#include #include #if 0 /* __COMPCERT__ */ #define my_memcpy(dst, src, size) __builtin_memcpy_aligned(dst, src, size, 1) #else #define my_memcpy(dst, src, size) memcpy(dst, src, size) #endif #include "sha-256.h" #define CHUNK_SIZE 64 #define TOTAL_LEN_LEN 8 /* * ABOUT bool: this file does not use bool in order to be as pre-C99 compatible as possible. */ /* * Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here. * When useful for clarification, portions of the pseudo-code are reproduced here too. */ /* * Initialize array of round constants: * (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): */ static const uint32_t k[] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; struct buffer_state { const uint8_t * p; size_t len; size_t total_len; int single_one_delivered; /* bool */ int total_len_delivered; /* bool */ }; static inline uint32_t right_rot(uint32_t value, unsigned int count) { /* * Defined behaviour in standard C for all count where 0 < count < 32, * which is what we need here. */ return value >> count | value << (32 - count); } static void init_buf_state(struct buffer_state * state, const void * input, size_t len) { state->p = input; state->len = len; state->total_len = len; state->single_one_delivered = 0; state->total_len_delivered = 0; } /* Return value: bool */ static int calc_chunk(uint8_t chunk[CHUNK_SIZE], struct buffer_state * state) { size_t space_in_chunk; if (state->total_len_delivered) { return 0; } if (state->len >= CHUNK_SIZE) { my_memcpy(chunk, state->p, CHUNK_SIZE); state->p += CHUNK_SIZE; state->len -= CHUNK_SIZE; return 1; } memcpy(chunk, state->p, state->len); chunk += state->len; space_in_chunk = CHUNK_SIZE - state->len; state->p += state->len; state->len = 0; /* If we are here, space_in_chunk is one at minimum. */ if (!state->single_one_delivered) { *chunk++ = 0x80; space_in_chunk -= 1; state->single_one_delivered = 1; } /* * Now: * - either there is enough space left for the total length, and we can conclude, * - or there is too little space left, and we have to pad the rest of this chunk with zeroes. * In the latter case, we will conclude at the next invokation of this function. */ if (space_in_chunk >= TOTAL_LEN_LEN) { const size_t left = space_in_chunk - TOTAL_LEN_LEN; size_t len = state->total_len; int i; memset(chunk, 0x00, left); chunk += left; /* Storing of len * 8 as a big endian 64-bit without overflow. */ chunk[7] = (uint8_t) (len << 3); len >>= 5; for (i = 6; i >= 0; i--) { chunk[i] = (uint8_t) len; len >>= 8; } state->total_len_delivered = 1; } else { memset(chunk, 0x00, space_in_chunk); } return 1; } /* * Limitations: * - Since input is a pointer in RAM, the data to hash should be in RAM, which could be a problem * for large data sizes. * - SHA algorithms theoretically operate on bit strings. However, this implementation has no support * for bit string lengths that are not multiples of eight, and it really operates on arrays of bytes. * In particular, the len parameter is a number of bytes. */ #define DO_NOT_UNROLL 1 #define AUTOINCREMENT 1 #if USE_ORIGINAL void calc_sha_256(uint8_t hash[32], const void * input, size_t len) { /* * Note 1: All integers (expect indexes) are 32-bit unsigned integers and addition is calculated modulo 2^32. * Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 = i = 63 * Note 3: The compression function uses 8 working variables, a through h * Note 4: Big-endian convention is used when expressing the constants in this pseudocode, * and when parsing message block data from bytes to words, for example, * the first word of the input message "abc" after padding is 0x61626380 */ /* * Initialize hash values: * (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19): */ uint32_t