(* *********************************************************************) (* *) (* The Compcert verified compiler *) (* *) (* Xavier Leroy, INRIA Paris *) (* *) (* Copyright Institut National de Recherche en Informatique et en *) (* Automatique. All rights reserved. This file is distributed *) (* under the terms of the INRIA Non-Commercial License Agreement. *) (* *) (* *********************************************************************) (** Correctness proof for operator strength reduction. *) Require Import Coqlib Compopts. Require Import Integers Floats Values Memory Globalenvs Events. Require Import Op Registers RTL ValueDomain ValueAOp ValueAnalysis. Require Import ConstpropOp. Section STRENGTH_REDUCTION. Variable bc: block_classification. Variable ge: genv. Hypothesis GENV: genv_match bc ge. Variable sp: block. Hypothesis STACK: bc sp = BCstack. Variable ae: AE.t. Variable e: regset. Variable m: mem. Hypothesis MATCH: ematch bc e ae. Lemma match_G: forall r id ofs, AE.get r ae = Ptr(Gl id ofs) -> Val.lessdef e#r (Genv.symbol_address ge id ofs). Proof. intros. apply vmatch_ptr_gl with bc; auto. rewrite <- H. apply MATCH. Qed. Lemma match_S: forall r ofs, AE.get r ae = Ptr(Stk ofs) -> Val.lessdef e#r (Vptr sp ofs). Proof. intros. apply vmatch_ptr_stk with bc; auto. rewrite <- H. apply MATCH. Qed. Ltac InvApproxRegs := match goal with | [ H: _ :: _ = _ :: _ |- _ ] => injection H; clear H; intros; InvApproxRegs | [ H: ?v = AE.get ?r ae |- _ ] => generalize (MATCH r); rewrite <- H; clear H; intro; InvApproxRegs | _ => idtac end. Ltac SimplVM := match goal with | [ H: vmatch _ ?v (I ?n) |- _ ] => let E := fresh in assert (E: v = Vint n) by (inversion H; auto); rewrite E in *; clear H; SimplVM | [ H: vmatch _ ?v (L ?n) |- _ ] => let E := fresh in assert (E: v = Vlong n) by (inversion H; auto); rewrite E in *; clear H; SimplVM | [ H: vmatch _ ?v (F ?n) |- _ ] => let E := fresh in assert (E: v = Vfloat n) by (inversion H; auto); rewrite E in *; clear H; SimplVM | [ H: vmatch _ ?v (FS ?n) |- _ ] => let E := fresh in assert (E: v = Vsingle n) by (inversion H; auto); rewrite E in *; clear H; SimplVM | [ H: vmatch _ ?v (Ptr(Gl ?id ?ofs)) |- _ ] => let E := fresh in assert (E: Val.lessdef v (Genv.symbol_address ge id ofs)) by (eapply vmatch_ptr_gl; eauto); clear H; SimplVM | [ H: vmatch _ ?v (Ptr(Stk ?ofs)) |- _ ] => let E := fresh in assert (E: Val.lessdef v (Vptr sp ofs)) by (eapply vmatch_ptr_stk; eauto); clear H; SimplVM | _ => idtac end. Lemma eval_Olea_ptr: forall a el, eval_operation ge (Vptr sp Ptrofs.zero) (Olea_ptr a) el m = eval_addressing ge (Vptr sp Ptrofs.zero) a el. Proof. unfold Olea_ptr, eval_addressing; intros. destruct Archi.ptr64; auto. Qed. Lemma const_for_result_correct: forall a op v, const_for_result a = Some op -> vmatch bc v a -> exists v', eval_operation ge (Vptr sp Ptrofs.zero) op nil m = Some v' /\ Val.lessdef v v'. Proof. unfold const_for_result. generalize Archi.ptr64; intros ptr64; intros. destruct a; inv H; SimplVM. - (* integer *) exists (Vint n); auto. - (* long *) destruct ptr64; inv H2. exists (Vlong n); auto. - (* float *) destruct (Compopts.generate_float_constants tt); inv H2. exists (Vfloat f); auto. - (* single *) destruct (Compopts.generate_float_constants tt); inv H2. exists (Vsingle f); auto. - (* pointer *) destruct p; try discriminate; SimplVM. + (* global *) destruct (SelectOp.symbol_is_external id). * revert H2; predSpec Ptrofs.eq Ptrofs.eq_spec ofs Ptrofs.zero; intros EQ; inv EQ. exists (Genv.symbol_address ge id Ptrofs.zero); auto. * inv H2. exists (Genv.symbol_address ge id ofs); split. rewrite eval_Olea_ptr. apply eval_addressing_Aglobal. auto. + (* stack *) inv H2. exists (Vptr sp ofs); split. rewrite eval_Olea_ptr. rewrite eval_addressing_Ainstack. simpl. rewrite Ptrofs.add_zero_l; auto. auto. Qed. Lemma cond_strength_reduction_correct: forall cond args vl, vl = map (fun r => AE.get r ae) args -> let (cond', args') := cond_strength_reduction cond args vl in eval_condition cond' e##args' m = eval_condition cond e##args m. Proof. intros until vl. unfold cond_strength_reduction. case (cond_strength_reduction_match cond args vl); simpl; intros; InvApproxRegs; SimplVM. - apply Val.swap_cmp_bool. - auto. - apply Val.swap_cmpu_bool. - auto. - apply Val.swap_cmpl_bool. - auto. - apply Val.swap_cmplu_bool. - auto. - auto. Qed. Lemma addr_strength_reduction_32_generic_correct: forall addr args vl res, vl = map (fun r => AE.get r ae) args -> eval_addressing32 ge (Vptr sp Ptrofs.zero) addr e##args = Some res -> let (addr', args') := addr_strength_reduction_32_generic addr args vl in exists res', eval_addressing32 ge (Vptr sp Ptrofs.zero) addr' e##args' = Some res' /\ Val.lessdef res res'. Proof. Local