/* graph.c (basic graph routines) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2009-2016 Andrew Makhorin, Department for Applied * Informatics, Moscow Aviation Institute, Moscow, Russia. All rights * reserved. E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "avl.h" #include "dmp.h" #include "env.h" #include "glpk.h" /* CAUTION: DO NOT CHANGE THE LIMITS BELOW */ #define NV_MAX 100000000 /* = 100*10^6 */ /* maximal number of vertices in the graph */ #define NA_MAX 500000000 /* = 500*10^6 */ /* maximal number of arcs in the graph */ /*********************************************************************** * NAME * * glp_create_graph - create graph * * SYNOPSIS * * glp_graph *glp_create_graph(int v_size, int a_size); * * DESCRIPTION * * The routine creates a new graph, which initially is empty, i.e. has * no vertices and arcs. * * The parameter v_size specifies the size of data associated with each * vertex of the graph (0 to 256 bytes). * * The parameter a_size specifies the size of data associated with each * arc of the graph (0 to 256 bytes). * * RETURNS * * The routine returns a pointer to the graph created. */ static void create_graph(glp_graph *G, int v_size, int a_size) { G->pool = dmp_create_pool(); G->name = NULL; G->nv_max = 50; G->nv = G->na = 0; G->v = xcalloc(1+G->nv_max, sizeof(glp_vertex *)); G->index = NULL; G->v_size = v_size; G->a_size = a_size; return; } glp_graph *glp_create_graph(int v_size, int a_size) { glp_graph *G; if (!(0 <= v_size && v_size <= 256)) xerror("glp_create_graph: v_size = %d; invalid size of vertex " "data\n", v_size); if (!(0 <= a_size && a_size <= 256)) xerror("glp_create_graph: a_size = %d; invalid size of arc dat" "a\n", a_size); G = xmalloc(sizeof(glp_graph)); create_graph(G, v_size, a_size); return G; } /*********************************************************************** * NAME * * glp_set_graph_name - assign (change) graph name * * SYNOPSIS * * void glp_set_graph_name(glp_graph *G, const char *name); * * DESCRIPTION * * The routine glp_set_graph_name assigns a symbolic name specified by * the character string name (1 to 255 chars) to the graph. * * If the parameter name is NULL or an empty string, the routine erases * the existing symbolic name of the graph. */ void glp_set_graph_name(glp_graph *G, const char *name) { if (G->name != NULL) { dmp_free_atom(G->pool, G->name, strlen(G->name)+1); G->name = NULL; } if (!(name == NULL || name[0] == '\0')) { int j; for (j = 0; name[j] != '\0'; j++) { if (j == 256) xerror("glp_set_graph_name: graph name too long\n"); if (iscntrl((unsigned char)name[j])) xerror("glp_set_graph_name: graph name contains invalid " "character(s)\n"); } G->name = dmp_get_atom(G->pool, strlen(name)+1); strcpy(G->name, name); } return; } /*********************************************************************** * NAME * * glp_add_vertices - add new vertices to graph * * SYNOPSIS * * int glp_add_vertices(glp_graph *G, int nadd); * * DESCRIPTION * * The routine glp_add_vertices adds nadd vertices to the specified * graph. New vertices are always added to the end of the vertex list, * so ordinal numbers of existing vertices remain unchanged. * * Being added each new vertex is isolated (has no incident arcs). * * RETURNS * * The routine glp_add_vertices returns an ordinal number of the first * new vertex added to the graph. */ int glp_add_vertices(glp_graph *G, int nadd) { int i, nv_new; if (nadd < 1) xerror("glp_add_vertices: nadd = %d; invalid number of vertice" "s\n", nadd); if (nadd > NV_MAX - G->nv) xerror("glp_add_vertices: nadd = %d; too many vertices\n", nadd); /* determine new number of vertices */ nv_new = G->nv + nadd; /* increase the room, if necessary */ if (G->nv_max < nv_new) { glp_vertex **save = G->v; while (G->nv_max < nv_new) { G->nv_max += G->nv_max; xassert(G->nv_max > 0); } G->v = xcalloc(1+G->nv_max, sizeof(glp_vertex *)); memcpy(&G->v[1], &save[1], G->nv * sizeof(glp_vertex *)); xfree(save); } /* add new vertices to the end of the vertex list */ for (i = G->nv+1; i <= nv_new; i++) { glp_vertex *v; G->v[i] = v = dmp_get_atom(G->pool, sizeof(glp_vertex)); v->i = i; v->name = NULL; v->entry = NULL; if (G->v_size == 0) v->data = NULL; else { v->data = dmp_get_atom(G->pool, G->v_size); memset(v->data, 0, G->v_size); } v->temp = NULL; v->in = v->out = NULL; } /* set new number of vertices */ G->nv = nv_new; /* return the ordinal number of the first vertex added */ return nv_new - nadd + 1; } /**********************************************************************/ void glp_set_vertex_name(glp_graph *G, int i, const char *name) { /* assign (change) vertex name */ glp_vertex *v; if (!