From 2ae43be7b9d4118335c9d2cef6e098f9b9f807fe Mon Sep 17 00:00:00 2001 From: xleroy Date: Thu, 9 Feb 2006 14:55:48 +0000 Subject: Initial import of compcert git-svn-id: https://yquem.inria.fr/compcert/svn/compcert/trunk@1 fca1b0fc-160b-0410-b1d3-a4f43f01ea2e --- backend/Cmconstrproof.v | 1154 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1154 insertions(+) create mode 100644 backend/Cmconstrproof.v (limited to 'backend/Cmconstrproof.v') diff --git a/backend/Cmconstrproof.v b/backend/Cmconstrproof.v new file mode 100644 index 00000000..19b7473d --- /dev/null +++ b/backend/Cmconstrproof.v @@ -0,0 +1,1154 @@ +(** Correctness of the Cminor smart constructors. This file states + evaluation rules for the smart constructors, for instance that [add + a b] evaluates to [Vint(Int.add i j)] if [a] evaluates to [Vint i] + and [b] to [Vint j]. It then proves that these rules are + admissible, that is, satisfied for all possible choices of [a] and + [b]. The Cminor producer can then use these evaluation rules + (theorems) to reason about the execution of terms produced by the + smart constructors. +*) + +Require Import Coqlib. +Require Import Compare_dec. +Require Import Maps. +Require Import AST. +Require Import Integers. +Require Import Floats. +Require Import Values. +Require Import Mem. +Require Import Op. +Require Import Globalenvs. +Require Import Cminor. +Require Import Cmconstr. + +Section CMCONSTR. + +Variable ge: Cminor.genv. + +(** * Lifting of let-bound variables *) + +Inductive insert_lenv: letenv -> nat -> val -> letenv -> Prop := + | insert_lenv_0: + forall le v, + insert_lenv le O v (v :: le) + | insert_lenv_S: + forall le p w le' v, + insert_lenv le p w le' -> + insert_lenv (v :: le) (S p) w (v :: le'). + +Lemma insert_lenv_lookup1: + forall le p w le', + insert_lenv le p w le' -> + forall n v, + nth_error le n = Some v -> (p > n)%nat -> + nth_error le' n = Some v. +Proof. + induction 1; intros. + omegaContradiction. + destruct n; simpl; simpl in H0. auto. + apply IHinsert_lenv. auto. omega. +Qed. + +Lemma insert_lenv_lookup2: + forall le p w le', + insert_lenv le p w le' -> + forall n v, + nth_error le n = Some v -> (p <= n)%nat -> + nth_error le' (S n) = Some v. +Proof. + induction 1; intros. + simpl. assumption. + simpl. destruct n. omegaContradiction. + apply IHinsert_lenv. exact H0. omega. +Qed. + +Scheme eval_expr_ind_3 := Minimality for eval_expr Sort Prop + with eval_condexpr_ind_3 := Minimality for eval_condexpr Sort Prop + with eval_exprlist_ind_3 := Minimality for eval_exprlist Sort Prop. + +Hint Resolve eval_Evar eval_Eassign eval_Eop eval_Eload eval_Estore + eval_Ecall eval_Econdition + eval_Elet eval_Eletvar + eval_CEtrue eval_CEfalse eval_CEcond + eval_CEcondition eval_Enil eval_Econs: evalexpr. + +Lemma eval_lift_expr: + forall w sp le e1 m1 a e2 m2 v, + eval_expr ge sp le e1 m1 a e2 m2 v -> + forall p le', insert_lenv le p w le' -> + eval_expr ge sp le' e1 m1 (lift_expr p a) e2 m2 v. +Proof. + intros w. + apply (eval_expr_ind_3 ge + (fun sp le e1 m1 a e2 m2 v => + forall p le', insert_lenv le p w le' -> + eval_expr ge sp le' e1 m1 (lift_expr p a) e2 m2 v) + (fun sp le e1 m1 a e2 m2 vb => + forall p le', insert_lenv le p w le' -> + eval_condexpr ge sp le' e1 m1 (lift_condexpr p a) e2 m2 vb) + (fun sp le e1 m1 al e2 m2 vl => + forall p le', insert_lenv le p w le' -> + eval_exprlist ge sp le' e1 m1 (lift_exprlist p al) e2 m2 vl)); + simpl; intros; eauto with evalexpr. + + destruct v1; eapply eval_Econdition; + eauto with evalexpr; simpl; eauto with evalexpr. + + eapply eval_Elet. eauto. apply H2. apply insert_lenv_S; auto. + + case (le_gt_dec p n); intro. + apply eval_Eletvar. eapply insert_lenv_lookup2; eauto. + apply eval_Eletvar. eapply insert_lenv_lookup1; eauto. + + destruct vb1; eapply eval_CEcondition; + eauto with evalexpr; simpl; eauto with evalexpr. +Qed. + +Lemma eval_lift: + forall sp le e1 m1 a e2 m2 v w, + eval_expr ge sp le e1 m1 a e2 m2 v -> + eval_expr ge sp (w::le) e1 m1 (lift a) e2 m2 v. +Proof. + intros. unfold lift. eapply eval_lift_expr. + eexact H. apply insert_lenv_0. +Qed. +Hint Resolve eval_lift: evalexpr. + +(** * Useful lemmas and tactics *) + +Ltac EvalOp := eapply eval_Eop; eauto with evalexpr. + +Ltac TrivialOp cstr := + unfold cstr; intros; EvalOp. + +(** The following are trivial lemmas and custom tactics that help + perform backward (inversion) and forward reasoning over the evaluation + of operator applications. *) + +Lemma inv_eval_Eop_0: + forall sp le e1 m1 op e2 m2 v, + eval_expr ge sp le e1 m1 (Eop op Enil) e2 m2 v -> + e2 = e1 /\ m2 = m1 /\ eval_operation ge sp op nil = Some v. +Proof. + intros. inversion H. inversion H6. + intuition. congruence. +Qed. + +Lemma inv_eval_Eop_1: + forall sp le e1 m1 op a1 e2 m2 v, + eval_expr ge sp le e1 m1 (Eop op (a1 ::: Enil)) e2 m2 v -> + exists v1, + eval_expr ge sp le e1 m1 a1 e2 m2 v1 /\ + eval_operation ge sp op (v1 :: nil) = Some v. +Proof. + intros. + inversion H. inversion H6. inversion H21. + subst e4; subst m4. subst e6; subst m6. + exists v1; intuition. congruence. +Qed. + +Lemma inv_eval_Eop_2: + forall sp le e1 m1 op a1 a2 e3 m3 v, + eval_expr ge sp le e1 m1 (Eop op (a1 ::: a2 ::: Enil)) e3 m3 v -> + exists e2, exists m2, exists v1, exists v2, + eval_expr ge sp le e1 m1 a1 e2 m2 v1 /\ + eval_expr ge sp le e2 m2 a2 e3 m3 v2 /\ + eval_operation ge sp op (v1 :: v2 :: nil) = Some v. +Proof. + intros. + inversion H. inversion H6. inversion H21. inversion H32. + subst e7; subst m7. subst e9; subst m9. + exists e4; exists m4; exists v1; exists v2. intuition. congruence. +Qed. + +Ltac SimplEval := + match goal with + | [ |- (eval_expr _ ?sp ?le ?e1 ?m1 (Eop ?op Enil) ?e2 ?m2 ?v) -> _] => + intro XX1; + generalize (inv_eval_Eop_0 sp le e1 m1 op e2 m2 v XX1); + clear XX1; + intros [XX1 [XX2 XX3]]; + subst e2; subst m2; simpl in XX3; + try (simplify_eq XX3; clear XX3; + let EQ := fresh "EQ" in (intro EQ; rewrite EQ)) + | [ |- (eval_expr _ ?sp ?le ?e1 ?m1 (Eop ?op (?a1 ::: Enil)) ?e2 ?m2 ?v) -> _] => + intro XX1; + generalize (inv_eval_Eop_1 sp le e1 m1 op a1 e2 m2 v XX1); + clear XX1; + let v1 := fresh "v" in let EV := fresh "EV" in + let EQ := fresh "EQ" in + (intros [v1 [EV EQ]]; simpl in EQ) + | [ |- (eval_expr _ ?sp ?le ?e1 ?m1 (Eop ?op (?a1 ::: ?a2 ::: Enil)) ?e2 ?m2 ?v) -> _] => + intro XX1; + generalize (inv_eval_Eop_2 sp le e1 m1 op a1 a2 e2 m2 v XX1); + clear XX1; + let e := fresh "e" in let m := fresh "m" in + let v1 := fresh "v" in let v2 := fresh "v" in + let EV1 := fresh "EV" in let EV2 := fresh "EV" in + let EQ := fresh "EQ" in + (intros [e [m [v1 [v2 [EV1 [EV2 EQ]]]]]]; simpl in EQ) + | _ => idtac + end. + +Ltac InvEval H := + generalize H; SimplEval; clear H. + +(** ** Admissible evaluation rules for the smart constructors *) + +(** All proofs follow a common pattern: +- Reasoning by case over the result of the classification functions + (such as [add_match] for integer addition), gathering additional + information on the shape of the argument expressions in the non-default + cases. +- Inversion of the evaluations of the arguments, exploiting the additional + information thus gathered. +- Equational reasoning over the arithmetic operations performed, + using the lemmas from the [Int] and [Float] modules. +- Construction of an evaluation derivation for the expression returned + by the smart constructor. +*) + +Theorem eval_negint: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (negint a) e2 m2 (Vint (Int.neg x)). +Proof. + TrivialOp negint. +Qed. + +Theorem eval_negfloat: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vfloat x) -> + eval_expr ge sp le e1 m1 (negfloat a) e2 m2 (Vfloat (Float.neg x)). +Proof. + TrivialOp negfloat. +Qed. + +Theorem eval_absfloat: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vfloat x) -> + eval_expr ge sp le e1 m1 (absfloat a) e2 m2 (Vfloat (Float.abs x)). +Proof. + TrivialOp absfloat. +Qed. + +Theorem eval_intoffloat: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vfloat x) -> + eval_expr ge sp le e1 m1 (intoffloat a) e2 m2 (Vint (Float.intoffloat x)). +Proof. + TrivialOp intoffloat. +Qed. + +Theorem eval_floatofint: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (floatofint a) e2 m2 (Vfloat (Float.floatofint x)). +Proof. + TrivialOp floatofint. +Qed. + +Theorem eval_floatofintu: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (floatofintu a) e2 m2 (Vfloat (Float.floatofintu x)). +Proof. + TrivialOp floatofintu. +Qed. + +Theorem eval_notint: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (notint a) e2 m2 (Vint (Int.not x)). +Proof. + unfold notint; intros until x; case (notint_match a); intros. + InvEval H. FuncInv. EvalOp. simpl. congruence. + InvEval H. FuncInv. EvalOp. simpl. congruence. + InvEval H. FuncInv. EvalOp. simpl. congruence. + eapply eval_Elet. eexact H. + eapply eval_Eop. + eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity. + eapply eval_Econs. apply eval_Eletvar. simpl. reflexivity. + apply eval_Enil. + simpl. rewrite Int.or_idem. auto. +Qed. + +Lemma eval_notbool_base: + forall sp le e1 m1 a e2 m2 v b, + eval_expr ge sp le e1 m1 a e2 m2 v -> + Val.bool_of_val