Opaque Val.add. assert (A: forall x y, Int.repr (Int.signed x + y) = Int.add x (Int.repr y)). { intros; apply Int.eqm_samerepr; auto using Int.eqm_signed_unsigned with ints. } assert (B: forall x y z, Int.repr (Int.signed x * y + z) = Int.add (Int.mul x (Int.repr y)) (Int.repr z)). { intros; apply Int.eqm_samerepr; apply Int.eqm_add; auto with ints. unfold Int.mul; auto using Int.eqm_signed_unsigned with ints. } intros until res; intros VL EA. unfold addr_strength_reduction_32_generic; destruct (addr_strength_reduction_32_generic_match addr args vl); simpl in *; InvApproxRegs; SimplVM; try (inv EA). - econstructor; split; eauto. rewrite A, Val.add_assoc, Val.add_permut. auto. - econstructor; split; eauto. rewrite A, Val.add_assoc. auto. - Local Transparent Val.add. econstructor; split; eauto. simpl. rewrite B. auto. - econstructor; split; eauto. rewrite A, Val.add_permut. auto. - exists res; auto. Qed. Lemma addr_strength_reduction_32_correct: forall addr args vl res, vl = map (fun r => AE.get r ae) args -> eval_addressing32 ge (Vptr sp Ptrofs.zero) addr e##args = Some res -> let (addr', args') := addr_strength_reduction_32 addr args vl in exists res', eval_addressing32 ge (Vptr sp Ptrofs.zero) addr' e##args' = Some res' /\ Val.lessdef res res'. Proof. intros until res; intros VL EA. unfold addr_strength_reduction_32. destruct Archi.ptr64 eqn:SF. apply addr_strength_reduction_32_generic_correct; auto. assert (A: forall n, Ptrofs.of_int (Int.repr n) = Ptrofs.repr n) by auto with ptrofs. assert (B: forall symb ofs n, Genv.symbol_address ge symb (Ptrofs.add ofs (Ptrofs.repr n)) = Val.add (Genv.symbol_address ge symb ofs) (Vint (Int.repr n))). { intros. rewrite <- A. apply Genv.shift_symbol_address_32; auto. } Local Opaque Val.add. destruct (addr_strength_reduction_32_match addr args vl); simpl in *; InvApproxRegs; SimplVM; FuncInv; subst; rewrite ?SF. - econstructor; split; eauto. rewrite B. apply Val.add_lessdef; auto. - econstructor; split; eauto. rewrite Ptrofs.add_zero_l. Local Transparent Val.add. inv H0; auto. rewrite H2. simpl; rewrite SF, A. auto. - econstructor; split; eauto. unfold Ptrofs.add at 2. rewrite B. fold (Ptrofs.add n1 (Ptrofs.of_int n2)). rewrite Genv.shift_symbol_address_32 by auto. rewrite ! Val.add_assoc. apply Val.add_lessdef; auto. - econstructor; split; eauto. unfold Ptrofs.add at 2. rewrite B. fold (Ptrofs.add n2 (Ptrofs.of_int n1)). rewrite Genv.shift_symbol_address_32 by auto. rewrite ! Val.add_assoc. rewrite Val.add_permut. apply Val.add_lessdef; auto. - econstructor; split; eauto. rewrite Ptrofs.add_zero_l. rewrite Val.add_assoc. eapply Val.lessdef_trans. apply Val.add_lessdef; eauto. simpl. rewrite SF. rewrite Ptrofs.add_assoc. apply Val.lessdef_same; do 3 f_equal. auto with ptrofs. - econstructor; split; eauto. rewrite Ptrofs.add_zero_l. rewrite Val.add_assoc, Val.add_permut. eapply Val.lessdef_trans. apply Val.add_lessdef; eauto. simpl. rewrite SF. rewrite <- (Ptrofs.add_commut n2). rewrite Ptrofs.add_assoc. apply Val.lessdef_same; do 3 f_equal. auto with ptrofs. - econstructor; split; eauto. rewrite B. rewrite ! Val.add_assoc. rewrite (Val.add_commut (Vint (Int.repr ofs))). apply Val.add_lessdef; auto. - econstructor; split; eauto. rewrite B. rewrite (Val.add_commut e#r1). rewrite ! Val.add_assoc. rewrite (Val.add_commut (Vint (Int.repr ofs))). apply Val.add_lessdef; auto. - econstructor; split; eauto. rewrite B. rewrite Genv.shift_symbol_address_32 by auto. rewrite ! Val.add_assoc. apply Val.add_lessdef; auto. - econstructor; split; eauto. rewrite B. rewrite ! Val.add_assoc. rewrite (Val.add_commut (Vint (Int.repr ofs))). apply Val.add_lessdef; auto. - econstructor; split; eauto. rewrite Genv.shift_symbol_address_32 by auto. auto. - econstructor; split; eauto. rewrite Genv.shift_symbol_address_32 by auto. auto. - apply addr_strength_reduction_32_generic_correct; auto. Qed. Lemma addr_strength_reduction_64_generic_correct: forall addr args vl res, vl = map (fun r => AE.get r ae) args -> eval_addressing64 ge (Vptr sp Ptrofs.zero) addr e##args = Some res -> let (addr', args') := addr_strength_reduction_64_generic addr args vl in exists res', eval_addressing64 ge (Vptr sp Ptrofs.zero) addr' e##args' = Some res' /\ Val.lessdef res res'. Proof. Local Opaque Val.addl. assert (A: forall x y, Int64.repr (Int64.signed x + y) = Int64.add x (Int64.repr y)). { intros; apply Int64.eqm_samerepr; auto using Int64.eqm_signed_unsigned with ints. } assert (B: forall x y z, Int64.repr (Int64.signed x * y + z) = Int64.add (Int64.mul x (Int64.repr y)) (Int64.repr z)). { intros; apply Int64.eqm_samerepr; apply Int64.eqm_add; auto with ints. unfold Int64.mul; auto using Int64.eqm_signed_unsigned with ints. } intros until