/* * Copyright (c) 2017 Thomas Pornin * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "inner.h" #if BR_INT128 || BR_UMUL128 #if BR_INT128 /* * Compute x*y+v1+v2. Operands are 64-bit, and result is 128-bit, with * high word in "hi" and low word in "lo". */ #define FMA1(hi, lo, x, y, v1, v2) do { \ unsigned __int128 fmaz; \ fmaz = (unsigned __int128)(x) * (unsigned __int128)(y) \ + (unsigned __int128)(v1) + (unsigned __int128)(v2); \ (hi) = (uint64_t)(fmaz >> 64); \ (lo) = (uint64_t)fmaz; \ } while (0) /* * Compute x1*y1+x2*y2+v1+v2. Operands are 64-bit, and result is 128-bit, * with high word in "hi" and low word in "lo". * * Callers should ensure that the two inner products, and the v1 and v2 * operands, are multiple of 4 (this is not used by this specific definition * but may help other implementations). */ #define FMA2(hi, lo, x1, y1, x2, y2, v1, v2) do { \ unsigned __int128 fmaz; \ fmaz = (unsigned __int128)(x1) * (unsigned __int128)(y1) \ + (unsigned __int128)(x2) * (unsigned __int128)(y2) \ + (unsigned __int128)(v1) + (unsigned __int128)(v2); \ (hi) = (uint64_t)(fmaz >> 64); \ (lo) = (uint64_t)fmaz; \ } while (0) #elif BR_UMUL128 #include #define FMA1(hi, lo, x, y, v1, v2) do { \ uint64_t fmahi, fmalo; \ unsigned char fmacc; \ fmalo = _umul128((x), (y), &fmahi); \ fmacc = _addcarry_u64(0, fmalo, (v1), &fmalo); \ _addcarry_u64(fmacc, fmahi, 0, &fmahi); \ fmacc = _addcarry_u64(0, fmalo, (v2), &(lo)); \ _addcarry_u64(fmacc, fmahi, 0, &(hi)); \ } while (0) /* * Normally we should use _addcarry_u64() for FMA2 too, but it makes * Visual Studio crash. Instead we use this version, which leverages * the fact that the vx operands, and the products, are multiple of 4. * This is unfortunately slower. */ #define FMA2(hi, lo, x1, y1, x2, y2, v1, v2) do { \ uint64_t fma1hi, fma1lo; \ uint64_t fma2hi, fma2lo; \ uint64_t fmatt; \ fma1lo = _umul128((x1), (y1), &fma1hi); \ fma2lo = _umul128((x2), (y2), &fma2hi); \ fmatt = (fma1lo >> 2) + (fma2lo >> 2) \ + ((v1) >> 2) + ((v2) >> 2); \ (lo) = fmatt << 2; \ (hi) = fma1hi + fma2hi + (fmatt >> 62); \ } while (0) /* * The FMA2 macro definition we would prefer to use, but it triggers * an internal compiler error in Visual Studio 2015. * #define FMA2(hi, lo, x1, y1, x2, y2, v1, v2) do { \ uint64_t fma1hi, fma1lo; \ uint64_t fma2hi, fma2lo; \ unsigned char fmacc; \ fma1lo = _umul128((x1), (y1), &fma1hi); \ fma2lo = _umul128((x2), (y2), &fma2hi); \ fmacc = _addcarry_u64(0, fma1lo, (v1), &fma1lo); \ _addcarry_u64(fmacc, fma1hi, 0, &fma1hi); \ fmacc = _addcarry_u64(0, fma2lo, (v2), &fma2lo); \ _addcarry_u64(fmacc, fma2hi, 0, &fma2hi); \ fmacc = _addcarry_u64(0, fma1lo, fma2lo, &(lo)); \ _addcarry_u64(fmacc, fma1hi, fma2hi, &(hi)); \ } while (0) */ #endif #define MASK62 ((uint64_t)0x3FFFFFFFFFFFFFFF) #define MUL62_lo(x, y) (((uint64_t)(x) * (uint64_t)(y)) & MASK62) /* * Subtract b from a, and return the final carry. If 'ctl32' is 0, then * a[] is kept unmodified, but the final carry is still computed and * returned. */ static uint32_t i62_sub(uint64_t *a, const uint64_t *b, size_t num, uint32_t ctl32) { uint64_t cc, mask; size_t u; cc = 0; ctl32 = -ctl32; mask = (uint64_t)ctl32 | ((uint64_t)ctl32 << 32); for (u = 0; u < num; u ++) { uint64_t aw, bw, dw; aw = a[u]; bw = b[u]; dw = aw - bw - cc; cc = dw >> 63; dw &= MASK62; a[u] = aw ^ (mask & (dw ^ aw)); } return (uint32_t)cc; } /* * Montgomery multiplication, over arrays of 62-bit values. The * destination array (d) must be distinct from the other operands * (x, y and m). All arrays are in little-endian format (least * significant word comes first) over 'num' words. */ static void montymul(uint64_t *d, const uint64_t *x, const uint64_t *y, const uint64_t *m, size_t