h[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; int i, j; /* 512-bit chunks is what we will operate on. */ uint8_t chunk[64]; struct buffer_state state; init_buf_state(&state, input, len); while (calc_chunk(chunk, &state)) { uint32_t ah[8]; /* * create a 64-entry message schedule array w[0..63] of 32-bit words * (The initial values in w[0..63] don't matter, so many implementations zero them here) * copy chunk into first 16 words w[0..15] of the message schedule array */ uint32_t w[64]; const uint8_t *p = chunk; memset(w, 0x00, sizeof w); for (i = 0; i < 16; i++) { w[i] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 | (uint32_t) p[2] << 8 | (uint32_t) p[3]; p += 4; } /* Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: */ for (i = 16; i < 64; i++) { const uint32_t s0 = right_rot(w[i - 15], 7) ^ right_rot(w[i - 15], 18) ^ (w[i - 15] >> 3); const uint32_t s1 = right_rot(w[i - 2], 17) ^ right_rot(w[i - 2], 19) ^ (w[i - 2] >> 10); w[i] = w[i - 16] + s0 + w[i - 7] + s1; } /* Initialize working variables to current hash value: */ for (i = 0; i < 8; i++) ah[i] = h[i]; /* Compression function main loop: */ for (i = 0; i < 64; i++) { const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25); const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]); const uint32_t temp1 = ah[7] + s1 + ch + k[i] + w[i]; const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22); const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]); const uint32_t temp2 = s0 + maj; ah[7] = ah[6]; ah[6] = ah[5]; ah[5] = ah[4]; ah[4] = ah[3] + temp1; ah[3] = ah[2]; ah[2] = ah[1]; ah[1] = ah[0]; ah[0] = temp1 + temp2; } /* Add the compressed chunk to the current hash value: */ for (i = 0; i < 8; i++) h[i] += ah[i]; } /* Produce the final hash value (big-endian): */ for (i = 0, j = 0; i < 8; i++) { hash[j++] = (uint8_t) (h[i] >> 24); hash[j++] = (uint8_t) (h[i] >> 16); hash[j++] = (uint8_t) (h[i] >> 8); hash[j++] = (uint8_t) h[i]; } } #else #if DO_NOT_UNROLL /* Modified by D. Monniaux */ void calc_sha_256(uint8_t hash[32], const void * input, size_t len) { /* * Note 1: All integers (expect indexes) are 32-bit unsigned integers and addition is calculated modulo 2^32. * Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 = i = 63 * Note 3: The compression function uses 8 working variables, a through h * Note 4: Big-endian convention is used when expressing the constants in this pseudocode, * and when parsing message block data from bytes to words, for example, * the first word of the input message "abc" after padding is 0x61626380 */ /* * Initialize hash values: * (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19): */ uint32_t h[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; int i, j; /* 512-bit chunks is what we will operate on. */ uint8_t chunk[64]; struct buffer_state state; init_buf_state(&state, input, len); while (calc_chunk(chunk, &state)) { uint32_t ah0, ah1, ah2, ah3, ah4, ah5, ah6, ah7; /* * create a 64-entry message schedule array w[0..63] of 32-bit words * (The initial values in w[0..63] don't matter, so many implementations zero them here) * copy chunk into first 16 words w[0..15] of the message schedule array */ uint32_t w[64]; const uint8_t *p = chunk; memset(w, 0x00, sizeof w); for (i = 0; i < 16; i++) { w[i] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 | (uint32_t) p[2] << 8 | (uint32_t) p[3]; p += 4; } /* Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: */ for (i = 16; i < 64; i++) { const uint32_t s0 = right_rot(w[i - 15], 7) ^ right_rot(w[i - 15], 18) ^ (w[i - 15] >> 3); const uint32_t s1 = right_rot(w[i - 2], 17) ^ right_rot(w[i - 2], 19) ^ (w[i - 2] >> 10); w[i] = w[i - 16] + s0 + w[i - 7] + s1; } /* Initialize working variables to