/**************************************************************************/ /* */ /* OCaml */ /* */ /* Xavier Leroy, projet Cristal, INRIA Rocquencourt */ /* */ /* Copyright 1996 Institut National de Recherche en Informatique et */ /* en Automatique. */ /* */ /* All rights reserved. This file is distributed under the terms of */ /* the GNU Lesser General Public License version 2.1, with the */ /* special exception on linking described in the file LICENSE. */ /* */ /**************************************************************************/ #define CAML_INTERNALS /* Operations on arrays */ #include #include "caml/alloc.h" #include "caml/fail.h" #include "caml/memory.h" #include "caml/misc.h" #include "caml/mlvalues.h" #include "caml/signals.h" /* Why is caml/spacetime.h included conditionnally sometimes and not here ? */ #include "caml/spacetime.h" static const mlsize_t mlsize_t_max = -1; /* returns number of elements (either fields or floats) */ /* [ 'a array -> int ] */ CAMLexport mlsize_t caml_array_length(value array) { #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) return Wosize_val(array) / Double_wosize; else #endif return Wosize_val(array); } CAMLexport int caml_is_double_array(value array) { return (Tag_val(array) == Double_array_tag); } /* Note: the OCaml types on the following primitives will work both with and without the -no-flat-float-array configure-time option. If you respect them, your C code should work in both configurations. */ /* [ 'a array -> int -> 'a ] where 'a != float */ CAMLprim value caml_array_get_addr(value array, value index) { intnat idx = Long_val(index); if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error(); return Field(array, idx); } /* [ float array -> int -> float ] */ CAMLprim value caml_array_get_float(value array, value index) { intnat idx = Long_val(index); #ifdef FLAT_FLOAT_ARRAY double d; value res; if (idx < 0 || idx >= Wosize_val(array) / Double_wosize) caml_array_bound_error(); d = Double_flat_field(array, idx); #define Setup_for_gc #define Restore_after_gc Alloc_small(res, Double_wosize, Double_tag); #undef Setup_for_gc #undef Restore_after_gc Store_double_val(res, d); return res; #else CAMLassert (Tag_val (array) != Double_array_tag); if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error(); return Field(array, idx); #endif /* FLAT_FLOAT_ARRAY */ } /* [ 'a array -> int -> 'a ] */ CAMLprim value caml_array_get(value array, value index) { #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) return caml_array_get_float(array, index); #else CAMLassert (Tag_val(array) != Double_array_tag); #endif return caml_array_get_addr(array, index); } /* [ floatarray -> int -> float ] */ CAMLprim value caml_floatarray_get(value array, value index) { intnat idx = Long_val(index); double d; value res; CAMLassert (Tag_val(array) == Double_array_tag); if (idx < 0 || idx >= Wosize_val(array) / Double_wosize) caml_array_bound_error(); d = Double_flat_field(array, idx); #define Setup_for_gc #define Restore_after_gc Alloc_small(res, Double_wosize, Double_tag); #undef Setup_for_gc #undef Restore_after_gc Store_double_val(res, d); return res; } /* [ 'a array -> int -> 'a -> unit ] where 'a != float */ CAMLprim value caml_array_set_addr(value array, value index, value newval) { intnat idx = Long_val(index); if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error(); Modify(&Field(array, idx), newval); return Val_unit; } /* [ float array -> int -> float -> unit ] */ CAMLprim value caml_array_set_float(value array, value index, value newval) { intnat idx = Long_val(index); #ifdef FLAT_FLOAT_ARRAY double d = Double_val (newval); if (idx < 0 || idx >= Wosize_val(array) / Double_wosize) caml_array_bound_error(); Store_double_flat_field(array, idx, d); #else CAMLassert (Tag_val (array) != Double_array_tag); if (idx < 0 || idx >= Wosize_val(array)) caml_array_bound_error(); Modify(&Field(array, idx), newval); #endif return Val_unit; } /* [ 'a array -> int -> 'a -> unit ] */ CAMLprim value caml_array_set(value array, value index, value newval) { #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) return caml_array_set_float(array, index, newval); #else CAMLassert (Tag_val(array) != Double_array_tag); #endif return caml_array_set_addr(array, index, newval); } /* [ floatarray -> int -> float -> unit ] */ CAMLprim value caml_floatarray_set(value array, value index, value newval) { intnat idx = Long_val(index); double d = Double_val (newval); CAMLassert (Tag_val(array) == Double_array_tag); if (idx < 0 || idx >= Wosize_val(array) / Double_wosize) caml_array_bound_error(); Store_double_flat_field(array, idx, d); return Val_unit; } /* [ float array -> int -> float ] */ CAMLprim value caml_array_unsafe_get_float(value array, value index) { intnat idx = Long_val (index); #ifdef FLAT_FLOAT_ARRAY double d; value res; d = Double_flat_field(array, idx); #define Setup_for_gc #define Restore_after_gc Alloc_small(res, Double_wosize, Double_tag); #undef Setup_for_gc #undef Restore_after_gc Store_double_val(res, d); return res; #else /* FLAT_FLOAT_ARRAY */ CAMLassert (Tag_val(array) != Double_array_tag); return Field(array, idx); #endif /* FLAT_FLOAT_ARRAY */ } /* [ 'a array -> int -> 'a ] */ CAMLprim value caml_array_unsafe_get(value array, value index) { #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) return caml_array_unsafe_get_float(array, index); #else CAMLassert (Tag_val(array) != Double_array_tag); #endif return Field(array, Long_val(index)); } /* [ floatarray -> int -> float ] */ CAMLprim value caml_floatarray_unsafe_get(value array, value index) { intnat idx = Long_val(index); double d; value res; CAMLassert (Tag_val(array) == Double_array_tag); d = Double_flat_field(array, idx); #define Setup_for_gc #define Restore_after_gc Alloc_small(res, Double_wosize, Double_tag); #undef Setup_for_gc #undef Restore_after_gc Store_double_val(res, d); return res; } /* [ 'a array -> int -> 'a -> unit ] where 'a != float */ CAMLprim value caml_array_unsafe_set_addr(value array, value index,value newval) { intnat idx = Long_val(index); Modify(&Field(array, idx), newval); return Val_unit; } /* [ float array -> int -> float -> unit ] */ CAMLprim value caml_array_unsafe_set_float(value array,value index,value newval) { intnat idx = Long_val(index); #ifdef FLAT_FLOAT_ARRAY double d = Double_val (newval); Store_double_flat_field(array, idx, d); #else Modify(&Field(array, idx), newval); #endif return Val_unit; } /* [ 'a array -> int -> 'a -> unit ] */ CAMLprim value caml_array_unsafe_set(value array, value index, value newval) { #ifdef FLAT_FLOAT_ARRAY if (Tag_val(array) == Double_array_tag) return caml_array_unsafe_set_float(array, index, newval); #else CAMLassert (Tag_val(array) != Double_array_tag); #endif return caml_array_unsafe_set_addr(array, index, newval); } /* [ floatarray -> int -> float -> unit ] */ CAMLprim value caml_floatarray_unsafe_set(value array, value index,value newval) { intnat idx = Long_val(index); double d = Double_val (newval); Store_double_flat_field(array, idx, d); return Val_unit; } /* [len] is a [value] representing number of floats. */ /* [ int -> floatarray ] */ CAMLprim value caml_floatarray_create(value len) { mlsize_t wosize = Long_val(len) * Double_wosize; value result; if (wosize <= Max_young_wosize){ if (wosize == 0) return Atom(0); else #define Setup_for_gc #define Restore_after_gc Alloc_small (result, wosize, Double_array_tag); #undef Setup_for_gc #undef Restore_after_gc }else if (wosize > Max_wosize) caml_invalid_argument("Array.Floatarray.create"); else { result = caml_alloc_shr (wosize, Double_array_tag); result = caml_check_urgent_gc (result); } return result; } /* [len] is a [value] representing number of floats */ /* [ int -> float array ] */ CAMLprim value caml_make_float_vect(value len) { #ifdef FLAT_FLOAT_ARRAY return caml_floatarray_create (len); #else return caml_alloc (Long_val (len), 0); #endif } /* [len] is a [value] representing