v b -> + eval_expr ge sp le e1 m1 (notbool_base a) e2 m2 (Val.of_bool (negb b)). +Proof. + TrivialOp notbool_base. simpl. + inversion H0. + rewrite Int.eq_false; auto. + rewrite Int.eq_true; auto. + reflexivity. +Qed. + +Hint Resolve Val.bool_of_true_val Val.bool_of_false_val + Val.bool_of_true_val_inv Val.bool_of_false_val_inv: valboolof. + +Theorem eval_notbool: + forall a sp le e1 m1 e2 m2 v b, + eval_expr ge sp le e1 m1 a e2 m2 v -> + Val.bool_of_val v b -> + eval_expr ge sp le e1 m1 (notbool a) e2 m2 (Val.of_bool (negb b)). +Proof. + assert (N1: forall v b, Val.is_false v -> Val.bool_of_val v b -> Val.is_true (Val.of_bool (negb b))). + intros. inversion H0; simpl; auto; subst v; simpl in H. + congruence. apply Int.one_not_zero. contradiction. + assert (N2: forall v b, Val.is_true v -> Val.bool_of_val v b -> Val.is_false (Val.of_bool (negb b))). + intros. inversion H0; simpl; auto; subst v; simpl in H. + congruence. + + induction a; simpl; intros; try (eapply eval_notbool_base; eauto). + destruct o; try (eapply eval_notbool_base; eauto). + + destruct e. inversion H. inversion H7. subst vl. + simpl in H11. inversion H11. subst v0; subst v. + inversion H0. rewrite Int.eq_false; auto. + simpl; eauto with evalexpr. + rewrite Int.eq_true; simpl; eauto with evalexpr. + eapply eval_notbool_base; eauto. + + inversion H. subst sp0 le0 e0 m op al e3 m0 v0. + simpl in H11. eapply eval_Eop; eauto. + simpl. caseEq (eval_condition c vl); intros. + rewrite H1 in H11. + assert (b0 = b). + destruct b0; inversion H11; subst v; inversion H0; auto. + subst b0. rewrite (Op.eval_negate_condition _ _ H1). + destruct b; reflexivity. + rewrite H1 in H11; discriminate. + + inversion H; eauto 10 with evalexpr valboolof. + inversion H; eauto 10 with evalexpr valboolof. + + inversion H. eapply eval_Econdition. eexact H11. + destruct v1; eauto. +Qed. + +Theorem eval_cast8signed: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (cast8signed a) e2 m2 (Vint (Int.cast8signed x)). +Proof. TrivialOp cast8signed. Qed. + +Theorem eval_cast8unsigned: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (cast8unsigned a) e2 m2 (Vint (Int.cast8unsigned x)). +Proof. + TrivialOp cast8unsigned. simpl. + rewrite Int.rolm_zero. rewrite Int.cast8unsigned_and. auto. +Qed. + +Theorem eval_cast16signed: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (cast16signed a) e2 m2 (Vint (Int.cast16signed x)). +Proof. TrivialOp cast16signed. Qed. + +Theorem eval_cast16unsigned: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (cast16unsigned a) e2 m2 (Vint (Int.cast16unsigned x)). +Proof. + TrivialOp cast16unsigned. simpl. + rewrite Int.rolm_zero. rewrite Int.cast16unsigned_and. auto. +Qed. + +Theorem eval_singleoffloat: + forall sp le e1 m1 a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vfloat x) -> + eval_expr ge sp le e1 m1 (singleoffloat a) e2 m2 (Vfloat (Float.singleoffloat x)). +Proof. + TrivialOp singleoffloat. +Qed. + +Theorem eval_addimm: + forall sp le e1 m1 n a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (addimm n a) e2 m2 (Vint (Int.add x n)). +Proof. + unfold addimm; intros until x. + generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro. + subst n. rewrite Int.add_zero. auto. + case (addimm_match a); intros. + InvEval H0. EvalOp. simpl. rewrite Int.add_commut. auto. + InvEval H0. destruct (Genv.find_symbol ge s); discriminate. + InvEval H0. + destruct sp; simpl in XX3; discriminate. + InvEval H0. FuncInv. EvalOp. simpl. subst x. + rewrite Int.add_assoc. decEq; decEq; decEq. apply Int.add_commut. + EvalOp. +Qed. + +Theorem eval_addimm_ptr: + forall sp le e1 m1 n a e2 m2 b ofs, + eval_expr ge sp le e1 m1 a e2 m2 (Vptr b ofs) -> + eval_expr ge sp le e1 m1 (addimm n a) e2 m2 (Vptr b (Int.add ofs n)). +Proof. + unfold addimm; intros until ofs. + generalize (Int.eq_spec n Int.zero). case (Int.eq n Int.zero); intro. + subst n. rewrite Int.add_zero. auto. + case (addimm_match a); intros. + InvEval H0. + InvEval H0. EvalOp. simpl. + destruct (Genv.find_symbol ge s). + rewrite Int.add_commut. congruence. + discriminate. + InvEval H0. destruct sp; simpl in XX3; try discriminate. + inversion XX3. EvalOp. simpl. decEq. decEq. + rewrite Int.add_assoc. decEq. apply Int.add_commut. + InvEval H0. FuncInv. subst b0; subst ofs. EvalOp. simpl. + rewrite (Int.add_commut n m). rewrite Int.add_assoc. auto. + EvalOp. +Qed. + +Theorem eval_add: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + eval_expr ge sp le e1 m1 (add a b) e3 m3 (Vint (Int.add x y)). +Proof. + intros until y. unfold add; case (add_match