current hash value: */ ah0 = h[0]; ah1 = h[1]; ah2 = h[2]; ah3 = h[3]; ah4 = h[4]; ah5 = h[5]; ah6 = h[6]; ah7 = h[7]; /* Compression function main loop: */ #if AUTOINCREMENT const uint32_t *ki = k, *wi = w; #endif for (i = 0; i < 64; i++) { const uint32_t s1 = right_rot(ah4, 6) ^ right_rot(ah4, 11) ^ right_rot(ah4, 25); const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6); const uint32_t temp1 = ah7 + s1 + ch + #if AUTOINCREMENT *(ki++) + *(wi++); #else k[i] + w[i]; #endif const uint32_t s0 = right_rot(ah0, 2) ^ right_rot(ah0, 13) ^ right_rot(ah0, 22); const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2); const uint32_t temp2 = s0 + maj; ah7 = ah6; ah6 = ah5; ah5 = ah4; ah4 = ah3 + temp1; ah3 = ah2; ah2 = ah1; ah1 = ah0; ah0 = temp1 + temp2; } /* Add the compressed chunk to the current hash value: */ h[0] += ah0; h[1] += ah1; h[2] += ah2; h[3] += ah3; h[4] += ah4; h[5] += ah5; h[6] += ah6; h[7] += ah7; } /* Produce the final hash value (big-endian): */ for (i = 0, j = 0; i < 8; i++) { hash[j++] = (uint8_t) (h[i] >> 24); hash[j++] = (uint8_t) (h[i] >> 16); hash[j++] = (uint8_t) (h[i] >> 8); hash[j++] = (uint8_t) h[i]; } } #else /* Modified by D. Monniaux */ void calc_sha_256(uint8_t hash[32], const void * input, size_t len) { /* * Note 1: All integers (expect indexes) are 32-bit unsigned integers and addition is calculated modulo 2^32. * Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 = i = 63 * Note 3: The compression function uses 8 working variables, a through h * Note 4: Big-endian convention is used when expressing the constants in this pseudocode, * and when parsing message block data from bytes to words, for example, * the first word of the input message "abc" after padding is 0x61626380 */ /* * Initialize hash values: * (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19): */ uint32_t h[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; int i, j; /* 512-bit chunks is what we will operate on. */ uint8_t chunk[64]; struct buffer_state state; init_buf_state(&state, input, len); while (calc_chunk(chunk, &state)) { uint32_t ah0, ah1, ah2, ah3, ah4, ah5, ah6, ah7; /* * create a 64-entry message schedule array w[0..63] of 32-bit words * (The initial values in w[0..63] don't matter, so many implementations zero them here) * copy chunk into first 16 words w[0..15] of the message schedule array */ uint32_t w[64]; const uint8_t *p = chunk; memset(w, 0x00, sizeof w); for (i = 0; i < 16; i++) { w[i] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 | (uint32_t) p[2] << 8 | (uint32_t) p[3]; p += 4; } /* Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: */ for (i = 16; i < 64; i++) { const uint32_t s0 = right_rot(w[i - 15], 7) ^ right_rot(w[i - 15], 18) ^ (w[i - 15] >> 3); const uint32_t s1 = right_rot(w[i - 2], 17) ^ right_rot(w[i - 2], 19) ^ (w[i - 2] >> 10); w[i] = w[i - 16] + s0 + w[i - 7] + s1; } /* Initialize working variables to current hash value: */ ah0 = h[0]; ah1 = h[1]; ah2 = h[2]; ah3 = h[3]; ah4 = h[4]; ah5 = h[5]; ah6 = h[6]; ah7 = h[7]; /* Compression function main loop: */ for (i = 0; i < 64; ) { { const uint32_t s1 = right_rot(ah4, 6) ^ right_rot(ah4, 11) ^ right_rot(ah4, 25); const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6); const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i]; const uint32_t s0 = right_rot(ah0, 2) ^ right_rot(ah0, 13) ^ right_rot(ah0, 22); const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2); const uint32_t temp2 = s0 + maj; ah7 = ah6; ah6 = ah5; ah5 = ah4; ah4 = ah3 + temp1; ah3 = ah2; ah2 = ah1; ah1 = ah0; ah0 = temp1 + temp2; i++; } { const uint32_t s1 = right_rot(ah4, 6) ^ right_rot(ah4, 11) ^ right_rot(ah4, 