/* rng1.c (pseudo-random number generator) */ /*********************************************************************** * This code is part of GLPK (GNU Linear Programming Kit). * * Copyright (C) 2003-2013 Andrew Makhorin, Department for Applied * Informatics, Moscow Aviation Institute, Moscow, Russia. All rights * reserved. E-mail: . * * GLPK is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * GLPK is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public * License for more details. * * You should have received a copy of the GNU General Public License * along with GLPK. If not, see . ***********************************************************************/ #include "env.h" #include "rng.h" /*********************************************************************** * NAME * * rng_unif_01 - obtain pseudo-random number in the range [0, 1] * * SYNOPSIS * * #include "rng.h" * double rng_unif_01(RNG *rand); * * RETURNS * * The routine rng_unif_01 returns a next pseudo-random number which is * uniformly distributed in the range [0, 1]. */ double rng_unif_01(RNG *rand) { double x; x = (double)rng_next_rand(rand) / 2147483647.0; xassert(0.0 <= x && x <= 1.0); return x; } /*********************************************************************** * NAME * * rng_uniform - obtain pseudo-random number in the range [a, b] * * SYNOPSIS * * #include "rng.h" * double rng_uniform(RNG *rand, double a, double b); * * RETURNS * * The routine rng_uniform returns a next pseudo-random number which is * uniformly distributed in the range [a, b]. */ double rng_uniform(RNG *rand, double a, double b) { double x; xassert(a < b); x = rng_unif_01(rand); x = a * (1.0 - x) + b * x; xassert(a <= x && x <= b); return x; } /* eof */