a b); intros. + InvEval H. rewrite Int.add_commut. apply eval_addimm. assumption. + InvEval H. FuncInv. InvEval H0. FuncInv. + replace (Int.add x y) with (Int.add (Int.add i i0) (Int.add n1 n2)). + apply eval_addimm. EvalOp. + subst x; subst y. + repeat rewrite Int.add_assoc. decEq. apply Int.add_permut. + InvEval H. FuncInv. + replace (Int.add x y) with (Int.add (Int.add i y) n1). + apply eval_addimm. EvalOp. + subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. + InvEval H0. FuncInv. + apply eval_addimm. auto. + InvEval H0. FuncInv. + replace (Int.add x y) with (Int.add (Int.add x i) n2). + apply eval_addimm. EvalOp. + subst y. rewrite Int.add_assoc. auto. + EvalOp. +Qed. + +Theorem eval_add_ptr: + forall sp le e1 m1 a e2 m2 p x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vptr p x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + eval_expr ge sp le e1 m1 (add a b) e3 m3 (Vptr p (Int.add x y)). +Proof. + intros until y. unfold add; case (add_match a b); intros. + InvEval H. + InvEval H. FuncInv. InvEval H0. FuncInv. + replace (Int.add x y) with (Int.add (Int.add i i0) (Int.add n1 n2)). + apply eval_addimm_ptr. subst b0. EvalOp. + subst x; subst y. + repeat rewrite Int.add_assoc. decEq. apply Int.add_permut. + InvEval H. FuncInv. + replace (Int.add x y) with (Int.add (Int.add i y) n1). + apply eval_addimm_ptr. subst b0. EvalOp. + subst x. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. + InvEval H0. apply eval_addimm_ptr. auto. + InvEval H0. FuncInv. + replace (Int.add x y) with (Int.add (Int.add x i) n2). + apply eval_addimm_ptr. EvalOp. + subst y. rewrite Int.add_assoc. auto. + EvalOp. +Qed. + +Theorem eval_add_ptr_2: + forall sp le e1 m1 a e2 m2 p x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vptr p y) -> + eval_expr ge sp le e1 m1 (add a b) e3 m3 (Vptr p (Int.add y x)). +Proof. + intros until y. unfold add; case (add_match a b); intros. + InvEval H. + apply eval_addimm_ptr. auto. + InvEval H. FuncInv. InvEval H0. FuncInv. + replace (Int.add y x) with (Int.add (Int.add i0 i) (Int.add n1 n2)). + apply eval_addimm_ptr. subst b0. EvalOp. + subst x; subst y. + repeat rewrite Int.add_assoc. decEq. + rewrite (Int.add_commut n1 n2). apply Int.add_permut. + InvEval H. FuncInv. + replace (Int.add y x) with (Int.add (Int.add y i) n1). + apply eval_addimm_ptr. EvalOp. + subst x. repeat rewrite Int.add_assoc. auto. + InvEval H0. + InvEval H0. FuncInv. + replace (Int.add y x) with (Int.add (Int.add i x) n2). + apply eval_addimm_ptr. EvalOp. subst b0; reflexivity. + subst y. repeat rewrite Int.add_assoc. decEq. apply Int.add_commut. + EvalOp. +Qed. + +Theorem eval_sub: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + eval_expr ge sp le e1 m1 (sub a b) e3 m3 (Vint (Int.sub x y)). +Proof. + intros until y. + unfold sub; case (sub_match a b); intros. + InvEval H0. rewrite Int.sub_add_opp. + apply eval_addimm. assumption. + InvEval H. FuncInv. InvEval H0. FuncInv. + replace (Int.sub x y) with (Int.add (Int.sub i i0) (Int.sub n1 n2)). + apply eval_addimm. EvalOp. + subst x; subst y. + repeat rewrite Int.sub_add_opp. + repeat rewrite Int.add_assoc. decEq. + rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr. + InvEval H. FuncInv. + replace (Int.sub x y) with (Int.add (Int.sub i y) n1). + apply eval_addimm. EvalOp. + subst x. rewrite Int.sub_add_l. auto. + InvEval H0. FuncInv. + replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)). + apply eval_addimm. EvalOp. + subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r. + EvalOp. +Qed. + +Theorem eval_sub_ptr_int: + forall sp le e1 m1 a e2 m2 p x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vptr p x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + eval_expr ge sp le e1 m1 (sub a b) e3 m3 (Vptr p (Int.sub x y)). +Proof. + intros until y. + unfold sub; case (sub_match a b); intros. + InvEval H0. rewrite Int.sub_add_opp. + apply eval_addimm_ptr. assumption. + InvEval H. FuncInv. InvEval H0. FuncInv. + subst b0. + replace (Int.sub x y) with (Int.add (Int.sub i i0) (Int.sub n1 n2)). + apply eval_addimm_ptr. EvalOp. + subst x; subst y. + repeat rewrite Int.sub_add_opp. + repeat rewrite Int.add_assoc. decEq. + rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr. + InvEval H. FuncInv. subst b0. + replace (Int.sub x y) with (Int.add (Int.sub i y) n1). + apply eval_addimm_ptr. EvalOp. + subst x. rewrite Int.sub_add_l. auto. + InvEval H0. FuncInv. + replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)). + apply eval_addimm_ptr. EvalOp. + subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r. + EvalOp. +Qed. + +Theorem