/* * Copyright (c) 2017 Thomas Pornin * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "inner.h" #define I15_LEN ((BR_MAX_EC_SIZE + 29) / 15) #define POINT_LEN (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1)) /* see bearssl_ec.h */ uint32_t br_ecdsa_i15_vrfy_raw(const br_ec_impl *impl, const void *hash, size_t hash_len, const br_ec_public_key *pk, const void *sig, size_t sig_len) { /* * IMPORTANT: this code is fit only for curves with a prime * order. This is needed so that modular reduction of the X * coordinate of a point can be done with a simple subtraction. */ const br_ec_curve_def *cd; uint16_t n[I15_LEN], r[I15_LEN], s[I15_LEN], t1[I15_LEN], t2[I15_LEN]; unsigned char tx[(BR_MAX_EC_SIZE + 7) >> 3]; unsigned char ty[(BR_MAX_EC_SIZE + 7) >> 3]; unsigned char eU[POINT_LEN]; size_t nlen, rlen, ulen; uint16_t n0i; uint32_t res; /* * If the curve is not supported, then report an error. */ if (((impl->supported_curves >> pk->curve) & 1) == 0) { return 0; } /* * Get the curve parameters (generator and order). */ switch (pk->curve) { case BR_EC_secp256r1: cd = &br_secp256r1; break; case BR_EC_secp384r1: cd = &br_secp384r1; break; case BR_EC_secp521r1: cd = &br_secp521r1; break; default: return 0; } /* * Signature length must be even. */ if (sig_len & 1) { return 0; } rlen = sig_len >> 1; /* * Public key point must have the proper size for this curve. */ if (pk->qlen != cd->generator_len) { return 0; } /* * Get modulus; then decode the r and s values. They must be * lower than the modulus, and s must not be null. */ nlen = cd->order_len; br_i15_decode(n, cd->order, nlen); n0i = br_i15_ninv15(n[1]); if (!br_i15_decode_mod(r, sig, rlen, n)) { return 0; } if (!br_i15_decode_mod(s, (const unsigned char *)sig + rlen, rlen, n)) { return 0; } if (br_i15_iszero(s)) { return 0; } /* * Invert s. We do that with a modular exponentiation; we use * the fact that for all the curves we support, the least * significant byte is not 0 or 1, so we can subtract 2 without * any carry to process. * We also want 1/s in Montgomery representation, which can be * done by converting _from_ Montgomery representation before * the inversion (because (1/s)*R = 1/(s/R)). */ br_i15_from_monty(s, n, n0i); memcpy(tx, cd->order, nlen); tx[nlen - 1] -= 2; br_i15_modpow(s, tx, nlen, n, n0i, t1, t2); /* * Truncate the hash to the modulus length (in bits) and reduce * it modulo the curve order. The modular reduction can be done * with a subtraction since the truncation already reduced the * value to the modulus bit length. */ br_ecdsa_i15_bits2int(t1, hash, hash_len, n[0]); br_i15_sub(t1, n, br_i15_sub(t1, n, 0) ^ 1); /* * Multiply the (truncated, reduced) hash value with 1/s, result in * t2, encoded in ty. */ br_i15_montymul(t2, t1, s, n, n0i); br_i15_encode(ty, nlen, t2); /* * Multiply r with 1/s, result in t1, encoded in tx. */ br_i15_montymul(t1, r, s, n, n0i); br_i15_encode(tx, nlen, t1); /* * Compute the point x*Q + y*G. */ ulen = cd->generator_len; memcpy(eU, pk->q, ulen); res = impl->muladd(eU, NULL, ulen, tx, nlen, ty, nlen, cd->curve); /* * Get the X coordinate, reduce modulo the curve order, and * compare with the 'r' value. * * The modular reduction can be done with subtractions because * we work with curves of prime order, so the curve order is * close to the field order (Hasse's theorem). */ br_i15_zero(t1, n[0]); br_i15_decode(t1, &eU[1], ulen >> 1); t1[0] = n[0]; br_i15_sub(t1, n, br_i15_sub(t1, n, 0) ^ 1); res &= ~br_i15_sub(t1, r, 1); res &= br_i15_iszero(t1); return res; }