/* mcfrelax.c (find minimum-cost flow with RELAX-IV) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2013-2016 Andrew Makhorin, Department for Applied * Informatics, Moscow Aviation Institute, Moscow, Russia. All rights * reserved. E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "glpk.h" #include "relax4.h" static int overflow(int u, int v) { /* check for integer overflow on computing u + v */ if (u > 0 && v > 0 && u + v < 0) return 1; if (u < 0 && v < 0 && u + v > 0) return 1; return 0; } int glp_mincost_relax4(glp_graph *G, int v_rhs, int a_low, int a_cap, int a_cost, int crash, double *sol, int a_x, int a_rc) { /* find minimum-cost flow with Bertsekas-Tseng relaxation method (RELAX-IV) */ glp_vertex *v; glp_arc *a; struct relax4_csa csa; int i, k, large, n, na, ret; double cap, cost, low, rc, rhs, sum, x; if (v_rhs >= 0 && v_rhs > G->v_size - (int)sizeof(double)) xerror("glp_mincost_relax4: v_rhs = %d; invalid offset\n", v_rhs); if (a_low >= 0 && a_low > G->a_size - (int)sizeof(double)) xerror("glp_mincost_relax4: a_low = %d; invalid offset\n", a_low); if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double)) xerror("glp_mincost_relax4: a_cap = %d; invalid offset\n", a_cap); if (a_cost >= 0 && a_cost > G->a_size - (int)sizeof(double)) xerror("glp_mincost_relax4: a_cost = %d; invalid offset\n", a_cost); if (a_x >= 0 && a_x > G->a_size - (int)sizeof(double)) xerror("glp_mincost_relax4: a_x = %d; invalid offset\n", a_x); if (a_rc >= 0 && a_rc > G->a_size - (int)sizeof(double)) xerror("glp_mincost_relax4: a_rc = %d; invalid offset\n", a_rc); csa.n = n = G->nv; /* number of nodes */ csa.na = na = G->na; /* number of arcs */ csa.large = large = INT_MAX / 4; csa.repeat = 0; csa.crash = crash; /* allocate working arrays */ csa.startn = xcalloc(1+na, sizeof(int)); csa.endn = xcalloc(1+na, sizeof(int)); csa.fou = xcalloc(1+n, sizeof(int)); csa.nxtou = xcalloc(1+na, sizeof(int)); csa.fin = xcalloc(1+n, sizeof(int)); csa.nxtin = xcalloc(1+na, sizeof(int)); csa.rc = xcalloc(1+na, sizeof(int)); csa.u = xcalloc(1+na, sizeof(int)); csa.dfct = xcalloc(1+n, sizeof(int)); csa.x = xcalloc(1+na, sizeof(int)); csa.label = xcalloc(1+n, sizeof(int)); csa.prdcsr = xcalloc(1+n, sizeof(int)); csa.save = xcalloc(1+na, sizeof(int)); csa.tfstou = xcalloc(1+n, sizeof(int)); csa.tnxtou = xcalloc(1+na, sizeof(int)); csa.tfstin = xcalloc(1+n, sizeof(int)); csa.tnxtin = xcalloc(1+na, sizeof(int)); csa.nxtqueue = xcalloc(1+n, sizeof(int)); csa.scan = xcalloc(1+n, sizeof(char)); csa.mark = xcalloc(1+n, sizeof(char)); if (crash) { csa.extend_arc = xcalloc(1+n, sizeof(int)); csa.sb_level = xcalloc(1+n, sizeof(int)); csa.sb_arc = xcalloc(1+n, sizeof(int)); } else { csa.extend_arc = NULL; csa.sb_level = NULL; csa.sb_arc = NULL; } /* scan nodes */ for (i = 1; i <= n; i++) { v = G->v[i]; /* get supply at i-th node */ if (v_rhs >= 0) memcpy(&rhs, (char *)v->data + v_rhs, sizeof(double)); else rhs = 0.0; if (!