eval_sub_ptr_ptr: + forall sp le e1 m1 a e2 m2 p x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vptr p x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vptr p y) -> + eval_expr ge sp le e1 m1 (sub a b) e3 m3 (Vint (Int.sub x y)). +Proof. + intros until y. + unfold sub; case (sub_match a b); intros. + InvEval H0. + InvEval H. FuncInv. InvEval H0. FuncInv. + replace (Int.sub x y) with (Int.add (Int.sub i i0) (Int.sub n1 n2)). + apply eval_addimm. EvalOp. + simpl; unfold eq_block. subst b0; subst b1; rewrite zeq_true. auto. + subst x; subst y. + repeat rewrite Int.sub_add_opp. + repeat rewrite Int.add_assoc. decEq. + rewrite Int.add_permut. decEq. symmetry. apply Int.neg_add_distr. + InvEval H. FuncInv. subst b0. + replace (Int.sub x y) with (Int.add (Int.sub i y) n1). + apply eval_addimm. EvalOp. + simpl. unfold eq_block. rewrite zeq_true. auto. + subst x. rewrite Int.sub_add_l. auto. + InvEval H0. FuncInv. subst b0. + replace (Int.sub x y) with (Int.add (Int.sub x i) (Int.neg n2)). + apply eval_addimm. EvalOp. + simpl. unfold eq_block. rewrite zeq_true. auto. + subst y. rewrite (Int.add_commut i n2). symmetry. apply Int.sub_add_r. + EvalOp. simpl. unfold eq_block. rewrite zeq_true. auto. +Qed. + +Lemma eval_rolm: + forall sp le e1 m1 a amount mask e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (rolm a amount mask) e2 m2 (Vint (Int.rolm x amount mask)). +Proof. + intros until x. unfold rolm; case (rolm_match a); intros. + InvEval H. eauto with evalexpr. + case (Int.is_rlw_mask (Int.and (Int.rol mask1 amount) mask)). + InvEval H. FuncInv. EvalOp. simpl. subst x. + decEq. decEq. + replace (Int.and (Int.add amount1 amount) (Int.repr 31)) + with (Int.modu (Int.add amount1 amount) (Int.repr 32)). + symmetry. apply Int.rolm_rolm. + change (Int.repr 31) with (Int.sub (Int.repr 32) Int.one). + apply Int.modu_and with (Int.repr 5). reflexivity. + EvalOp. + EvalOp. +Qed. + +Theorem eval_shlimm: + forall sp le e1 m1 a n e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + Int.ltu n (Int.repr 32) = true -> + eval_expr ge sp le e1 m1 (shlimm a n) e2 m2 (Vint (Int.shl x n)). +Proof. + intros. unfold shlimm. + generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro. + subst n. rewrite Int.shl_zero. auto. + rewrite H0. + replace (Int.shl x n) with (Int.rolm x n (Int.shl Int.mone n)). + apply eval_rolm. auto. symmetry. apply Int.shl_rolm. exact H0. +Qed. + +Theorem eval_shruimm: + forall sp le e1 m1 a n e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + Int.ltu n (Int.repr 32) = true -> + eval_expr ge sp le e1 m1 (shruimm a n) e2 m2 (Vint (Int.shru x n)). +Proof. + intros. unfold shruimm. + generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro. + subst n. rewrite Int.shru_zero. auto. + rewrite H0. + replace (Int.shru x n) with (Int.rolm x (Int.sub (Int.repr 32) n) (Int.shru Int.mone n)). + apply eval_rolm. auto. symmetry. apply Int.shru_rolm. exact H0. +Qed. + +Lemma eval_mulimm_base: + forall sp le e1 m1 a n e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (mulimm_base n a) e2 m2 (Vint (Int.mul x n)). +Proof. + intros; unfold mulimm_base. + generalize (Int.one_bits_decomp n). + generalize (Int.one_bits_range n). + change (Z_of_nat wordsize) with 32. + destruct (Int.one_bits n). + intros. EvalOp. + destruct l. + intros. rewrite H1. simpl. + rewrite Int.add_zero. rewrite <- Int.shl_mul. + apply eval_shlimm. auto. auto with coqlib. + destruct l. + intros. apply eval_Elet with e2 m2 (Vint x). auto. + rewrite H1. simpl. rewrite Int.add_zero. + rewrite Int.mul_add_distr_r. + rewrite <- Int.shl_mul. + rewrite <- Int.shl_mul. + EvalOp. eapply eval_Econs. + apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity. + auto with coqlib. + eapply eval_Econs. + apply eval_shlimm. apply eval_Eletvar. simpl. reflexivity. + auto with coqlib. + auto with evalexpr. + reflexivity. + intros. EvalOp. +Qed. + +Theorem eval_mulimm: + forall sp le e1 m1 a n e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (mulimm n a) e2 m2 (Vint (Int.mul x n)). +Proof. + intros until x; unfold mulimm. + generalize (Int.eq_spec n Int.zero); case (Int.eq n Int.zero); intro. + subst n. rewrite Int.mul_zero. eauto with evalexpr. + generalize (Int.eq_spec n Int.one); case (Int.eq n Int.one); intro. + subst n. rewrite Int.mul_one. auto. + case (mulimm_match a); intros. + InvEval H1. EvalOp. rewrite Int.mul_commut. reflexivity. + InvEval H1. FuncInv. + replace (Int.mul x n) with (Int.add (Int.mul i n) (Int.mul n n2)). + apply eval_addimm. apply