res; intros VL EA. unfold addr_strength_reduction_64_generic; destruct (addr_strength_reduction_64_generic_match addr args vl); simpl in *; InvApproxRegs; SimplVM; try (inv EA). - econstructor; split; eauto. rewrite A, Val.addl_assoc, Val.addl_permut. auto. - econstructor; split; eauto. rewrite A, Val.addl_assoc. auto. - Local Transparent Val.addl. econstructor; split; eauto. simpl. rewrite B. auto. - econstructor; split; eauto. rewrite A, Val.addl_permut. auto. - exists res; auto. Qed. Lemma addr_strength_reduction_64_correct: forall addr args vl res, vl = map (fun r => AE.get r ae) args -> eval_addressing64 ge (Vptr sp Ptrofs.zero) addr e##args = Some res -> let (addr', args') := addr_strength_reduction_64 addr args vl in exists res', eval_addressing64 ge (Vptr sp Ptrofs.zero) addr' e##args' = Some res' /\ Val.lessdef res res'. Proof. intros until res; intros VL EA. unfold addr_strength_reduction_64. destruct (negb Archi.ptr64) eqn:SF. apply addr_strength_reduction_64_generic_correct; auto. rewrite negb_false_iff in SF. assert (A: forall n, Ptrofs.of_int64 (Int64.repr n) = Ptrofs.repr n) by auto with ptrofs. assert (B: forall symb ofs n, Genv.symbol_address ge symb (Ptrofs.add ofs (Ptrofs.repr n)) = Val.addl (Genv.symbol_address ge symb ofs) (Vlong (Int64.repr n))). { intros. rewrite <- A. apply Genv.shift_symbol_address_64; auto. } Local Opaque Val.addl. destruct (addr_strength_reduction_64_match addr args vl); simpl in *; InvApproxRegs; SimplVM; FuncInv; subst; rewrite ?SF. - econstructor; split; eauto. rewrite B. apply Val.addl_lessdef; auto. - econstructor; split; eauto. rewrite Ptrofs.add_zero_l. Local Transparent Val.addl. inv H0; auto. rewrite H2. simpl; rewrite SF, A. auto. - econstructor; split; eauto. unfold Ptrofs.add at 2. rewrite B. fold (Ptrofs.add n1 (Ptrofs.of_int64 n2)). rewrite Genv.shift_symbol_address_64 by auto. rewrite ! Val.addl_assoc. apply Val.addl_lessdef; auto. - econstructor; split; eauto. unfold Ptrofs.add at 2. rewrite B. fold (Ptrofs.add n2 (Ptrofs.of_int64 n1)). rewrite Genv.shift_symbol_address_64 by auto. rewrite ! Val.addl_assoc. rewrite Val.addl_permut. apply Val.addl_lessdef; auto. - econstructor; split; eauto. rewrite Ptrofs.add_zero_l. rewrite Val.addl_assoc. eapply Val.lessdef_trans. apply Val.addl_lessdef; eauto. simpl. rewrite SF. rewrite Ptrofs.add_assoc. apply Val.lessdef_same; do 3 f_equal. auto with ptrofs. - econstructor; split; eauto. rewrite Ptrofs.add_zero_l. rewrite Val.addl_assoc, Val.addl_permut. eapply Val.lessdef_trans. apply Val.addl_lessdef; eauto. simpl. rewrite SF. rewrite <- (Ptrofs.add_commut n2). rewrite Ptrofs.add_assoc. apply Val.lessdef_same; do 3 f_equal. auto with ptrofs. - econstructor; split; eauto. rewrite B. rewrite Genv.shift_symbol_address_64 by auto. rewrite ! Val.addl_assoc. apply Val.addl_lessdef; auto. - apply addr_strength_reduction_64_generic_correct; auto. Qed. Lemma addr_strength_reduction_correct: forall addr args vl res, vl = map (fun r => AE.get r ae) args -> eval_addressing ge (Vptr sp Ptrofs.zero) addr e##args = Some res -> let (addr', args') := addr_strength_reduction addr args vl in exists res', eval_addressing ge (Vptr sp Ptrofs.zero) addr' e##args' = Some res' /\ Val.lessdef res res'. Proof. intros until res. unfold addr_strength_reduction. set (aa := if Archi.ptr64 then addr_strength_reduction_64 addr args vl else addr_strength_reduction_32 addr args vl). intros. destruct (addressing_valid (fst aa)). - unfold aa, eval_addressing in *. destruct Archi.ptr64. + apply addr_strength_reduction_64_correct; auto. + apply addr_strength_reduction_32_correct; auto. - exists res; auto. Qed. Lemma make_cmp_base_correct: forall c args vl, vl = map (fun r => AE.get r ae) args -> let (op', args') := make_cmp_base c args vl in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op' e##args' m = Some v /\ Val.lessdef (Val.of_optbool (eval_condition c e##args m)) v. Proof. intros. unfold make_cmp_base. generalize (cond_strength_reduction_correct c args vl H). destruct (cond_strength_reduction c args vl) as [c' args']. intros EQ. econstructor; split. simpl; eauto. rewrite EQ. auto. Qed. Lemma make_cmp_correct: forall c args vl, vl = map (fun r => AE.get r ae) args -> let (op', args') := make_cmp c args vl in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op' e##args' m = Some v /\ Val.lessdef (Val.of_optbool (eval_condition c e##args m)) v. Proof. intros c args vl. assert (Y: forall r, vincl (AE.get r ae) (Uns Ptop 1) = true -> e#r = Vundef \/ e#r = Vint Int.zero \/ e#r = Vint Int.one). { intros. apply vmatch_Uns_1 with bc Ptop. eapply vmatch_ge. eapply vincl_ge; eauto. apply MATCH. } unfold make_cmp. case (make_cmp_match c args vl); intros. - unfold