(fabs(rhs) <= (double)large && rhs == floor(rhs))) { ret = GLP_EDATA; goto done; } /* set demand at i-th node */ csa.dfct[i] = -(int)rhs; } /* scan arcs */ k = 0; for (i = 1; i <= n; i++) { v = G->v[i]; for (a = v->out; a != NULL; a = a->t_next) { k++; /* set endpoints of k-th arc */ if (a->tail->i == a->head->i) { /* self-loops not allowed */ ret = GLP_EDATA; goto done; } csa.startn[k] = a->tail->i; csa.endn[k] = a->head->i; /* set per-unit cost for k-th arc flow */ if (a_cost >= 0) memcpy(&cost, (char *)a->data + a_cost, sizeof(double)); else cost = 0.0; if (!(fabs(cost) <= (double)large && cost == floor(cost))) { ret = GLP_EDATA; goto done; } csa.rc[k] = (int)cost; /* get lower bound for k-th arc flow */ if (a_low >= 0) memcpy(&low, (char *)a->data + a_low, sizeof(double)); else low = 0.0; if (!(0.0 <= low && low <= (double)large && low == floor(low))) { ret = GLP_EDATA; goto done; } /* get upper bound for k-th arc flow */ if (a_cap >= 0) memcpy(&cap, (char *)a->data + a_cap, sizeof(double)); else cap = 1.0; if (!(low <= cap && cap <= (double)large && cap == floor(cap))) { ret = GLP_EDATA; goto done; } /* substitute x = x' + low, where 0 <= x' <= cap - low */ csa.u[k] = (int)(cap - low); /* correct demands at endpoints of k-th arc */ if (overflow(csa.dfct[a->tail->i], +low)) { ret = GLP_ERANGE; goto done; } #if 0 /* 29/IX-2017 */ csa.dfct[a->tail->i] += low; #else csa.dfct[a->tail->i] += (int)low; #endif if (overflow(csa.dfct[a->head->i], -low)) { ret = GLP_ERANGE; goto done; } #if 0 /* 29/IX-2017 */ csa.dfct[a->head->i] -= low; #else csa.dfct[a->head->i] -= (int)low; #endif } } /* construct linked list for network topology */ relax4_inidat(&csa); /* find minimum-cost flow */ ret = relax4(&csa); if (ret != 0) { /* problem is found to be infeasible */ xassert(1 <= ret && ret <= 8); ret = GLP_ENOPFS; goto done; } /* store solution */ sum = 0.0; k = 0; for (i = 1; i <= n; i++) { v = G->v[i]; for (a = v->out; a != NULL; a = a->t_next) { k++; /* get lower bound for k-th arc flow */ if (a_low >= 0) memcpy(&low, (char *)a->data + a_low, sizeof(double)); else low = 0.0; /* store original flow x = x' + low thru k-th arc */ x = (double)csa.x[k] + low; if (a_x >= 0) memcpy((char *)a->data + a_x, &x, sizeof(double)); /* store reduced cost for k-th arc flow */ rc = (double)csa.rc[k]; if (a_rc >= 0) memcpy((char *)a->data + a_rc, &rc, sizeof(double)); /* get per-unit cost for k-th arc flow */ if (a_cost >= 0) memcpy(&cost, (char *)a->data + a_cost, sizeof(double)); else cost = 0.0; /* compute the total cost */ sum += cost * x; } } /* store the total cost */ if (sol != NULL) *sol = sum; done: /* free working arrays */ xfree(csa.startn); xfree(csa.endn); xfree(csa.fou); xfree(csa.nxtou); xfree(csa.fin); xfree(csa.nxtin); xfree(csa.rc); xfree(csa.u); xfree(csa.dfct); xfree(csa.x); xfree(csa.label); xfree(csa.prdcsr); xfree(csa.save); xfree(csa.tfstou); xfree(csa.tnxtou); xfree(csa.tfstin); xfree(csa.tnxtin); xfree(csa.nxtqueue); xfree(csa.scan); xfree(csa.mark); if (crash) { xfree(csa.extend_arc); xfree(csa.sb_level); xfree(csa.sb_arc); } return ret; } /* eof */