eval_mulimm_base. auto. + subst x. rewrite Int.mul_add_distr_l. decEq. apply Int.mul_commut. + apply eval_mulimm_base. assumption. +Qed. + +Theorem eval_mul: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + eval_expr ge sp le e1 m1 (mul a b) e3 m3 (Vint (Int.mul x y)). +Proof. + intros until y. + unfold mul; case (mul_match a b); intros. + InvEval H. rewrite Int.mul_commut. apply eval_mulimm. auto. + InvEval H0. apply eval_mulimm. auto. + EvalOp. +Qed. + +Theorem eval_divs: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + y <> Int.zero -> + eval_expr ge sp le e1 m1 (divs a b) e3 m3 (Vint (Int.divs x y)). +Proof. + TrivialOp divs. simpl. + predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto. +Qed. + +Lemma eval_mod_aux: + forall divop semdivop, + (forall sp x y, + y <> Int.zero -> + eval_operation ge sp divop (Vint x :: Vint y :: nil) = + Some (Vint (semdivop x y))) -> + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + y <> Int.zero -> + eval_expr ge sp le e1 m1 (mod_aux divop a b) e3 m3 + (Vint (Int.sub x (Int.mul (semdivop x y) y))). +Proof. + intros; unfold mod_aux. + eapply eval_Elet. eexact H0. eapply eval_Elet. + apply eval_lift. eexact H1. + eapply eval_Eop. eapply eval_Econs. + eapply eval_Eletvar. simpl; reflexivity. + eapply eval_Econs. eapply eval_Eop. + eapply eval_Econs. eapply eval_Eop. + eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity. + eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity. + apply eval_Enil. apply H. assumption. + eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity. + apply eval_Enil. simpl; reflexivity. apply eval_Enil. + reflexivity. +Qed. + +Theorem eval_mods: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + y <> Int.zero -> + eval_expr ge sp le e1 m1 (mods a b) e3 m3 (Vint (Int.mods x y)). +Proof. + intros; unfold mods. + rewrite Int.mods_divs. + eapply eval_mod_aux; eauto. + intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero. + contradiction. auto. +Qed. + +Lemma eval_divu_base: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + y <> Int.zero -> + eval_expr ge sp le e1 m1 (Eop Odivu (a ::: b ::: Enil)) e3 m3 (Vint (Int.divu x y)). +Proof. + intros. EvalOp. simpl. + predSpec Int.eq Int.eq_spec y Int.zero. contradiction. auto. +Qed. + +Theorem eval_divu: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + y <> Int.zero -> + eval_expr ge sp le e1 m1 (divu a b) e3 m3 (Vint (Int.divu x y)). +Proof. + intros until y. + unfold divu; case (divu_match b); intros. + InvEval H0. caseEq (Int.is_power2 y). + intros. rewrite (Int.divu_pow2 x y i H0). + apply eval_shruimm. auto. + apply Int.is_power2_range with y. auto. + intros. subst n2. eapply eval_divu_base. eexact H. EvalOp. auto. + eapply eval_divu_base; eauto. +Qed. + +Theorem eval_modu: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + y <> Int.zero -> + eval_expr ge sp le e1 m1 (modu a b) e3 m3 (Vint (Int.modu x y)). +Proof. + intros until y; unfold modu; case (divu_match b); intros. + InvEval H0. caseEq (Int.is_power2 y). + intros. rewrite (Int.modu_and x y i H0). + rewrite <- Int.rolm_zero. apply eval_rolm. auto. + intro. rewrite Int.modu_divu. eapply eval_mod_aux. + intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero. + contradiction. auto. + eexact H. EvalOp. auto. auto. + rewrite Int.modu_divu. eapply eval_mod_aux. + intros. simpl. predSpec Int.eq Int.eq_spec y0 Int.zero. + contradiction. auto. + eexact H. eexact H0. auto. auto. +Qed. + +Theorem eval_andimm: + forall sp le e1 m1 n a e2 m2 x, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e1 m1 (andimm n a) e2 m2 (Vint (Int.and x n)). +Proof. + intros. unfold andimm. case (Int.is_rlw_mask n). + rewrite <- Int.rolm_zero. apply eval_rolm; auto. + EvalOp. +Qed. + +Theorem eval_and: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + eval_expr ge sp le e1 m1 (and a b) e3 m3 (Vint (Int.and x y)). +Proof. + intros until y; unfold and; case (mul_match a b); intros. + InvEval H. rewrite Int.and_commut. apply eval_andimm; auto. + InvEval H0. apply eval_andimm; auto. + EvalOp. +Qed. + +Remark eval_same_expr_pure: + forall a1 a2 sp le e1 m1 e2 m2 v1 e3 m3 v2, + same_expr_pure a1 a2 = true -> + eval_expr ge sp le e1 m1 a1 e2 m2 v1 -> + eval_expr ge sp le e2 m2 a2 e3 m3 v2 -> + a2 = a1 /\ v2 = v1 /\ e2 = e1 /\ m2 = m1. +Proof. + intros until v1. + destruct a1; simpl; try (intros; discriminate). + destruct a2; simpl; try (intros; discriminate). + case (ident_eq i i0); intros. + subst i0. inversion H0. inversion H1. + assert (v2 = v1). congruence. tauto. + discriminate. +Qed. + +Lemma