num, uint64_t m0i) { uint64_t dh; size_t u, num4; num4 = 1 + ((num - 1) & ~(size_t)3); memset(d, 0, num * sizeof *d); dh = 0; for (u = 0; u < num; u ++) { size_t v; uint64_t f, xu; uint64_t r, zh; uint64_t hi, lo; xu = x[u] << 2; f = MUL62_lo(d[0] + MUL62_lo(x[u], y[0]), m0i) << 2; FMA2(hi, lo, xu, y[0], f, m[0], d[0] << 2, 0); r = hi; for (v = 1; v < num4; v += 4) { FMA2(hi, lo, xu, y[v + 0], f, m[v + 0], d[v + 0] << 2, r << 2); r = hi + (r >> 62); d[v - 1] = lo >> 2; FMA2(hi, lo, xu, y[v + 1], f, m[v + 1], d[v + 1] << 2, r << 2); r = hi + (r >> 62); d[v + 0] = lo >> 2; FMA2(hi, lo, xu, y[v + 2], f, m[v + 2], d[v + 2] << 2, r << 2); r = hi + (r >> 62); d[v + 1] = lo >> 2; FMA2(hi, lo, xu, y[v + 3], f, m[v + 3], d[v + 3] << 2, r << 2); r = hi + (r >> 62); d[v + 2] = lo >> 2; } for (; v < num; v ++) { FMA2(hi, lo, xu, y[v], f, m[v], d[v] << 2, r << 2); r = hi + (r >> 62); d[v - 1] = lo >> 2; } zh = dh + r; d[num - 1] = zh & MASK62; dh = zh >> 62; } i62_sub(d, m, num, (uint32_t)dh | NOT(i62_sub(d, m, num, 0))); } /* * Conversion back from Montgomery representation. */ static void frommonty(uint64_t *x, const uint64_t *m, size_t num, uint64_t m0i) { size_t u, v; for (u = 0; u < num; u ++) { uint64_t f, cc; f = MUL62_lo(x[0], m0i) << 2; cc = 0; for (v = 0; v < num; v ++) { uint64_t hi, lo; FMA1(hi, lo, f, m[v], x[v] << 2, cc); cc = hi << 2; if (v != 0) { x[v - 1] = lo >> 2; } } x[num - 1] = cc >> 2; } i62_sub(x, m, num, NOT(i62_sub(x, m, num, 0))); } /* see inner.h */ uint32_t br_i62_modpow_opt(uint32_t *x31, const unsigned char *e, size_t elen, const uint32_t *m31, uint32_t m0i31, uint64_t *tmp, size_t twlen) { size_t u, mw31num, mw62num; uint64_t *x, *m, *t1, *t2; uint64_t m0i; uint32_t acc; int win_len, acc_len; /* * Get modulus size, in words. */ mw31num = (m31[0] + 31) >> 5; mw62num = (mw31num + 1) >> 1; /* * In order to apply this function, we must have enough room to * copy the operand and modulus into the temporary array, along * with at least two temporaries. If there is not enough room, * switch to br_i31_modpow(). We also use br_i31_modpow() if the * modulus length is not at least four words (94 bits or more). */ if (mw31num < 4 || (mw62num << 2) > twlen) { /* * We assume here that we can split an aligned uint64_t * into two properly aligned uint32_t. Since both types * are supposed to have an exact width with no padding, * then this property must hold. */ size_t txlen; txlen = mw31num + 1; if (twlen < txlen) { return 0; } br_i31_modpow(x31, e, elen, m31, m0i31, (uint32_t *)tmp, (uint32_t *)tmp + txlen); return 1; } /* * Convert x to Montgomery representation: this means that * we replace x with x*2^z mod m, where z is the smallest multiple * of the word size such that 2^z >= m. We want to reuse the 31-bit * functions here (for constant-time operation), but we need z * for a 62-bit word size. */ for (u = 0; u < mw62num; u ++) { br_i31_muladd_small(x31, 0, m31); br_i31_muladd_small(x31, 0, m31); } /* * Assemble operands into arrays of 62-bit words. Note that * all the arrays of 62-bit words that we will handle here * are without any leading size word. * * We also adjust tmp and twlen to account for the words used * for these extra arrays. */ m = tmp; x = tmp + mw62num; tmp += (mw62num << 1); twlen -= (mw62num << 1); for (u = 0; u < mw31num; u += 2) { size_t v; v = u >> 1; if ((u + 1) == mw31num) { m[v] = (uint64_t)m31[u + 1]; x[v] = (uint64_t)x31[u + 1]; } else { m[v] = (uint64_t)m31[u + 1] + ((uint64_t)m31[u + 2] << 31); x[v] = (uint64_t)x31[u + 1] + ((uint64_t)x31[u + 2] << 31); } } /* * Compute window size. We support windows up to 5 bits; for a * window of size k bits, we need 2^k+1 temporaries (for k = 1, * we use special code that uses