number of words or floats */ /* Spacetime profiling assumes that this function is only called from OCaml. */ CAMLprim value caml_make_vect(value len, value init) { CAMLparam2 (len, init); CAMLlocal1 (res); mlsize_t size, i; size = Long_val(len); if (size == 0) { res = Atom(0); #ifdef FLAT_FLOAT_ARRAY } else if (Is_block(init) && Is_in_value_area(init) && Tag_val(init) == Double_tag) { mlsize_t wsize; double d; d = Double_val(init); wsize = size * Double_wosize; if (wsize > Max_wosize) caml_invalid_argument("Array.make"); res = caml_alloc(wsize, Double_array_tag); for (i = 0; i < size; i++) { Store_double_flat_field(res, i, d); } #endif } else { if (size <= Max_young_wosize) { uintnat profinfo; Get_my_profinfo_with_cached_backtrace(profinfo, size); res = caml_alloc_small_with_my_or_given_profinfo(size, 0, profinfo); for (i = 0; i < size; i++) Field(res, i) = init; } else if (size > Max_wosize) caml_invalid_argument("Array.make"); else if (Is_block(init) && Is_young(init)) { /* We don't want to create so many major-to-minor references, so [init] is moved to the major heap by doing a minor GC. */ CAML_INSTR_INT ("force_minor/make_vect@", 1); caml_request_minor_gc (); caml_gc_dispatch (); res = caml_alloc_shr(size, 0); for (i = 0; i < size; i++) Field(res, i) = init; res = caml_check_urgent_gc (res); } else { res = caml_alloc_shr(size, 0); for (i = 0; i < size; i++) caml_initialize(&Field(res, i), init); res = caml_check_urgent_gc (res); } } CAMLreturn (res); } /* This primitive is used internally by the compiler to compile explicit array expressions. For float arrays when FLAT_FLOAT_ARRAY is true, it takes an array of boxed floats and returns the corresponding flat-allocated [float array]. In all other cases, it just returns its argument unchanged. */ CAMLprim value caml_make_array(value init) { #ifdef FLAT_FLOAT_ARRAY CAMLparam1 (init); mlsize_t wsize, size, i; CAMLlocal2 (v, res); size = Wosize_val(init); if (size == 0) { CAMLreturn (init); } else { v = Field(init, 0); if (Is_long(v) || ! Is_in_value_area(v) || Tag_val(v) != Double_tag) { CAMLreturn (init); } else { wsize = size * Double_wosize; if (wsize <= Max_young_wosize) { res = caml_alloc_small(wsize, Double_array_tag); } else { res = caml_alloc_shr(wsize, Double_array_tag); res = caml_check_urgent_gc(res); } for (i = 0; i < size; i++) { double d = Double_val(Field(init, i)); Store_double_flat_field(res, i, d); } CAMLreturn (res); } } #else return init; #endif } /* Blitting */ CAMLprim value caml_array_blit(value a1, value ofs1, value a2, value ofs2, value n) { value * src, * dst; intnat count; #ifdef FLAT_FLOAT_ARRAY if (Tag_val(a2) == Double_array_tag) { /* Arrays of floats. The values being copied are floats, not pointer, so we can do a direct copy. memmove takes care of potential overlap between the copied areas. */ memmove((double *)a2 + Long_val(ofs2), (double *)a1 + Long_val(ofs1), Long_val(n) * sizeof(double)); return Val_unit; } #endif CAMLassert (Tag_val(a2) != Double_array_tag); if (Is_young(a2)) { /* Arrays of values, destination is in young generation. Here too we can do a direct copy since this cannot create old-to-young pointers, nor mess up with the incremental major GC. Again, memmove takes care of overlap. */ memmove(&Field(a2, Long_val(ofs2)), &Field(a1, Long_val(ofs1)), Long_val(n) * sizeof(value)); return Val_unit; } /* Array of values, destination is in old generation. We must use caml_modify. */ count = Long_val(n); if (a1 == a2 && Long_val(ofs1) < Long_val(ofs2)) { /* Copy in descending order */ for (dst = &Field(a2, Long_val(ofs2) + count - 1), src = &Field(a1, Long_val(ofs1) + count - 1); count > 0; count--, src--, dst--) { caml_modify(dst, *src); } } else { /* Copy in ascending order */ for (dst = &Field(a2, Long_val(ofs2)), src = &Field(a1, Long_val(ofs1)); count > 0; count--, src++, dst++) { caml_modify(dst, *src); } } /* Many caml_modify in a row can create a lot of old-to-young refs. Give the minor GC a chance to run if it needs