/* * Copyright (c) 2016 Thomas Pornin * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "inner.h" /* * During key schedule, we need to apply bit extraction PC-2 then permute * things into our bitslice representation. PC-2 extracts 48 bits out * of two 28-bit words (kl and kr), and we store these bits into two * 32-bit words sk0 and sk1. * * -- bit 16+x of sk0 comes from bit QL0[x] of kl * -- bit x of sk0 comes from bit QR0[x] of kr * -- bit 16+x of sk1 comes from bit QL1[x] of kl * -- bit x of sk1 comes from bit QR1[x] of kr */ static const unsigned char QL0[] = { 17, 4, 27, 23, 13, 22, 7, 18, 16, 24, 2, 20, 1, 8, 15, 26 }; static const unsigned char QR0[] = { 25, 19, 9, 1, 5, 11, 23, 8, 17, 0, 22, 3, 6, 20, 27, 24 }; static const unsigned char QL1[] = { 28, 28, 14, 11, 28, 28, 25, 0, 28, 28, 5, 9, 28, 28, 12, 21 }; static const unsigned char QR1[] = { 28, 28, 15, 4, 28, 28, 26, 16, 28, 28, 12, 7, 28, 28, 10, 14 }; /* * 32-bit rotation. The C compiler is supposed to recognize it as a * rotation and use the local architecture rotation opcode (if available). */ static inline uint32_t rotl(uint32_t x, int n) { return (x << n) | (x >> (32 - n)); } /* * Compute key schedule for 8 key bytes (produces 32 subkey words). */ static void keysched_unit(uint32_t *skey, const void *key) { int i; br_des_keysched_unit(skey, key); /* * Apply PC-2 + bitslicing. */ for (i = 0; i < 16; i ++) { uint32_t kl, kr, sk0, sk1; int j; kl = skey[(i << 1) + 0]; kr = skey[(i << 1) + 1]; sk0 = 0; sk1 = 0; for (j = 0; j < 16; j ++) { sk0 <<= 1; sk1 <<= 1; sk0 |= ((kl >> QL0[j]) & (uint32_t)1) << 16; sk0 |= (kr >> QR0[j]) & (uint32_t)1; sk1 |= ((kl >> QL1[j]) & (uint32_t)1) << 16; sk1 |= (kr >> QR1[j]) & (uint32_t)1; } skey[(i << 1) + 0] = sk0; skey[(i << 1) + 1] = sk1; } #if 0 /* * Speed-optimized version for PC-2 + bitslicing. * (Unused. Kept for reference only.) */ sk0 = kl & (uint32_t)0x00100000; sk0 |= (kl & (uint32_t)0x08008000) << 2; sk0 |= (kl & (uint32_t)0x00400000) << 4; sk0 |= (kl & (uint32_t)0x00800000) << 5; sk0 |= (kl & (uint32_t)0x00040000) << 6; sk0 |= (kl & (uint32_t)0x00010000) << 7; sk0 |= (kl & (uint32_t)0x00000100) << 10; sk0 |= (kl & (uint32_t)0x00022000) << 14; sk0 |= (kl & (uint32_t)0x00000082) << 18; sk0 |= (kl & (uint32_t)0x00000004) << 19; sk0 |= (kl & (uint32_t)0x04000000) >> 10; sk0 |= (kl & (uint32_t)0x00000010) << 26; sk0 |= (kl & (uint32_t)0x01000000) >> 2; sk0 |= kr & (uint32_t)0x00000100; sk0 |= (kr & (uint32_t)0x00000008) << 1; sk0 |= (kr & (uint32_t)0x00000200) << 4; sk0 |= rotl(kr & (uint32_t)0x08000021, 6); sk0 |= (kr & (uint32_t)0x01000000) >> 24; sk0 |= (kr & (uint32_t)0x00000002) << 11; sk0 |= (kr & (uint32_t)0x00100000) >> 18; sk0 |= (kr & (uint32_t)0x00400000) >> 