only 2 temporaries). */ for (win_len = 5; win_len > 1; win_len --) { if ((((uint32_t)1 << win_len) + 1) * mw62num <= twlen) { break; } } t1 = tmp; t2 = tmp + mw62num; /* * Compute m0i, which is equal to -(1/m0) mod 2^62. We were * provided with m0i31, which already fulfills this property * modulo 2^31; the single expression below is then sufficient. */ m0i = (uint64_t)m0i31; m0i = MUL62_lo(m0i, (uint64_t)2 + MUL62_lo(m0i, m[0])); /* * Compute window contents. If the window has size one bit only, * then t2 is set to x; otherwise, t2[0] is left untouched, and * t2[k] is set to x^k (for k >= 1). */ if (win_len == 1) { memcpy(t2, x, mw62num * sizeof *x); } else { uint64_t *base; memcpy(t2 + mw62num, x, mw62num * sizeof *x); base = t2 + mw62num; for (u = 2; u < ((unsigned)1 << win_len); u ++) { montymul(base + mw62num, base, x, m, mw62num, m0i); base += mw62num; } } /* * Set x to 1, in Montgomery representation. We again use the * 31-bit code. */ br_i31_zero(x31, m31[0]); x31[(m31[0] + 31) >> 5] = 1; br_i31_muladd_small(x31, 0, m31); if (mw31num & 1) { br_i31_muladd_small(x31, 0, m31); } for (u = 0; u < mw31num; u += 2) { size_t v; v = u >> 1; if ((u + 1) == mw31num) { x[v] = (uint64_t)x31[u + 1]; } else { x[v] = (uint64_t)x31[u + 1] + ((uint64_t)x31[u + 2] << 31); } } /* * We process bits from most to least significant. At each * loop iteration, we have acc_len bits in acc. */ acc = 0; acc_len = 0; while (acc_len > 0 || elen > 0) { int i, k; uint32_t bits; uint64_t mask1, mask2; /* * Get the next bits. */ k = win_len; if (acc_len < win_len) { if (elen > 0) { acc = (acc << 8) | *e ++; elen --; acc_len += 8; } else { k = acc_len; } } bits = (acc >> (acc_len - k)) & (((uint32_t)1 << k) - 1); acc_len -= k; /* * We could get exactly k bits. Compute k squarings. */ for (i = 0; i < k; i ++) { montymul(t1, x, x, m, mw62num, m0i); memcpy(x, t1, mw62num * sizeof *x); } /* * Window lookup: we want to set t2 to the window * lookup value, assuming the bits are non-zero. If * the window length is 1 bit only, then t2 is * already set; otherwise, we do a constant-time lookup. */ if (win_len > 1) { uint64_t *base; memset(t2, 0, mw62num * sizeof *t2); base = t2 + mw62num; for (u = 1; u < ((uint32_t)1 << k); u ++) { uint64_t mask; size_t v; mask = -(uint64_t)EQ(u, bits); for (v = 0; v < mw62num; v ++) { t2[v] |= mask & base[v]; } base += mw62num; } } /* * Multiply with the looked-up value. We keep the product * only if the exponent bits are not all-zero. */ montymul(t1, x, t2, m, mw62num, m0i); mask1 = -(uint64_t)EQ(bits, 0); mask2 = ~mask1; for (u = 0; u < mw62num; u ++) { x[u] = (mask1 & x[u]) | (mask2 & t1[u]); } } /* * Convert back from Montgomery representation. */ frommonty(x, m, mw62num, m0i); /* * Convert result into 31-bit words. */ for (u = 0; u < mw31num; u += 2) { uint64_t zw; zw = x[u >> 1]; x31[u + 1] = (uint32_t)zw & 0x7FFFFFFF; if ((u + 1) < mw31num) { x31[u + 2] = (uint32_t)(zw >> 31); } } return 1; } #else /* see inner.h */ uint32_t br_i62_modpow_opt(uint32_t *x31, const unsigned char *e, size_t elen, const uint32_t *m31, uint32_t m0i31, uint64_t *tmp, size_t twlen) { size_t mwlen; mwlen = (m31[0] + 63) >> 5; if (twlen < mwlen) { return 0; } return br_i31_modpow_opt(x31, e, elen, m31, m0i31, (uint32_t *)tmp, twlen << 1); } #endif /* see inner.h */ uint32_t br_i62_modpow_opt_as_i31(uint32_t *x31, const unsigned char *e, size_t elen, const uint32_t *m31, uint32_t m0i31, uint32_t *tmp, size_t twlen) { /* * As documented, this function expects the 'tmp' argument to be * 64-bit aligned. This is OK since this function is internal (it * is not part of BearSSL's public API). */ return br_i62_modpow_opt(x31, e, elen, m31, m0i31, (uint64_t *)tmp, twlen >> 1); }