uint32_t bad; int i; if (len != 65) { return 0; } buf = src; /* * First byte must be 0x04 (uncompressed format). We could support * "hybrid format" (first byte is 0x06 or 0x07, and encodes the * least significant bit of the Y coordinate), but it is explicitly * forbidden by RFC 5480 (section 2.2). */ bad = NEQ(buf[0], 0x04); /* * Decode the coordinates, and check that they are both lower * than the modulus. */ tx[19] = be8_to_le13(tx, buf + 1, 32); ty[19] = be8_to_le13(ty, buf + 33, 32); bad |= reduce_final_f256(tx); bad |= reduce_final_f256(ty); /* * Check curve equation. */ square_f256(t1, tx); mul_f256(t1, tx, t1); square_f256(t2, ty); for (i = 0; i < 20; i ++) { t1[i] += (F256[i] << 3) - MUL15(3, tx[i]) + P256_B[i] - t2[i]; } norm13(t1, t1, 20); reduce_f256(t1); reduce_final_f256(t1); for (i = 0; i < 20; i ++) { bad |= t1[i]; } /* * Copy coordinates to the point structure. */ memcpy(P->x, tx, sizeof tx); memcpy(P->y, ty, sizeof ty); memset(P->z, 0, sizeof P->z); P->z[0] = 1; return EQ(bad, 0); } /* * Encode a point into a buffer. This function assumes that the point is * valid, in affine coordinates, and not the point at infinity. */ static void p256_encode(void *dst, const p256_jacobian *P) { unsigned char *buf; buf = dst; buf[0] = 0x04; le13_to_be8(buf + 1, 32, P->x); le13_to_be8(buf + 33, 32, P->y); } /* * Multiply a curve point by an integer. The integer is assumed to be * lower than the curve order, and the base point must not be the point * at infinity. */ static void p256_mul(p256_jacobian *P, const unsigned char *x, size_t xlen) { /* * qz is a flag that is initially 1, and remains equal to 1 * as long as the point is the point at infinity. * * We use a 2-bit window to handle multiplier bits by pairs. * The precomputed window really is the points P2 and P3. */ uint32_t qz; p256_jacobian P2, P3, Q, T, U; /* * Compute window values. */ P2 = *P; p256_double(&P2); P3 = *P; p256_add(&P3, &P2); /* * We start with Q = 0. We process multiplier bits 2 by 2. */ memset(&Q, 0, sizeof Q); qz = 1; while (xlen -- > 0) { int k; for (k = 6; k >= 0; k -= 2) { uint32_t bits; uint32_t bnz; p256_double(&Q); p256_double(&Q); T = *P; U = Q; bits = (*x >> k) & (uint32_t)3; bnz = NEQ(bits, 0); CCOPY(EQ(bits, 2), &T, &P2, sizeof T); CCOPY(EQ(bits, 3), &T, &P3, sizeof T); p256_add(&U, &T); CCOPY(bnz & qz, &Q, &T, sizeof Q); CCOPY(bnz & ~qz, &Q, &U, sizeof Q); qz &= ~bnz; } x ++; } *P = Q; } /* * Precomputed window: k*G points, where G is the curve generator, and k * is an integer from 1 to 15 (inclusive). The X and Y coordinates of * the point are encoded as 20 words of 13 bits each (little-endian * order); 13-bit words are then grouped 2-by-2 into 32-bit words * (little-endian order within each word). */ static const uint32_t Gwin[15][20] = { { 0x04C60296, 0x02721176, 0x19D00F4A, 0x102517AC, 0x13B8037D, 0x0748103C, 0x1E730E56, 0x08481FE2, 0x0F97012C, 0x00D605F4, 0x1DFA11F5, 0x0C801A0D, 0x0F670CBB, 0x0AED0CC5, 0x115E0E33, 0x181F0785, 0x13F514A7, 0x0FF30E3B, 0x17171E1A, 0x009F18D0 }, { 0x1B341978, 0x16911F11, 0x0D9A1A60, 0x1C4E1FC8, 0x1E040969, 0x096A06B0, 0x091C0030, 0x09EF1A29, 0x18C40D03, 0x00F91C9E, 0x13C313D1, 0x096F0748, 0x011419E0, 0x1CC713A6, 0x1DD31DAD, 0x1EE80C36, 0x1ECD0C69, 0x1A0800A4, 0x08861B8E, 0x000E1DD5 }, { 0x173F1D6C, 0x02CC06F1, 0x14C21FB4, 0x043D1EB6, 0x0F3606B7, 0x1A971C59, 0x1BF71951, 0x01481323, 0x068D0633, 0x00BD12F9, 0x13EA1032, 0x136209E8, 0x1C1E19A7, 