(1 <= i && i <= G->nv)) xerror("glp_set_vertex_name: i = %d; vertex number out of rang" "e\n", i); v = G->v[i]; if (v->name != NULL) { if (v->entry != NULL) { xassert(G->index != NULL); avl_delete_node(G->index, v->entry); v->entry = NULL; } dmp_free_atom(G->pool, v->name, strlen(v->name)+1); v->name = NULL; } if (!(name == NULL || name[0] == '\0')) { int k; for (k = 0; name[k] != '\0'; k++) { if (k == 256) xerror("glp_set_vertex_name: i = %d; vertex name too lon" "g\n", i); if (iscntrl((unsigned char)name[k])) xerror("glp_set_vertex_name: i = %d; vertex name contain" "s invalid character(s)\n", i); } v->name = dmp_get_atom(G->pool, strlen(name)+1); strcpy(v->name, name); if (G->index != NULL) { xassert(v->entry == NULL); v->entry = avl_insert_node(G->index, v->name); avl_set_node_link(v->entry, v); } } return; } /*********************************************************************** * NAME * * glp_add_arc - add new arc to graph * * SYNOPSIS * * glp_arc *glp_add_arc(glp_graph *G, int i, int j); * * DESCRIPTION * * The routine glp_add_arc adds a new arc to the specified graph. * * The parameters i and j specify the ordinal numbers of, resp., tail * and head vertices of the arc. Note that self-loops and multiple arcs * are allowed. * * RETURNS * * The routine glp_add_arc returns a pointer to the arc added. */ glp_arc *glp_add_arc(glp_graph *G, int i, int j) { glp_arc *a; if (!(1 <= i && i <= G->nv)) xerror("glp_add_arc: i = %d; tail vertex number out of range\n" , i); if (!(1 <= j && j <= G->nv)) xerror("glp_add_arc: j = %d; head vertex number out of range\n" , j); if (G->na == NA_MAX) xerror("glp_add_arc: too many arcs\n"); a = dmp_get_atom(G->pool, sizeof(glp_arc)); a->tail = G->v[i]; a->head = G->v[j]; if (G->a_size == 0) a->data = NULL; else { a->data = dmp_get_atom(G->pool, G->a_size); memset(a->data, 0, G->a_size); } a->temp = NULL; a->t_prev = NULL; a->t_next = G->v[i]->out; if (a->t_next != NULL) a->t_next->t_prev = a; a->h_prev = NULL; a->h_next = G->v[j]->in; if (a->h_next != NULL) a->h_next->h_prev = a; G->v[i]->out = G->v[j]->in = a; G->na++; return a; } /*********************************************************************** * NAME * * glp_del_vertices - delete vertices from graph * * SYNOPSIS * * void glp_del_vertices(glp_graph *G, int ndel, const int num[]); * * DESCRIPTION * * The routine glp_del_vertices deletes vertices along with all * incident arcs from the specified graph. Ordinal numbers of vertices * to be deleted should be placed in locations num[1], ..., num[ndel], * ndel > 0. * * Note that deleting vertices involves changing ordinal numbers of * other vertices remaining in the graph. New ordinal numbers of the * remaining vertices are assigned under the assumption that the * original order of vertices is not changed. */ void glp_del_vertices(glp_graph *G, int ndel, const int num[]) { glp_vertex *v; int i, k, nv_new; /* scan the list of vertices to be deleted */ if (!(1 <= ndel && ndel <= G->nv)) xerror("glp_del_vertices: ndel = %d; invalid number of vertice" "s\n", ndel); for (k = 1; k <= ndel; k++) { /* take the number of vertex to be deleted */ i = num[k]; /* obtain pointer to i-th vertex */ if (!