make_cmp_imm_eq. destruct (Int.eq_dec n Int.one && vincl v1 (Uns Ptop 1)) eqn:E1. + simpl in H; inv H. InvBooleans. subst n. exists (e#r1); split; auto. simpl. exploit Y; eauto. intros [A | [A | A]]; rewrite A; simpl; auto. + destruct (Int.eq_dec n Int.zero && vincl v1 (Uns Ptop 1)) eqn:E0. * simpl in H; inv H. InvBooleans. subst n. exists (Val.xor e#r1 (Vint Int.one)); split; auto. simpl. exploit Y; eauto. intros [A | [A | A]]; rewrite A; simpl; auto. * apply make_cmp_base_correct; auto. - unfold make_cmp_imm_ne. destruct (Int.eq_dec n Int.zero && vincl v1 (Uns Ptop 1)) eqn:E0. + simpl in H; inv H. InvBooleans. subst n. exists (e#r1); split; auto. simpl. exploit Y; eauto. intros [A | [A | A]]; rewrite A; simpl; auto. + destruct (Int.eq_dec n Int.one && vincl v1 (Uns Ptop 1)) eqn:E1. * simpl in H; inv H. InvBooleans. subst n. exists (Val.xor e#r1 (Vint Int.one)); split; auto. simpl. exploit Y; eauto. intros [A | [A | A]]; rewrite A; simpl; auto. * apply make_cmp_base_correct; auto. - unfold make_cmp_imm_eq. destruct (Int.eq_dec n Int.one && vincl v1 (Uns Ptop 1)) eqn:E1. + simpl in H; inv H. InvBooleans. subst n. exists (e#r1); split; auto. simpl. exploit Y; eauto. intros [A | [A | A]]; rewrite A; simpl; auto. + destruct (Int.eq_dec n Int.zero && vincl v1 (Uns Ptop 1)) eqn:E0. * simpl in H; inv H. InvBooleans. subst n. exists (Val.xor e#r1 (Vint Int.one)); split; auto. simpl. exploit Y; eauto. intros [A | [A | A]]; rewrite A; simpl; auto. * apply make_cmp_base_correct; auto. - unfold make_cmp_imm_ne. destruct (Int.eq_dec n Int.zero && vincl v1 (Uns Ptop 1)) eqn:E0. + simpl in H; inv H. InvBooleans. subst n. exists (e#r1); split; auto. simpl. exploit Y; eauto. intros [A | [A | A]]; rewrite A; simpl; auto. + destruct (Int.eq_dec n Int.one && vincl v1 (Uns Ptop 1)) eqn:E1. * simpl in H; inv H. InvBooleans. subst n. exists (Val.xor e#r1 (Vint Int.one)); split; auto. simpl. exploit Y; eauto. intros [A | [A | A]]; rewrite A; simpl; auto. * apply make_cmp_base_correct; auto. - apply make_cmp_base_correct; auto. Qed. Lemma make_select_correct: forall c ty r1 r2 args vl, vl = map (fun r => AE.get r ae) args -> let (op', args') := make_select c ty r1 r2 args vl in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op' e##args' m = Some v /\ Val.lessdef (Val.select (eval_condition c e##args m) e#r1 e#r2 ty) v. Proof. unfold make_select; intros. destruct (resolve_branch (eval_static_condition c vl)) as [b|] eqn:RB. - exists (if b then e#r1 else e#r2); split. + simpl. destruct b; auto. + destruct (eval_condition c e##args m) as [b'|] eqn:EC; simpl; auto. assert (b = b'). { eapply resolve_branch_sound; eauto. rewrite <- EC. apply eval_static_condition_sound with bc. subst vl. exact (aregs_sound _ _ _ args MATCH). } subst b'. apply Val.lessdef_normalize. - generalize (cond_strength_reduction_correct c args vl H). destruct (cond_strength_reduction c args vl) as [cond' args']; intros EQ. econstructor; split. simpl; eauto. rewrite EQ; auto. Qed. Lemma make_addimm_correct: forall n r, let (op, args) := make_addimm n r in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.add e#r (Vint n)) v. Proof. intros. unfold make_addimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. exists (e#r); split; auto. destruct (e#r); simpl; auto; rewrite ?Int.add_zero, ?Ptrofs.add_zero; auto. exists (Val.add e#r (Vint n)); split; auto. simpl. rewrite Int.repr_signed; auto. Qed. Lemma make_shlimm_correct: forall n r1 r2, e#r2 = Vint n -> let (op, args) := make_shlimm n r1 r2 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.shl e#r1 (Vint n)) v. Proof. intros; unfold make_shlimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. exists (e#r1); split; auto. destruct (e#r1); simpl; auto. rewrite Int.shl_zero. auto. destruct (Int.ltu n Int.iwordsize). econstructor; split. simpl. eauto. auto. econstructor; split. simpl. eauto. rewrite H; auto. Qed. Lemma make_shrimm_correct: forall n r1 r2, e#r2 = Vint n -> let (op, args) := make_shrimm n r1 r2 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.shr e#r1 (Vint n)) v. Proof. intros; unfold make_shrimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. exists (e#r1); split; auto. destruct (e#r1); simpl; auto. rewrite Int.shr_zero. auto. destruct (Int.ltu n Int.iwordsize). econstructor; split. simpl. eauto. auto. econstructor; split. simpl. eauto. rewrite H; auto. Qed. Lemma make_shruimm_correct: forall n r1 r2, e#r2 = Vint n -> let (op, args) := make_shruimm n r1 r2 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.shru e#r1 (Vint n)) v. Proof. intros; unfold make_shruimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. exists (e#r1); split; auto. destruct (e#r1); simpl; auto. rewrite Int.shru_zero. auto. destruct (Int.ltu n Int.iwordsize). econstructor; split. simpl. eauto. auto. econstructor; split. simpl. eauto. rewrite H; auto. Qed. Lemma make_mulimm_correct: forall n r1, let (op, args) := make_mulimm n r1 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.mul e#r1 (Vint n)) v. Proof. intros; unfold make_mulimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. exists (Vint Int.zero); split; auto. destruct (e#r1); simpl; auto. rewrite Int.mul_zero; auto. predSpec Int.eq Int.eq_spec n Int.one; intros. subst. exists (e#r1); split; auto. destruct (e#r1); simpl; auto. rewrite Int.mul_one; auto. destruct (Int.is_power2 n) eqn:?; intros. rewrite (Val.mul_pow2 e#r1 _ _ Heqo). econstructor; split. simpl; eauto. auto. econstructor; split; eauto. auto. Qed. Lemma make_divimm_correct: forall n r1 r2 v, Val.divs e#r1 e#r2 = Some v -> e#r2 = Vint n -> let (op, args) := make_divimm n r1 r2 in exists w, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some w /\ Val.lessdef v w. Proof. intros; unfold make_divimm. predSpec Int.eq Int.eq_spec n Int.one; intros. subst. rewrite H0 in H. destruct (e#r1) eqn:?; try (rewrite Val.divs_one in H; exists (Vint i); split; simpl; try rewrite Heqv0; auto); inv H; auto. destruct (Int.is_power2 n) eqn:?. destruct (Int.ltu i (Int.repr 31)) eqn:?. exists v; split; auto. simpl. eapply Val.divs_pow2; eauto. congruence. exists v; auto. exists v; auto. Qed. Lemma make_divuimm_correct: forall n r1 r2 v, Val.divu e#r1 e#r2 = Some v -> e#r2 = Vint n -> let (op, args) := make_divuimm n r1 r2 in exists w, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some w /\ Val.lessdef v w. Proof. intros; unfold make_divuimm. predSpec Int.eq Int.eq_spec n Int.one; intros. subst. rewrite H0 in H. destruct (e#r1) eqn:?; try (rewrite Val.divu_one in H; exists (Vint i); split; simpl; try rewrite Heqv0; auto); inv H; auto. destruct (Int.is_power2 n) eqn:?. econstructor; split. simpl; eauto. rewrite H0 in H. erewrite Val.divu_pow2 by eauto. auto. exists v; auto. Qed. Lemma make_moduimm_correct: forall n r1 r2 v, Val.modu e#r1 e#r2 = Some v -> e#r2 = Vint n -> let (op, args) := make_moduimm n r1 r2 in exists w, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some w /\ Val.lessdef v w. Proof. intros; unfold make_moduimm. destruct (Int.is_power2 n) eqn:?. exists v; split; auto. simpl. decEq. eapply Val.modu_pow2; eauto. congruence. exists v; auto. Qed. Lemma make_andimm_correct: forall n r x, vmatch bc e#r x -> let (op, args) := make_andimm n r x in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.and e#r (Vint n)) v. Proof. intros; unfold make_andimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst n. exists (Vint Int.zero); split; auto. destruct (e#r); simpl; auto. rewrite Int.and_zero; auto. predSpec Int.eq Int.eq_spec n Int.mone; intros. subst n. exists (e#r); split; auto. destruct (e#r); simpl; auto. rewrite Int.and_mone; auto. destruct (match x with Uns _ k => Int.eq (Int.zero_ext k (Int.not n)) Int.zero | _ => false end) eqn:UNS. destruct x; try congruence. exists (e#r); split; auto. inv H; auto. simpl. replace (Int.and i n) with i; auto. generalize (Int.eq_spec (Int.zero_ext n0 (Int.not n)) Int.zero); rewrite UNS; intro EQ. Int.bit_solve. destruct (zlt i0 n0). replace (Int.testbit n i0) with (negb (Int.testbit Int.zero i0)). rewrite Int.bits_zero. simpl. rewrite andb_true_r. auto. rewrite <- EQ. rewrite Int.bits_zero_ext by lia. rewrite zlt_true by auto. rewrite Int.bits_not by auto. apply negb_involutive. rewrite H6 by auto. auto. econstructor; split; eauto. auto. Qed. Lemma make_orimm_correct: forall n r, let (op, args) := make_orimm n r in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.or e#r (Vint n)) v. Proof. intros; unfold make_orimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst n. exists (e#r); split; auto. destruct (e#r); simpl; auto. rewrite Int.or_zero; auto. predSpec Int.eq Int.eq_spec n Int.mone; intros. subst n. exists (Vint Int.mone); split; auto. destruct (e#r); simpl; auto. rewrite Int.or_mone; auto. econstructor; split; eauto. auto. Qed. Lemma make_xorimm_correct: forall n r, let (op, args) := make_xorimm n r in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.xor e#r (Vint n)) v. Proof. intros; unfold make_xorimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst n. exists (e#r); split; auto. destruct (e#r); simpl; auto. rewrite Int.xor_zero; auto. predSpec Int.eq Int.eq_spec n Int.mone; intros. subst n. exists (Val.notint e#r); split; auto. econstructor; split; eauto. auto. Qed. Lemma make_addlimm_correct: forall n r, let (op, args) := make_addlimm n r in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.addl e#r (Vlong n)) v. Proof. intros. unfold make_addlimm. predSpec Int64.eq