17; sk0 |= (kr & (uint32_t)0x00800000) >> 14; sk0 |= (kr & (uint32_t)0x02020000) >> 10; sk0 |= (kr & (uint32_t)0x00080000) >> 5; sk0 |= (kr & (uint32_t)0x00000040) >> 3; sk0 |= (kr & (uint32_t)0x00000800) >> 1; sk1 = kl & (uint32_t)0x02000000; sk1 |= (kl & (uint32_t)0x00001000) << 5; sk1 |= (kl & (uint32_t)0x00000200) << 11; sk1 |= (kl & (uint32_t)0x00004000) << 15; sk1 |= (kl & (uint32_t)0x00000020) << 16; sk1 |= (kl & (uint32_t)0x00000800) << 17; sk1 |= (kl & (uint32_t)0x00000001) << 24; sk1 |= (kl & (uint32_t)0x00200000) >> 5; sk1 |= (kr & (uint32_t)0x00000010) << 8; sk1 |= (kr & (uint32_t)0x04000000) >> 17; sk1 |= (kr & (uint32_t)0x00004000) >> 14; sk1 |= (kr & (uint32_t)0x00000400) >> 9; sk1 |= (kr & (uint32_t)0x00010000) >> 8; sk1 |= (kr & (uint32_t)0x00001000) >> 7; sk1 |= (kr & (uint32_t)0x00000080) >> 3; sk1 |= (kr & (uint32_t)0x00008000) >> 2; #endif } /* see inner.h */ unsigned br_des_ct_keysched(uint32_t *skey, const void *key, size_t key_len) { switch (key_len) { case 8: keysched_unit(skey, key); return 1; case 16: keysched_unit(skey, key); keysched_unit(skey + 32, (const unsigned char *)key + 8); br_des_rev_skey(skey + 32); memcpy(skey + 64, skey, 32 * sizeof *skey); return 3; default: keysched_unit(skey, key); keysched_unit(skey + 32, (const unsigned char *)key + 8); br_des_rev_skey(skey + 32); keysched_unit(skey + 64, (const unsigned char *)key + 16); return 3; } } /* * DES confusion function. This function performs expansion E (32 to * 48 bits), XOR with subkey, S-boxes, and permutation P. */ static inline uint32_t Fconf(uint32_t r0, const uint32_t *sk) { /* * Each 6->4 S-box is virtually turned into four 6->1 boxes; we * thus end up with 32 boxes that we call "T-boxes" here. We will * evaluate them with bitslice code. * * Each T-box is a circuit of multiplexers (sort of) and thus * takes 70 inputs: the 6 actual T-box inputs, and 64 constants * that describe the T-box output for all combinations of the * 6 inputs. With this model, all T-boxes are identical (with * distinct inputs) and thus can be executed in parallel with * bitslice code. * * T-boxes are numbered from 0 to 31, in least-to-most * significant order. Thus, S-box S1 corresponds to T-boxes 31, * 30, 29 and 28, in that order. T-box 'n' is computed with the * bits at rank 'n' in the 32-bit words. * * Words x0 to x5 contain the T-box inputs 0 to 5. */ uint32_t x0, x1, x2, x3, x4, x5, z0; uint32_t y0, y1, y2, y3, y4, y5, y6, y7, y8, y9; uint32_t y10, y11, y12, y13, y14, y15, y16, y17, y18, y19; uint32_t y20, y21, y22, y23, y24, y25, y26, y27, y28, y29; uint32_t y30; /* * Spread input bits over the 6 input words x*. */ x1 = r0 & (uint32_t)0x11111111; x2 = (r0 >> 1) & (uint32_t)0x11111111; x3 = (r0 >> 2) & (uint32_t)0x11111111; x4 = (r0 >> 3) & (uint32_t)0x11111111; x1 = (x1 << 4) - x1; x2 = (x2 << 4) - x2; x3 = (x3 << 4) - x3; x4 = (x4 << 4) - x4; x0 = (x4 << 4) | (x4 >> 28); x5 = (x1 >> 4) | (x1 << 28); /* * XOR with the subkey for this round. */ x0 ^= sk[0]; x1 ^= sk[1]; x2 ^= sk[2]; x3 ^= sk[3]; x4 ^= sk[4]; x5 ^= sk[5]; /* * The T-boxes are done in parallel, since they all use a * "tree of multiplexer". We use "fake multiplexers": * * y = a ^ (x & b) * * computes y as either 'a' (if x == 0) or 'a ^ b' (if x == 1). */ y0 = (uint32_t)0xEFA72C4D ^ (x0 & (uint32_t)0xEC7AC69C); y1 = (uint32_t)0xAEAAEDFF ^ (x0 & (uint32_t)0x500FB821); y2 = (uint32_t)0x37396665 ^ (x0 & (uint32_t)0x40EFA809); y3 = (uint32_t)0x68D7B833 ^ (x0 & (uint32_t)0xA5EC0B28); y4 = (uint32_t)0xC9C755BB ^ (x0 & (uint32_t)0x252CF820); y5 = (uint32_t)0x73FC3606 ^ (x0 & (uint32_t)0x40205801); y6 = (uint32_t)0xA2A0A918 ^ (x0 & (uint32_t)0xE220F929); y7 = (uint32_t)0x8222BD90 ^ (x0 & (uint32_t)0x44A3F9E1); y8 = (uint32_t)0xD6B6AC77 ^ (x0 & (uint32_t)0x794F104A); y9 = (uint32_t)0x3069300C ^ (x0 & (uint32_t)0x026F320B); y10 = (uint32_t)0x6CE0D5CC ^ (x0 & (uint32_t)0x7640B01A); y11 = (uint32_t)0x59A9A22D ^ (x0 & (uint32_t)0x238F1572); y12 = (uint32_t)0xAC6D0BD4 ^ (x0 & (uint32_t)0x7A63C083); y13 = (uint32_t)0x21C83200 ^ (x0 & (uint32_t)0x11CCA000); y14 = (uint32_t)0xA0E62188 ^ (x0 & (uint32_t)0x202F69AA); /* y15 = (uint32_t)0x00000000 ^ (x0 & (uint32_t)0x00000000); */ y16 = (uint32_t)0xAF7D655A ^ (x0 & (uint32_t)0x51B33BE9); y17 = (uint32_t)0xF0168AA3 ^ (x0 & (uint32_t)0x3B0FE8AE); y18 = (uint32_t)0x90AA30C6 ^ (x0 & (uint32_t)0x90BF8816); y19 = (uint32_t)0x5AB2750A ^ (x0 & (uint32_t)0x09E34F9B); y20 = (uint32_t)0x5391BE65 ^ (x0 & (uint32_t)0x0103BE88); y21 = (uint32_t)0x93372BAF ^ (x0 & (uint32_t)0x49AC8E25); y22 = (uint32_t)0xF288210C ^ (x0 & (uint32_t)0x922C313D); y23 = (uint32_t)0x920AF5C0 ^ (x0 & (uint32_t)0x70EF31B0); y24 = (uint32_t)0x63D312C0 ^ (x0 & (uint32_t)0x6A707100); y25 = (uint32_t)0x537B3006 ^ (x0 & (uint32_t)0xB97C9011); y26 = (uint32_t)0xA2EFB0A5 ^ (x0 & (uint32_t)0xA320C959); y27 = (uint32_t)0xBC8F96A5 ^ (x0 & (uint32_t)0x6EA0AB4A); y28 = (uint32_t)0xFAD176A5 ^ (x0 & (uint32_t)0x6953DDF8); y29 = (uint32_t)0x665A14A3 ^ (x0 & (uint32_t)0xF74F3E2B); y30 = (uint32_t)0xF2EFF0CC ^ (x0 & (uint32_t)0xF0306CAD); /* y31 = (uint32_t)0x00000000 ^ (x0 & (uint32_t)0x00000000); */ y0 = y0 ^ (x1 & y1); y1 = y2 ^ (x1 & y3); y2 = y4 ^ (x1 & y5); y3 = y6 ^ (x1 & y7); y4 = y8 ^ (x1 & y9); y5 = y10 ^ (x1 & y11); y6 = y12 ^ (x1 & y13); y7 = y14; /* was: y14 ^ (x1 & y15) */ y8 = y16 ^ (x1 & y17); y9 = y18 ^ (x1 & y19); y10 = y20 ^ (x1 & y21); y11 = y22 ^ (x1 & y23); y12 = y24 ^ (x1 & y25); y13 = y26 ^ (x1 & y27); y14 = y28 ^ (x1 & y29); y15 = y30; /* was: y30 ^ (x1 & y31) */ y0 = y0 ^ (x2 & y1); y1 = y2 ^ (x2 & y3); y2 = y4 ^ (x2 & y5); y3 = y6 ^ (x2 & y7); y4 = y8 ^ (x2 & y9); y5 = y10 ^ (x2 & y11); y6 = y12 ^ (x2 & y13); y7 = y14 ^ (x2 & y15); y0 = y0 ^ (x3 & y1); y1 = y2 ^ (x3 & y3); y2 = y4 ^ (x3 & y5); y3 = y6 ^ (x3 & y7); y0 = y0 ^ (x4 & y1); y1 = y2 ^ (x4 & y3); y0 = y0 ^ (x5 & y1); /* * The P permutation: * -- Each bit move is converted into a mask + left rotation. * -- Rotations that use the same movement are coalesced together. * -- Left and right shifts are used as alternatives to a rotation * where appropriate (this will help architectures that do not have * a rotation opcode). */ z0 = (y0 & (uint32_t)0x00000004) << 3; z0 |= (y0 & (uint32_t)0x00004000) << 4; z0 |= rotl(y0 & 0x12020120, 5); z0 |= (y0 & (uint32_t)0x00100000) << 6; z0 |= (y0 & (uint32_t)0x00008000) << 9; z0 |= (y0 & (uint32_t)0x04000000) >> 22; z0 |= (y0 & (uint32_t)0x00000001) << 11; z0 |= rotl(y0 & 0x20000200, 12); z0 |= (y0 & (uint32_t)0x00200000) >> 19; z0 |= (y0 & (uint32_t)0x00000040) << 14; z0 |= (y0 & (uint32_t)0x00010000) << 15; z0 |= (y0 & (uint32_t)0x00000002) << 16; z0 |= rotl(y0 & 0x40801800, 17); z0 |= (y0 & (uint32_t)0x00080000) >> 13; z0 |= (y0 & (uint32_t)0x00000010) << 21; z0 |= (y0 & (uint32_t)0x01000000) >> 10; z0 |= rotl(y0 & 0x88000008, 24); z0 |= (y0 & (uint32_t)0x00000480) >> 7; z0 |= (y0 & (uint32_t)0x00442000) >> 6; return z0; } /* * Process one block through 16 successive rounds, omitting the swap * in the final round. */ static void process_block_unit(uint32_t *pl, uint32_t *pr, const uint32_t *sk_exp) { int i; uint32_t l, r; l = *pl; r = *pr; for (i = 0; i < 16; i ++) { uint32_t t; t = l ^ Fconf(r, sk_exp); l = r; r = t; sk_exp += 6; } *pl = r; *pr = l; } /* see inner.h */ void br_des_ct_process_block(unsigned num_rounds, const uint32_t *sk_exp, void *block) { unsigned char *buf; uint32_t l, r; buf = block; l = br_dec32be(buf); r = br_dec32be(buf + 4); br_des_do_IP(&l, &r); while (num_rounds -- > 0) { process_block_unit(&l, &r, sk_exp); sk_exp += 96; } br_des_do_invIP(&l, &r); br_enc32be(buf, l); br_enc32be(buf + 4, r); } /* see inner.h */ void br_des_ct_skey_expand(uint32_t *sk_exp, unsigned num_rounds, const uint32_t *skey) { num_rounds <<= 4; while (num_rounds -- > 0) { uint32_t v, w0, w1, w2, w3; v = *skey ++; w0 = v & 0x11111111; w1 = (v >> 1) & 0x11111111; w2 = (v >> 2) & 0x11111111; w3 = (v >> 3) & 0x11111111; *sk_exp ++ = (w0 << 4) - w0; *sk_exp ++ = (w1 << 4) - w1; *sk_exp ++ = (w2 << 4) - w2; *sk_exp ++ = (w3 << 4) - w3; v = *skey ++; w0 = v & 0x11111111; w1 = (v >> 1) & 0x11111111; *sk_exp ++ = (w0 << 4) - w0; *sk_exp ++ = (w1 << 4) - w1; } }