0x06C7013E, 0x06C10AB0, 0x14C908BB, 0x05830CE1, 0x1FEF18DD, 0x00620998, 0x010E0D19 }, { 0x18180852, 0x0604111A, 0x0B771509, 0x1B6F0156, 0x00181FE2, 0x1DCC0AF4, 0x16EF0659, 0x11F70E80, 0x11A912D0, 0x01C414D2, 0x027618C6, 0x05840FC6, 0x100215C4, 0x187E0C3B, 0x12771C96, 0x150C0B5D, 0x0FF705FD, 0x07981C67, 0x1AD20C63, 0x01C11C55 }, { 0x1E8113ED, 0x0A940370, 0x12920215, 0x1FA31D6F, 0x1F7C0C82, 0x10CD03F7, 0x02640560, 0x081A0B5E, 0x1BD21151, 0x00A21642, 0x0D0B0DA4, 0x0176113F, 0x04440D1D, 0x001A1360, 0x1068012F, 0x1F141E49, 0x10DF136B, 0x0E4F162B, 0x0D44104A, 0x01C1105F }, { 0x011411A9, 0x01551A4F, 0x0ADA0C6B, 0x01BD0EC8, 0x18120C74, 0x112F1778, 0x099202CB, 0x0C05124B, 0x195316A4, 0x01600685, 0x1E3B1FE2, 0x189014E3, 0x0B5E1FD7, 0x0E0311F8, 0x08E000F7, 0x174E00DE, 0x160702DF, 0x1B5A15BF, 0x03A11237, 0x01D01704 }, { 0x0C3D12A3, 0x0C501C0C, 0x17AD1300, 0x1715003F, 0x03F719F8, 0x18031ED8, 0x1D980667, 0x0F681896, 0x1B7D00BF, 0x011C14CE, 0x0FA000B4, 0x1C3501B0, 0x0D901C55, 0x06790C10, 0x029E0736, 0x0DEB0400, 0x034F183A, 0x030619B4, 0x0DEF0033, 0x00E71AC7 }, { 0x1B7D1393, 0x1B3B1076, 0x0BED1B4D, 0x13011F3A, 0x0E0E1238, 0x156A132B, 0x013A02D3, 0x160A0D01, 0x1CED1EE9, 0x00C5165D, 0x184C157E, 0x08141A83, 0x153C0DA5, 0x1ED70F9D, 0x05170D51, 0x02CF13B8, 0x18AE1771, 0x1B04113F, 0x05EC11E9, 0x015A16B3 }, { 0x04A41EE0, 0x1D1412E4, 0x1C591D79, 0x118511B7, 0x14F00ACB, 0x1AE31E1C, 0x049C0D51, 0x016E061E, 0x1DB71EDF, 0x01D41A35, 0x0E8208FA, 0x14441293, 0x011F1E85, 0x1D54137A, 0x026B114F, 0x151D0832, 0x00A50964, 0x1F9C1E1C, 0x064B12C9, 0x005409D1 }, { 0x062B123F, 0x0C0D0501, 0x183704C3, 0x08E31120, 0x0A2E0A6C, 0x14440FED, 0x090A0D1E, 0x13271964, 0x0B590A3A, 0x019D1D9B, 0x05780773, 0x09770A91, 0x0F770CA3, 0x053F19D4, 0x02C80DED, 0x1A761304, 0x091E0DD9, 0x15D201B8, 0x151109AA, 0x010F0198 }, { 0x05E101D1, 0x072314DD, 0x045F1433, 0x1A041541, 0x10B3142E, 0x01840736, 0x1C1B19DB, 0x098B0418, 0x1DBC083B, 0x007D1444, 0x01511740, 0x11DD1F3A, 0x04ED0E2F, 0x1B4B1A62, 0x10480D04, 0x09E911A2, 0x04211AFA, 0x19140893, 0x04D60CC4, 0x01210648 }, { 0x112703C4, 0x018B1BA1, 0x164C1D50, 0x05160BE0, 0x0BCC1830, 0x01CB1554, 0x13291732, 0x1B2B1918, 0x0DED0817, 0x00E80775, 0x0A2401D3, 0x0BFE08B3, 0x0E531199, 0x058616E9, 0x04770B91, 0x110F0C55, 0x19C11554, 0x0BFB1159, 0x03541C38, 0x000E1C2D }, { 0x10390C01, 0x02BB0751, 0x0AC5098E, 0x096C17AB, 0x03C90E28, 0x10BD18BF, 0x002E1F2D, 0x092B0986, 0x1BD700AC, 0x002E1F20, 0x1E3D1FD8, 0x077718BB, 0x06F919C4, 0x187407ED, 0x11370E14, 0x081E139C, 0x00481ADB, 0x14AB0289, 0x066A0EBE, 0x00C70ED6 }, { 0x0694120B, 0x124E1CC9, 0x0E2F0570, 0x17CF081A, 0x078906AC, 0x066D17CF, 0x1B3207F4, 0x0C5705E9, 0x10001C38, 0x00A919DE, 0x06851375, 0x0F900BD8, 0x080401BA, 0x0EEE0D42, 0x1B8B11EA, 0x0B4519F0, 0x090F18C0, 0x062E1508, 0x0DD909F4, 0x01EB067C }, { 0x0CDC1D5F, 0x0D1818F9, 0x07781636, 0x125B18E8, 0x0D7003AF, 0x13110099, 0x1D9B1899, 0x175C1EB7, 0x0E34171A, 0x01E01153, 0x081A0F36, 0x0B391783, 0x1D1F147E, 0x19CE16D7, 0x11511B21, 0x1F2C10F9, 0x12CA0E51, 0x05A31D39, 0x171A192E, 0x016B0E4F } }; /* * Lookup one of the Gwin[] values, by index. This is constant-time. */ static void lookup_Gwin(p256_jacobian *T, uint32_t idx) { uint32_t xy[20]; uint32_t k; size_t u; memset(xy, 0, sizeof xy); for (k = 0; k < 15; k ++) { uint32_t m; m = -EQ(idx, k + 1); for (u = 0; u < 20; u ++) { xy[u] |= m & Gwin[k][u]; } } for (u = 0; u < 10; u ++) { T->x[(u << 1) + 0] = xy[u] & 0xFFFF; T->x[(u << 1) + 