Int64.eq_spec n Int64.zero; intros. subst. exists (e#r); split; auto. destruct (e#r); simpl; auto; rewrite ? Int64.add_zero, ? Ptrofs.add_zero; auto. exists (Val.addl e#r (Vlong n)); split; auto. simpl. rewrite Int64.repr_signed; auto. Qed. Lemma make_shllimm_correct: forall n r1 r2, e#r2 = Vint n -> let (op, args) := make_shllimm n r1 r2 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.shll e#r1 (Vint n)) v. Proof. intros; unfold make_shllimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. exists (e#r1); split; auto. destruct (e#r1); simpl; auto. unfold Int64.shl'. rewrite Z.shiftl_0_r, Int64.repr_unsigned. auto. destruct (Int.ltu n Int64.iwordsize'). econstructor; split. simpl. eauto. auto. econstructor; split. simpl. eauto. rewrite H; auto. Qed. Lemma make_shrlimm_correct: forall n r1 r2, e#r2 = Vint n -> let (op, args) := make_shrlimm n r1 r2 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.shrl e#r1 (Vint n)) v. Proof. intros; unfold make_shrlimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. exists (e#r1); split; auto. destruct (e#r1); simpl; auto. unfold Int64.shr'. rewrite Z.shiftr_0_r, Int64.repr_signed. auto. destruct (Int.ltu n Int64.iwordsize'). econstructor; split. simpl. eauto. auto. econstructor; split. simpl. eauto. rewrite H; auto. Qed. Lemma make_shrluimm_correct: forall n r1 r2, e#r2 = Vint n -> let (op, args) := make_shrluimm n r1 r2 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.shrlu e#r1 (Vint n)) v. Proof. intros; unfold make_shrluimm. predSpec Int.eq Int.eq_spec n Int.zero; intros. subst. exists (e#r1); split; auto. destruct (e#r1); simpl; auto. unfold Int64.shru'. rewrite Z.shiftr_0_r, Int64.repr_unsigned. auto. destruct (Int.ltu n Int64.iwordsize'). econstructor; split. simpl. eauto. auto. econstructor; split. simpl. eauto. rewrite H; auto. Qed. Lemma make_mullimm_correct: forall n r1, let (op, args) := make_mullimm n r1 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.mull e#r1 (Vlong n)) v. Proof. intros; unfold make_mullimm. predSpec Int64.eq Int64.eq_spec n Int64.zero; intros. subst. exists (Vlong Int64.zero); split; auto. destruct (e#r1); simpl; auto. rewrite Int64.mul_zero; auto. predSpec Int64.eq Int64.eq_spec n Int64.one; intros. subst. exists (e#r1); split; auto. destruct (e#r1); simpl; auto. rewrite Int64.mul_one; auto. destruct (Int64.is_power2' n) eqn:?; intros. exists (Val.shll e#r1 (Vint i)); split; auto. destruct (e#r1); simpl; auto. erewrite Int64.is_power2'_range by eauto. erewrite Int64.mul_pow2' by eauto. auto. econstructor; split; eauto. auto. Qed. Lemma make_divlimm_correct: forall n r1 r2 v, Val.divls e#r1 e#r2 = Some v -> e#r2 = Vlong n -> let (op, args) := make_divlimm n r1 r2 in exists w, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some w /\ Val.lessdef v w. Proof. intros; unfold make_divlimm. destruct (Int64.is_power2' n) eqn:?. destruct (Int.ltu i (Int.repr 63)) eqn:?. rewrite H0 in H. econstructor; split. simpl; eauto. eapply Val.divls_pow2; eauto. auto. exists v; auto. exists v; auto. Qed. Lemma make_divluimm_correct: forall n r1 r2 v, Val.divlu e#r1 e#r2 = Some v -> e#r2 = Vlong n -> let (op, args) := make_divluimm n r1 r2 in exists w, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some w /\ Val.lessdef v w. Proof. intros; unfold make_divluimm. destruct (Int64.is_power2' n) eqn:?. econstructor; split. simpl; eauto. rewrite H0 in H. destruct (e#r1); inv H. destruct (Int64.eq n Int64.zero); inv H2. simpl. erewrite Int64.is_power2'_range by eauto. erewrite Int64.divu_pow2' by eauto. auto. exists v; auto. Qed. Lemma make_modluimm_correct: forall n r1 r2 v, Val.modlu e#r1 e#r2 = Some v -> e#r2 = Vlong n -> let (op, args) := make_modluimm n r1 r2 in exists w, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some w /\ Val.lessdef v w. Proof. intros; unfold make_modluimm. destruct (Int64.is_power2 n) eqn:?. exists v; split; auto. simpl. decEq. rewrite H0 in H. destruct (e#r1); inv H. destruct (Int64.eq n Int64.zero); inv H2. simpl. erewrite Int64.modu_and by eauto. auto. exists v; auto. Qed. Lemma make_andlimm_correct: forall n r x, let (op, args) := make_andlimm n r x in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.andl e#r (Vlong n)) v. Proof. intros; unfold make_andlimm. predSpec Int64.eq Int64.eq_spec n Int64.zero; intros. subst n. exists (Vlong Int64.zero); split; auto. destruct (e#r); simpl; auto. rewrite Int64.and_zero; auto. predSpec Int64.eq Int64.eq_spec n Int64.mone; intros. subst n. exists (e#r); split; auto. destruct (e#r); simpl; auto. rewrite Int64.and_mone; auto. econstructor; split; eauto. auto. Qed. Lemma make_orlimm_correct: forall n r, let (op, args) := make_orlimm n r in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.orl