eval_or: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + eval_expr ge sp le e1 m1 (or a b) e3 m3 (Vint (Int.or x y)). +Proof. + intros until y; unfold or; case (or_match a b); intros. + generalize (Int.eq_spec amount1 amount2); case (Int.eq amount1 amount2); intro. + case (Int.is_rlw_mask (Int.or mask1 mask2)). + caseEq (same_expr_pure t1 t2); intro. + simpl. InvEval H. FuncInv. InvEval H0. FuncInv. + generalize (eval_same_expr_pure _ _ _ _ _ _ _ _ _ _ _ _ H2 EV EV0). + intros [EQ1 [EQ2 [EQ3 EQ4]]]. + injection EQ2; intro EQ5. + subst t2; subst e2; subst m2; subst i0. + EvalOp. simpl. subst x; subst y; subst amount2. + rewrite Int.or_rolm. auto. + simpl. EvalOp. + simpl. EvalOp. + simpl. EvalOp. + EvalOp. +Qed. + +Theorem eval_xor: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + eval_expr ge sp le e1 m1 (xor a b) e3 m3 (Vint (Int.xor x y)). +Proof. TrivialOp xor. Qed. + +Theorem eval_shl: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + Int.ltu y (Int.repr 32) = true -> + eval_expr ge sp le e1 m1 (shl a b) e3 m3 (Vint (Int.shl x y)). +Proof. + intros until y; unfold shl; case (shift_match b); intros. + InvEval H0. apply eval_shlimm; auto. + EvalOp. simpl. rewrite H1. auto. +Qed. + +Theorem eval_shr: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + Int.ltu y (Int.repr 32) = true -> + eval_expr ge sp le e1 m1 (shr a b) e3 m3 (Vint (Int.shr x y)). +Proof. + TrivialOp shr. simpl. rewrite H1. auto. +Qed. + +Theorem eval_shru: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + Int.ltu y (Int.repr 32) = true -> + eval_expr ge sp le e1 m1 (shru a b) e3 m3 (Vint (Int.shru x y)). +Proof. + intros until y; unfold shru; case (shift_match b); intros. + InvEval H0. apply eval_shruimm; auto. + EvalOp. simpl. rewrite H1. auto. +Qed. + +Theorem eval_addf: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vfloat x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vfloat y) -> + eval_expr ge sp le e1 m1 (addf a b) e3 m3 (Vfloat (Float.add x y)). +Proof. + intros until y; unfold addf; case (addf_match a b); intros. + InvEval H. FuncInv. EvalOp. simpl. subst x. reflexivity. + InvEval H0. FuncInv. eapply eval_Elet. eexact H. EvalOp. + eapply eval_Econs. apply eval_lift. eexact EV. + eapply eval_Econs. apply eval_lift. eexact EV0. + eapply eval_Econs. apply eval_Eletvar. simpl; reflexivity. + apply eval_Enil. + subst y. rewrite Float.addf_commut. reflexivity. + EvalOp. +Qed. + +Theorem eval_subf: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vfloat x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vfloat y) -> + eval_expr ge sp le e1 m1 (subf a b) e3 m3 (Vfloat (Float.sub x y)). +Proof. + intros until y; unfold subf; case (subf_match a b); intros. + InvEval H. FuncInv. EvalOp. subst x. reflexivity. + EvalOp. +Qed. + +Theorem eval_mulf: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vfloat x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vfloat y) -> + eval_expr ge sp le e1 m1 (mulf a b) e3 m3 (Vfloat (Float.mul x y)). +Proof. TrivialOp mulf. Qed. + +Theorem eval_divf: + forall sp le e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vfloat x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vfloat y) -> + eval_expr ge sp le e1 m1 (divf a b) e3 m3 (Vfloat (Float.div x y)). +Proof. TrivialOp divf. Qed. + +Theorem eval_cmp: + forall sp le c e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + eval_expr ge sp le e1 m1 (cmp c a b) e3 m3 (Val.of_bool (Int.cmp c x y)). +Proof. + TrivialOp cmp. + simpl. case (Int.cmp c x y); auto. +Qed. + +Theorem eval_cmp_null_r: + forall sp le c e1 m1 a e2 m2 p x b e3 m3 v, + eval_expr ge sp le e1 m1 a e2 m2 (Vptr p x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint Int.zero) -> + (c = Ceq /\ v = Vfalse) \/ (c = Cne /\ v = Vtrue) -> + eval_expr ge sp le e1 m1 (cmp c a b) e3 m3 v. +Proof. + TrivialOp cmp. + simpl. elim H1; intros [EQ1 EQ2]; subst c; subst v; reflexivity. +Qed. + +Theorem eval_cmp_null_l: + forall sp le c e1 m1 a e2 m2 p x b e3 m3 v, + eval_expr ge sp le e1 m1 a e2 m2 (Vint Int.zero) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vptr p x) -> + (c = Ceq /\ v = Vfalse) \/ (c = Cne /\ v = Vtrue) -> + eval_expr ge sp le e1 m1 (cmp c a b) e3 m3 v. +Proof. + TrivialOp cmp. + simpl. elim H1; intros [EQ1 EQ2]; subst c; subst v; reflexivity. +Qed. + +Theorem eval_cmp_ptr: + forall sp le c e1 m1 a e2 m2 p x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vptr p x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vptr p y) -> + eval_expr ge sp le e1 m1 (cmp c a b) e3 m3 (Val.of_bool (Int.cmp c x