1] = xy[u] >> 16; T->y[(u << 1) + 0] = xy[u + 10] & 0xFFFF; T->y[(u << 1) + 1] = xy[u + 10] >> 16; } memset(T->z, 0, sizeof T->z); T->z[0] = 1; } /* * Multiply the generator by an integer. The integer is assumed non-zero * and lower than the curve order. */ static void p256_mulgen(p256_jacobian *P, const unsigned char *x, size_t xlen) { /* * qz is a flag that is initially 1, and remains equal to 1 * as long as the point is the point at infinity. * * We use a 4-bit window to handle multiplier bits by groups * of 4. The precomputed window is constant static data, with * points in affine coordinates; we use a constant-time lookup. */ p256_jacobian Q; uint32_t qz; memset(&Q, 0, sizeof Q); qz = 1; while (xlen -- > 0) { int k; unsigned bx; bx = *x ++; for (k = 0; k < 2; k ++) { uint32_t bits; uint32_t bnz; p256_jacobian T, U; p256_double(&Q); p256_double(&Q); p256_double(&Q); p256_double(&Q); bits = (bx >> 4) & 0x0F; bnz = NEQ(bits, 0); lookup_Gwin(&T, bits); U = Q; p256_add_mixed(&U, &T); CCOPY(bnz & qz, &Q, &T, sizeof Q); CCOPY(bnz & ~qz, &Q, &U, sizeof Q); qz &= ~bnz; bx <<= 4; } } *P = Q; } static const unsigned char P256_G[] = { 0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B, 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40, 0x68, 0x37, 0xBF, 0x51, 0xF5 }; static const unsigned char P256_N[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51 }; static const unsigned char * api_generator(int curve, size_t *len) { (void)curve; *len = sizeof P256_G; return P256_G; } static const unsigned char * api_order(int curve, size_t *len) { (void)curve; *len = sizeof P256_N; return P256_N; } static size_t api_xoff(int curve, size_t *len) { (void)curve; *len = 32; return 1; } static uint32_t api_mul(unsigned char *G, size_t Glen, const unsigned char *x, size_t xlen, int curve) { uint32_t r; p256_jacobian P; (void)curve; r = p256_decode(&P, G, Glen); p256_mul(&P, x, xlen); if (Glen >= 65) { p256_to_affine(&P); p256_encode(G, &P); } return r; } static size_t api_mulgen(unsigned char *R, const unsigned char *x, size_t xlen, int curve) { p256_jacobian P; (void)curve; p256_mulgen(&P, x, xlen); p256_to_affine(&P); p256_encode(R, &P); return 65; /* const unsigned char *G; size_t Glen; G = api_generator(curve, &Glen); memcpy(R, G, Glen); api_mul(R, Glen, x, xlen, curve); return Glen; */ } static uint32_t api_muladd(unsigned char *A, const unsigned char *B, size_t len, const unsigned char *x, size_t xlen, const unsigned char *y, size_t ylen, int curve) { p256_jacobian P, Q; uint32_t r, t, z; int i; (void)curve; r = p256_decode(&P, A, len); p256_mul(&P, x, xlen); if (B == NULL) { p256_mulgen(&Q, y, ylen); } else { r &= p256_decode(&Q, B, len); p256_mul(&Q, y, ylen); } /* * The final addition may fail in case both points are equal. */ t = p256_add(&P, &Q); reduce_final_f256(P.z); z = 0; for (i = 0; i < 20; i ++) { z |= P.z[i]; } z = EQ(z, 0); p256_double(&Q); /* * If z is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we * have the following: * * z = 0, t = 0 return P (normal addition) * z = 0, t = 1 return P (normal addition) * z = 1, t = 0 return Q (a 'double' case) * z = 1, t = 1 report an error (P+Q = 0) */ CCOPY(z & ~t, &P, &Q, sizeof Q); p256_to_affine(&P); p256_encode(A, &P); r &= ~(z & t); return r; } /* see bearssl_ec.h */ const br_ec_impl br_ec_p256_m15 = { (uint32_t)0x00800000, &api_generator, &api_order, &api_xoff, &api_mul, &api_mulgen, &api_muladd };