e#r (Vlong n)) v. Proof. intros; unfold make_orlimm. predSpec Int64.eq Int64.eq_spec n Int64.zero; intros. subst n. exists (e#r); split; auto. destruct (e#r); simpl; auto. rewrite Int64.or_zero; auto. predSpec Int64.eq Int64.eq_spec n Int64.mone; intros. subst n. exists (Vlong Int64.mone); split; auto. destruct (e#r); simpl; auto. rewrite Int64.or_mone; auto. econstructor; split; eauto. auto. Qed. Lemma make_xorlimm_correct: forall n r, let (op, args) := make_xorlimm n r in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.xorl e#r (Vlong n)) v. Proof. intros; unfold make_xorlimm. predSpec Int64.eq Int64.eq_spec n Int64.zero; intros. subst n. exists (e#r); split; auto. destruct (e#r); simpl; auto. rewrite Int64.xor_zero; auto. predSpec Int64.eq Int64.eq_spec n Int64.mone; intros. subst n. exists (Val.notl e#r); split; auto. econstructor; split; eauto. auto. Qed. Lemma make_mulfimm_correct: forall n r1 r2, e#r2 = Vfloat n -> let (op, args) := make_mulfimm n r1 r1 r2 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.mulf e#r1 e#r2) v. Proof. intros; unfold make_mulfimm. destruct (Float.eq_dec n (Float.of_int (Int.repr 2))); intros. simpl. econstructor; split. eauto. rewrite H; subst n. destruct (e#r1); simpl; auto. rewrite Float.mul2_add; auto. simpl. econstructor; split; eauto. Qed. Lemma make_mulfimm_correct_2: forall n r1 r2, e#r1 = Vfloat n -> let (op, args) := make_mulfimm n r2 r1 r2 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.mulf e#r1 e#r2) v. Proof. intros; unfold make_mulfimm. destruct (Float.eq_dec n (Float.of_int (Int.repr 2))); intros. simpl. econstructor; split. eauto. rewrite H; subst n. destruct (e#r2); simpl; auto. rewrite Float.mul2_add; auto. rewrite Float.mul_commut; auto. simpl. econstructor; split; eauto. Qed. Lemma make_mulfsimm_correct: forall n r1 r2, e#r2 = Vsingle n -> let (op, args) := make_mulfsimm n r1 r1 r2 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.mulfs e#r1 e#r2) v. Proof. intros; unfold make_mulfsimm. destruct (Float32.eq_dec n (Float32.of_int (Int.repr 2))); intros. simpl. econstructor; split. eauto. rewrite H; subst n. destruct (e#r1); simpl; auto. rewrite Float32.mul2_add; auto. simpl. econstructor; split; eauto. Qed. Lemma make_mulfsimm_correct_2: forall n r1 r2, e#r1 = Vsingle n -> let (op, args) := make_mulfsimm n r2 r1 r2 in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.mulfs e#r1 e#r2) v. Proof. intros; unfold make_mulfsimm. destruct (Float32.eq_dec n (Float32.of_int (Int.repr 2))); intros. simpl. econstructor; split. eauto. rewrite H; subst n. destruct (e#r2); simpl; auto. rewrite Float32.mul2_add; auto. rewrite Float32.mul_commut; auto. simpl. econstructor; split; eauto. Qed. Lemma make_cast8signed_correct: forall r x, vmatch bc e#r x -> let (op, args) := make_cast8signed r x in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.sign_ext 8 e#r) v. Proof. intros; unfold make_cast8signed. destruct (vincl x (Sgn Ptop 8)) eqn:INCL. exists e#r; split; auto. assert (V: vmatch bc e#r (Sgn Ptop 8)). { eapply vmatch_ge; eauto. apply vincl_ge; auto. } inv V; simpl; auto. rewrite is_sgn_sign_ext in H4 by auto. rewrite H4; auto. econstructor; split; simpl; eauto. Qed. Lemma make_cast8unsigned_correct: forall r x, vmatch bc e#r x -> let (op, args) := make_cast8unsigned r x in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.zero_ext 8 e#r) v. Proof. intros; unfold make_cast8unsigned. destruct (vincl x (Uns Ptop 8)) eqn:INCL. exists e#r; split; auto. assert (V: vmatch bc e#r (Uns Ptop 8)). { eapply vmatch_ge; eauto. apply vincl_ge; auto. } inv V; simpl; auto. rewrite is_uns_zero_ext in H4 by auto. rewrite H4; auto. econstructor; split; simpl; eauto. Qed. Lemma make_cast16signed_correct: forall r x, vmatch bc e#r x -> let (op, args) := make_cast16signed r x in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.sign_ext 16 e#r) v. Proof. intros; unfold make_cast16signed. destruct (vincl x (Sgn Ptop 16)) eqn:INCL. exists e#r; split; auto. assert (V: vmatch bc e#r (Sgn Ptop 16)). { eapply vmatch_ge; eauto. apply vincl_ge; auto. } inv V; simpl; auto. rewrite is_sgn_sign_ext in H4 by auto. rewrite H4; auto. econstructor; split; simpl; eauto. Qed. Lemma make_cast16unsigned_correct: forall r x, vmatch bc e#r x -> let (op, args) := make_cast16unsigned r x in exists v, eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v /\ Val.lessdef (Val.zero_ext 16 e#r) v. Proof. intros; unfold make_cast16unsigned. destruct (vincl x (Uns Ptop 16)) eqn:INCL. exists e#r; split; auto. assert (V: vmatch bc e#r (Uns Ptop 16)). { eapply vmatch_ge; eauto. apply vincl_ge; auto. } inv V; simpl; auto. rewrite is_uns_zero_ext in H4 by auto. rewrite