(1 <= i && i <= G->nv)) xerror("glp_del_vertices: num[%d] = %d; vertex number out o" "f range\n", k, i); v = G->v[i]; /* check that the vertex is not marked yet */ if (v->i == 0) xerror("glp_del_vertices: num[%d] = %d; duplicate vertex nu" "mbers not allowed\n", k, i); /* erase symbolic name assigned to the vertex */ glp_set_vertex_name(G, i, NULL); xassert(v->name == NULL); xassert(v->entry == NULL); /* free vertex data, if allocated */ if (v->data != NULL) dmp_free_atom(G->pool, v->data, G->v_size); /* delete all incoming arcs */ while (v->in != NULL) glp_del_arc(G, v->in); /* delete all outgoing arcs */ while (v->out != NULL) glp_del_arc(G, v->out); /* mark the vertex to be deleted */ v->i = 0; } /* delete all marked vertices from the vertex list */ nv_new = 0; for (i = 1; i <= G->nv; i++) { /* obtain pointer to i-th vertex */ v = G->v[i]; /* check if the vertex is marked */ if (v->i == 0) { /* it is marked, delete it */ dmp_free_atom(G->pool, v, sizeof(glp_vertex)); } else { /* it is not marked, keep it */ v->i = ++nv_new; G->v[v->i] = v; } } /* set new number of vertices in the graph */ G->nv = nv_new; return; } /*********************************************************************** * NAME * * glp_del_arc - delete arc from graph * * SYNOPSIS * * void glp_del_arc(glp_graph *G, glp_arc *a); * * DESCRIPTION * * The routine glp_del_arc deletes an arc from the specified graph. * The arc to be deleted must exist. */ void glp_del_arc(glp_graph *G, glp_arc *a) { /* some sanity checks */ xassert(G->na > 0); xassert(1 <= a->tail->i && a->tail->i <= G->nv); xassert(a->tail == G->v[a->tail->i]); xassert(1 <= a->head->i && a->head->i <= G->nv); xassert(a->head == G->v[a->head->i]); /* remove the arc from the list of incoming arcs */ if (a->h_prev == NULL) a->head->in = a->h_next; else a->h_prev->h_next = a->h_next; if (a->h_next == NULL) ; else a->h_next->h_prev = a->h_prev; /* remove the arc from the list of outgoing arcs */ if (a->t_prev == NULL) a->tail->out = a->t_next; else a->t_prev->t_next = a->t_next; if (a->t_next == NULL) ; else a->t_next->t_prev = a->t_prev; /* free arc data, if allocated */ if (a->data != NULL) dmp_free_atom(G->pool, a->data, G->a_size); /* delete the arc from the graph */ dmp_free_atom(G->pool, a, sizeof(glp_arc)); G->na--; return; } /*********************************************************************** * NAME * * glp_erase_graph - erase graph content * * SYNOPSIS * * void glp_erase_graph(glp_graph *G, int v_size, int a_size); * * DESCRIPTION * * The routine glp_erase_graph erases the content of the specified * graph. The effect of this operation is the same as if the graph * would be deleted with the routine glp_delete_graph and then created * anew with the routine glp_create_graph, with exception that the * handle (pointer) to the graph remains valid. */ static void delete_graph(glp_graph *G) { dmp_delete_pool(G->pool); xfree(G->v); if (G->index != NULL) avl_delete_tree(G->index); return; } void glp_erase_graph(glp_graph *G, int v_size, int a_size) { if (!(0 <= v_size && v_size <= 256)) xerror("glp_erase_graph: v_size = %d; invalid size of vertex d" "ata\n", v_size); if (!(0 <= a_size && a_size <= 256)) xerror("glp_erase_graph: a_size = %d; invalid size of arc data" "\n", a_size); delete_graph(G); create_graph(G, v_size, a_size); return; } /*********************************************************************** * NAME * * glp_delete_graph - delete graph * * SYNOPSIS * * void glp_delete_graph(glp_graph *G); * * DESCRIPTION * * The routine glp_delete_graph deletes the specified graph and frees * all the memory allocated to this program object. */ void glp_delete_graph(glp_graph *G) { delete_graph(G); xfree(G); return; } /**********************************************************************/ void glp_create_v_index(glp_graph *G) { /* create vertex name index */ glp_vertex *v; int i; if (G->index == NULL) { G->index = avl_create_tree(avl_strcmp, NULL); for (i = 1; i <= G->nv; i++) { v = G->v[i]; xassert(v->entry == NULL); if (v->name != NULL) { v->entry = avl_insert_node(G->index, v->name); avl_set_node_link(v->entry, v); } } } return; } int glp_find_vertex(glp_graph *G, const char *name) { /* find vertex by its name */ AVLNODE *node; int i = 0; if (G->index == NULL) xerror("glp_find_vertex: vertex name index does not exist\n"); if (!(name == NULL || name[0] == '\0' || strlen(name) > 255)) { node = avl_find_node(G->index, name); if (node != NULL) i = ((glp_vertex *)avl_get_node_link(node))->i; } return i; } void glp_delete_v_index(glp_graph *G) { /* delete vertex name index */ int i; if (G->index != NULL) { avl_delete_tree(G->index), G->index = NULL; for (i = 1; i <= G->nv; i++) G->v[i]->entry = NULL; } return; } /* eof */