25); const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6); const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i]; const uint32_t s0 = right_rot(ah0, 2) ^ right_rot(ah0, 13) ^ right_rot(ah0, 22); const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2); const uint32_t temp2 = s0 + maj; ah7 = ah6; ah6 = ah5; ah5 = ah4; ah4 = ah3 + temp1; ah3 = ah2; ah2 = ah1; ah1 = ah0; ah0 = temp1 + temp2; i++; } { const uint32_t s1 = right_rot(ah4, 6) ^ right_rot(ah4, 11) ^ right_rot(ah4, 25); const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6); const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i]; const uint32_t s0 = right_rot(ah0, 2) ^ right_rot(ah0, 13) ^ right_rot(ah0, 22); const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2); const uint32_t temp2 = s0 + maj; ah7 = ah6; ah6 = ah5; ah5 = ah4; ah4 = ah3 + temp1; ah3 = ah2; ah2 = ah1; ah1 = ah0; ah0 = temp1 + temp2; i++; } { const uint32_t s1 = right_rot(ah4, 6) ^ right_rot(ah4, 11) ^ right_rot(ah4, 25); const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6); const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i]; const uint32_t s0 = right_rot(ah0, 2) ^ right_rot(ah0, 13) ^ right_rot(ah0, 22); const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2); const uint32_t temp2 = s0 + maj; ah7 = ah6; ah6 = ah5; ah5 = ah4; ah4 = ah3 + temp1; ah3 = ah2; ah2 = ah1; ah1 = ah0; ah0 = temp1 + temp2; i++; } { const uint32_t s1 = right_rot(ah4, 6) ^ right_rot(ah4, 11) ^ right_rot(ah4, 25); const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6); const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i]; const uint32_t s0 = right_rot(ah0, 2) ^ right_rot(ah0, 13) ^ right_rot(ah0, 22); const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2); const uint32_t temp2 = s0 + maj; ah7 = ah6; ah6 = ah5; ah5 = ah4; ah4 = ah3 + temp1; ah3 = ah2; ah2 = ah1; ah1 = ah0; ah0 = temp1 + temp2; i++; } { const uint32_t s1 = right_rot(ah4, 6) ^ right_rot(ah4, 11) ^ right_rot(ah4, 25); const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6); const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i]; const uint32_t s0 = right_rot(ah0, 2) ^ right_rot(ah0, 13) ^ right_rot(ah0, 22); const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2); const uint32_t temp2 = s0 + maj; ah7 = ah6; ah6 = ah5; ah5 = ah4; ah4 = ah3 + temp1; ah3 = ah2; ah2 = ah1; ah1 = ah0; ah0 = temp1 + temp2; i++; } { const uint32_t s1 = right_rot(ah4, 6) ^ right_rot(ah4, 11) ^ right_rot(ah4, 25); const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6); const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i]; const uint32_t s0 = right_rot(ah0, 2) ^ right_rot(ah0, 13) ^ right_rot(ah0, 22); const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2); const uint32_t temp2 = s0 + maj; ah7 = ah6; ah6 = ah5; ah5 = ah4; ah4 = ah3 + temp1; ah3 = ah2; ah2 = ah1; ah1 = ah0; ah0 = temp1 + temp2; i++; } { const uint32_t s1 = right_rot(ah4, 6) ^ right_rot(ah4, 11) ^ right_rot(ah4, 25); const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6); const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i]; const uint32_t s0 = right_rot(ah0, 2) ^ right_rot(ah0, 13) ^ right_rot(ah0, 22); const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2); const uint32_t temp2 = s0 + maj; ah7 = ah6; ah6 = ah5; ah5 = ah4; ah4 = ah3 + temp1; ah3 = ah2; ah2 = ah1; ah1 = ah0; ah0 = temp1 + temp2; i++; } } /* Add the compressed chunk to the current hash value: */ h[0] += ah0; h[1] += ah1; h[2] += ah2; h[3] += ah3; h[4] += ah4; h[5] += ah5; h[6] += ah6; h[7] += ah7; } /* Produce the final hash value (big-endian): */ for (i = 0, j = 0; i < 8; i++) { hash[j++] = (uint8_t) (h[i] >> 24); hash[j++] = (uint8_t) (h[i] >> 16); hash[j++] = (uint8_t) (h[i] >> 8); hash[j++] = (uint8_t) h[i]; } } #endif #endif