/* maxffalg.c (find maximal flow with Ford-Fulkerson algorithm) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2009-2016 Andrew Makhorin, Department for Applied * Informatics, Moscow Aviation Institute, Moscow, Russia. All rights * reserved. E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "ffalg.h" #include "glpk.h" int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap, double *sol, int a_x, int v_cut) { /* find maximal flow with Ford-Fulkerson algorithm */ glp_vertex *v; glp_arc *a; int nv, na, i, k, flag, *tail, *head, *cap, *x, ret; char *cut; double temp; if (!(1 <= s && s <= G->nv)) xerror("glp_maxflow_ffalg: s = %d; source node number out of r" "ange\n", s); if (!(1 <= t && t <= G->nv)) xerror("glp_maxflow_ffalg: t = %d: sink node number out of ran" "ge\n", t); if (s == t) xerror("glp_maxflow_ffalg: s = t = %d; source and sink nodes m" "ust be distinct\n", s); if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double)) xerror("glp_maxflow_ffalg: a_cap = %d; invalid offset\n", a_cap); if (v_cut >= 0 && v_cut > G->v_size - (int)sizeof(int)) xerror("glp_maxflow_ffalg: v_cut = %d; invalid offset\n", v_cut); /* allocate working arrays */ nv = G->nv; na = G->na; tail = xcalloc(1+na, sizeof(int)); head = xcalloc(1+na, sizeof(int)); cap = xcalloc(1+na, sizeof(int)); x = xcalloc(1+na, sizeof(int)); if (v_cut < 0) cut = NULL; else cut = xcalloc(1+nv, sizeof(char)); /* copy the flow network */ k = 0; for (i = 1; i <= G->nv; i++) { v = G->v[i]; for (a = v->out; a != NULL; a = a->t_next) { k++; tail[k] = a->tail->i; head[k] = a->head->i; if (tail[k] == head[k]) { ret = GLP_EDATA; goto done; } if (a_cap >= 0) memcpy(&temp, (char *)a->data + a_cap, sizeof(double)); else temp = 1.0; if (!(0.0 <= temp && temp <= (double)INT_MAX && temp == floor(temp))) { ret = GLP_EDATA; goto done; } cap[k] = (int)temp; } } xassert(k == na); /* find maximal flow in the flow network */ ffalg(nv, na, tail, head, s, t, cap, x, cut); ret = 0; /* store solution components */ /* (objective function = total flow through the network) */ if (sol != NULL) { temp = 0.0; for (k = 1; k <= na; k++) { if (tail[k] == s) temp += (double)x[k]; else if (head[k] == s) temp -= (double)x[k]; } *sol = temp; } /* (arc flows) */ if (a_x >= 0) { k = 0; for (i = 1; i <= G->nv; i++) { v = G->v[i]; for (a = v->out; a != NULL; a = a->t_next) { temp = (double)x[++k]; memcpy((char *)a->data + a_x, &temp, sizeof(double)); } } } /* (node flags) */ if (v_cut >= 0) { for (i = 1; i <= G->nv; i++) { v = G->v[i]; flag = cut[i]; memcpy((char *)v->data + v_cut, &flag, sizeof(int)); } } done: /* free working arrays */ xfree(tail); xfree(head); xfree(cap); xfree(x); if (cut != NULL) xfree(cut); return ret; } /* eof */