to. */ caml_check_urgent_gc(Val_unit); return Val_unit; } /* A generic function for extraction and concatenation of sub-arrays */ static value caml_array_gather(intnat num_arrays, value arrays[/*num_arrays*/], intnat offsets[/*num_arrays*/], intnat lengths[/*num_arrays*/]) { CAMLparamN(arrays, num_arrays); value res; /* no need to register it as a root */ #ifdef FLAT_FLOAT_ARRAY int isfloat = 0; mlsize_t wsize; #endif mlsize_t i, size, count, pos; value * src; /* Determine total size and whether result array is an array of floats */ size = 0; for (i = 0; i < num_arrays; i++) { if (mlsize_t_max - lengths[i] < size) caml_invalid_argument("Array.concat"); size += lengths[i]; #ifdef FLAT_FLOAT_ARRAY if (Tag_val(arrays[i]) == Double_array_tag) isfloat = 1; #endif } if (size == 0) { /* If total size = 0, just return empty array */ res = Atom(0); } #ifdef FLAT_FLOAT_ARRAY else if (isfloat) { /* This is an array of floats. We can use memcpy directly. */ if (size > Max_wosize/Double_wosize) caml_invalid_argument("Array.concat"); wsize = size * Double_wosize; res = caml_alloc(wsize, Double_array_tag); for (i = 0, pos = 0; i < num_arrays; i++) { memcpy((double *)res + pos, (double *)arrays[i] + offsets[i], lengths[i] * sizeof(double)); pos += lengths[i]; } CAMLassert(pos == size); } #endif else if (size <= Max_young_wosize) { /* Array of values, small enough to fit in young generation. We can use memcpy directly. */ res = caml_alloc_small(size, 0); for (i = 0, pos = 0; i < num_arrays; i++) { memcpy(&Field(res, pos), &Field(arrays[i], offsets[i]), lengths[i] * sizeof(value)); pos += lengths[i]; } CAMLassert(pos == size); } else if (size > Max_wosize) { /* Array of values, too big. */ caml_invalid_argument("Array.concat"); } else { /* Array of values, must be allocated in old generation and filled using caml_initialize. */ res = caml_alloc_shr(size, 0); for (i = 0, pos = 0; i < num_arrays; i++) { for (src = &Field(arrays[i], offsets[i]), count = lengths[i]; count > 0; count--, src++, pos++) { caml_initialize(&Field(res, pos), *src); } } CAMLassert(pos == size); /* Many caml_initialize in a row can create a lot of old-to-young refs. Give the minor GC a chance to run if it needs to. */ res = caml_check_urgent_gc(res); } CAMLreturn (res); } CAMLprim value caml_array_sub(value a, value ofs, value len) { value arrays[1] = { a }; intnat offsets[1] = { Long_val(ofs) }; intnat lengths[1] = { Long_val(len) }; return caml_array_gather(1, arrays, offsets, lengths); } CAMLprim value caml_array_append(value a1, value a2) { value arrays[2] = { a1, a2 }; intnat offsets[2] = { 0, 0 }; intnat lengths[2] = { caml_array_length(a1), caml_array_length(a2) }; return caml_array_gather(2, arrays, offsets, lengths); } CAMLprim value caml_array_concat(value al) { #define STATIC_SIZE 16 value static_arrays[STATIC_SIZE], * arrays; intnat static_offsets[STATIC_SIZE], * offsets; intnat static_lengths[STATIC_SIZE], * lengths; intnat n, i; value l, res; /* Length of list = number of arrays */ for (n = 0, l = al; l != Val_int(0); l = Field(l, 1)) n++; /* Allocate extra storage if too many arrays */ if (n <= STATIC_SIZE) { arrays = static_arrays; offsets = static_offsets; lengths = static_lengths; } else { arrays = caml_stat_alloc(n * sizeof(value)); offsets = caml_stat_alloc_noexc(n * sizeof(intnat)); if (offsets == NULL) { caml_stat_free(arrays); caml_raise_out_of_memory(); } lengths = caml_stat_alloc_noexc(n * sizeof(value)); if (lengths == NULL) { caml_stat_free(offsets); caml_stat_free(arrays); caml_raise_out_of_memory(); } } /* Build the parameters to caml_array_gather */ for (i = 0, l = al; l != Val_int(0); l = Field(l, 1), i++) { arrays[i] = Field(l, 0); offsets[i] = 0; lengths[i] = caml_array_length(Field(l, 0)); } /* Do the concatenation */ res = caml_array_gather(n, arrays, offsets, lengths); /* Free the extra storage if needed */ if (n > STATIC_SIZE) { caml_stat_free(arrays); caml_stat_free(offsets); caml_stat_free(lengths); } return res; }