H4; auto. econstructor; split; simpl; eauto. Qed. Lemma op_strength_reduction_correct: forall op args vl v, vl = map (fun r => AE.get r ae) args -> eval_operation ge (Vptr sp Ptrofs.zero) op e##args m = Some v -> let (op', args') := op_strength_reduction op args vl in exists w, eval_operation ge (Vptr sp Ptrofs.zero) op' e##args' m = Some w /\ Val.lessdef v w. Proof. intros until v; unfold op_strength_reduction; case (op_strength_reduction_match op args vl); simpl; intros. (* cast8signed *) InvApproxRegs; SimplVM; inv H0. apply make_cast8signed_correct; auto. (* cast8unsigned *) InvApproxRegs; SimplVM; inv H0. apply make_cast8unsigned_correct; auto. (* cast16signed *) InvApproxRegs; SimplVM; inv H0. apply make_cast16signed_correct; auto. (* cast16unsigned *) InvApproxRegs; SimplVM; inv H0. apply make_cast16unsigned_correct; auto. (* sub *) InvApproxRegs; SimplVM; inv H0. rewrite Val.sub_add_opp. apply make_addimm_correct; auto. (* mul *) rewrite Val.mul_commut in H0. InvApproxRegs; SimplVM; inv H0. apply make_mulimm_correct; auto. InvApproxRegs; SimplVM; inv H0. apply make_mulimm_correct; auto. (* divs *) assert (e#r2 = Vint n2). clear H0. InvApproxRegs; SimplVM; auto. apply make_divimm_correct; auto. (* divu *) assert (e#r2 = Vint n2). clear H0. InvApproxRegs; SimplVM; auto. apply make_divuimm_correct; auto. (* modu *) assert (e#r2 = Vint n2). clear H0. InvApproxRegs; SimplVM; auto. apply make_moduimm_correct; auto. (* and *) rewrite Val.and_commut in H0. InvApproxRegs; SimplVM; inv H0. apply make_andimm_correct; auto. InvApproxRegs; SimplVM; inv H0. apply make_andimm_correct; auto. inv H; inv H0. apply make_andimm_correct; auto. (* or *) rewrite Val.or_commut in H0. InvApproxRegs; SimplVM; inv H0. apply make_orimm_correct; auto. InvApproxRegs; SimplVM; inv H0. apply make_orimm_correct; auto. (* xor *) rewrite Val.xor_commut in H0. InvApproxRegs; SimplVM; inv H0. apply make_xorimm_correct; auto. InvApproxRegs; SimplVM; inv H0. apply make_xorimm_correct; auto. (* shl *) InvApproxRegs; SimplVM; inv H0. apply make_shlimm_correct; auto. (* shr *) InvApproxRegs; SimplVM; inv H0. apply make_shrimm_correct; auto. (* shru *) InvApproxRegs; SimplVM; inv H0. apply make_shruimm_correct; auto. (* lea *) exploit addr_strength_reduction_32_correct; eauto. destruct (addr_strength_reduction_32 addr args0 vl0) as [addr' args']. auto. (* subl *) InvApproxRegs; SimplVM; inv H0. replace (Val.subl e#r1 (Vlong n2)) with (Val.addl e#r1 (Vlong (Int64.neg n2))). apply make_addlimm_correct; auto. unfold Val.addl, Val.subl. destruct Archi.ptr64 eqn:SF, e#r1; auto. rewrite Int64.sub_add_opp; auto. rewrite Ptrofs.sub_add_opp. do 2 f_equal. auto with ptrofs. rewrite Int64.sub_add_opp; auto. (* mull *) rewrite Val.mull_commut in H0. InvApproxRegs; SimplVM; inv H0. apply make_mullimm_correct; auto. InvApproxRegs; SimplVM; inv H0. apply make_mullimm_correct; auto. (* divl *) assert (e#r2 = Vlong n2). clear H0. InvApproxRegs; SimplVM; auto. apply make_divlimm_correct; auto. (* divlu *) assert (e#r2 = Vlong n2). clear H0. InvApproxRegs; SimplVM; auto. apply make_divluimm_correct; auto. (* modlu *) assert (e#r2 = Vlong n2). clear H0. InvApproxRegs; SimplVM; auto. apply make_modluimm_correct; auto. (* andl *) rewrite Val.andl_commut in H0. InvApproxRegs; SimplVM; inv H0. apply make_andlimm_correct; auto. InvApproxRegs; SimplVM; inv H0. apply make_andlimm_correct; auto. inv H; inv H0. apply make_andlimm_correct; auto. (* orl *) rewrite Val.orl_commut in H0. InvApproxRegs; SimplVM; inv H0. apply make_orlimm_correct; auto. InvApproxRegs; SimplVM; inv H0. apply make_orlimm_correct; auto. (* xorl *) rewrite Val.xorl_commut in H0. InvApproxRegs; SimplVM; inv H0. apply make_xorlimm_correct; auto. InvApproxRegs; SimplVM; inv H0. apply make_xorlimm_correct; auto. (* shll *) InvApproxRegs; SimplVM; inv H0. apply make_shllimm_correct; auto. (* shrl *) InvApproxRegs; SimplVM; inv H0. apply make_shrlimm_correct; auto. (* shrlu *) InvApproxRegs; SimplVM; inv H0. apply make_shrluimm_correct; auto. (* leal *) exploit addr_strength_reduction_64_correct; eauto. destruct (addr_strength_reduction_64 addr args0 vl0) as [addr' args']. auto. (* cond *) inv H0. apply make_cmp_correct; auto. (* select *) inv H0. apply make_select_correct; congruence. (* mulf *) InvApproxRegs; SimplVM; inv H0. rewrite <- H2. apply make_mulfimm_correct; auto. InvApproxRegs; SimplVM; inv H0. fold (Val.mulf (Vfloat n1) e#r2). rewrite <- H2. apply make_mulfimm_correct_2; auto. (* mulfs *) InvApproxRegs; SimplVM; inv H0. rewrite <- H2. apply make_mulfsimm_correct; auto. InvApproxRegs; SimplVM; inv H0. fold (Val.mulfs (Vsingle n1) e#r2). rewrite <- H2. apply make_mulfsimm_correct_2; auto. (* default *) exists v; auto. Qed. End STRENGTH_REDUCTION.