y)). +Proof. + TrivialOp cmp. + simpl. unfold eq_block. rewrite zeq_true. + case (Int.cmp c x y); auto. +Qed. + +Theorem eval_cmpu: + forall sp le c e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vint x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vint y) -> + eval_expr ge sp le e1 m1 (cmpu c a b) e3 m3 (Val.of_bool (Int.cmpu c x y)). +Proof. + TrivialOp cmpu. + simpl. case (Int.cmpu c x y); auto. +Qed. + +Theorem eval_cmpf: + forall sp le c e1 m1 a e2 m2 x b e3 m3 y, + eval_expr ge sp le e1 m1 a e2 m2 (Vfloat x) -> + eval_expr ge sp le e2 m2 b e3 m3 (Vfloat y) -> + eval_expr ge sp le e1 m1 (cmpf c a b) e3 m3 (Val.of_bool (Float.cmp c x y)). +Proof. + TrivialOp cmpf. + simpl. case (Float.cmp c x y); auto. +Qed. + +Lemma eval_base_condition_of_expr: + forall sp le a e1 m1 e2 m2 v (b: bool), + eval_expr ge sp le e1 m1 a e2 m2 v -> + Val.bool_of_val v b -> + eval_condexpr ge sp le e1 m1 + (CEcond (Ccompuimm Cne Int.zero) (a ::: Enil)) + e2 m2 b. +Proof. + intros. + eapply eval_CEcond. eauto with evalexpr. + inversion H0; simpl. rewrite Int.eq_false; auto. auto. auto. +Qed. + +Lemma eval_condition_of_expr: + forall a sp le e1 m1 e2 m2 v (b: bool), + eval_expr ge sp le e1 m1 a e2 m2 v -> + Val.bool_of_val v b -> + eval_condexpr ge sp le e1 m1 (condexpr_of_expr a) e2 m2 b. +Proof. + induction a; simpl; intros; + try (eapply eval_base_condition_of_expr; eauto; fail). + destruct o; try (eapply eval_base_condition_of_expr; eauto; fail). + + destruct e. inversion H. subst sp0 le0 e m op al e0 m0 v0. + inversion H7. subst sp0 le0 e m e1 m1 vl. + simpl in H11. inversion H11; subst v. + inversion H0. + rewrite Int.eq_false; auto. constructor. + subst i; rewrite Int.eq_true. constructor. + eapply eval_base_condition_of_expr; eauto. + + inversion H. eapply eval_CEcond; eauto. simpl in H11. + destruct (eval_condition c vl); try discriminate. + destruct b0; inversion H11; subst v0; subst v; inversion H0; congruence. + + inversion H. + destruct v1; eauto with evalexpr. +Qed. + +Theorem eval_conditionalexpr_true: + forall sp le e1 m1 a1 e2 m2 v1 a2 e3 m3 v2 a3, + eval_expr ge sp le e1 m1 a1 e2 m2 v1 -> + Val.is_true v1 -> + eval_expr ge sp le e2 m2 a2 e3 m3 v2 -> + eval_expr ge sp le e1 m1 (conditionalexpr a1 a2 a3) e3 m3 v2. +Proof. + intros; unfold conditionalexpr. + apply eval_Econdition with e2 m2 true; auto. + eapply eval_condition_of_expr; eauto with valboolof. +Qed. + +Theorem eval_conditionalexpr_false: + forall sp le e1 m1 a1 e2 m2 v1 a2 e3 m3 v2 a3, + eval_expr ge sp le e1 m1 a1 e2 m2 v1 -> + Val.is_false v1 -> + eval_expr ge sp le e2 m2 a3 e3 m3 v2 -> + eval_expr ge sp le e1 m1 (conditionalexpr a1 a2 a3) e3 m3 v2. +Proof. + intros; unfold conditionalexpr. + apply eval_Econdition with e2 m2 false; auto. + eapply eval_condition_of_expr; eauto with valboolof. +Qed. + +Lemma eval_addressing: + forall sp le e1 m1 a e2 m2 v b ofs, + eval_expr ge sp le e1 m1 a e2 m2 v -> + v = Vptr b ofs -> + match addressing a with (mode, args) => + exists vl, + eval_exprlist ge sp le e1 m1 args e2 m2 vl /\ + eval_addressing ge sp mode vl = Some v + end. +Proof. + intros until v. unfold addressing; case (addressing_match a); intros. + InvEval H. exists (@nil val). split. eauto with evalexpr. + simpl. auto. + InvEval H. exists (@nil val). split. eauto with evalexpr. + simpl. auto. + InvEval H. FuncInv. + congruence. + InvEval EV. + exists (Vint i0 :: nil). split. eauto with evalexpr. + simpl. subst v. destruct (Genv.find_symbol ge s). congruence. + discriminate. + InvEval H. FuncInv. + destruct (Genv.find_symbol ge s); congruence. + InvEval EV. + exists (Vint i0 :: nil). split. eauto with evalexpr. + simpl. destruct (Genv.find_symbol ge s). congruence. + discriminate. + InvEval H. FuncInv. + congruence. + exists (Vptr b0 i :: nil). split. eauto with evalexpr. + simpl. congruence. + InvEval H. FuncInv. + congruence. + exists (Vint i :: Vptr b0 i0 :: nil). + split. eauto with evalexpr. simpl. + rewrite Int.add_commut. congruence. + exists (Vptr b0 i :: Vint i0 :: nil). + split. eauto with evalexpr. simpl. congruence. + exists (v :: nil). split. eauto with evalexpr. + subst v. simpl. rewrite Int.add_zero. auto. +Qed. + +Theorem eval_load: + forall sp le e1 m1 a e2 m2 v chunk v', + eval_expr ge sp le e1 m1 a e2 m2 v -> + Mem.loadv chunk m2 v = Some v' -> + eval_expr ge sp le e1 m1 (load chunk a) e2 m2 v'. +Proof. + intros. generalize H0; destruct v; simpl; intro; try discriminate. + unfold load. + generalize (eval_addressing _ _ _ _ _ _ _ _ _ _ H (refl_equal _)). + destruct (addressing a). intros [vl [EV EQ]]. + eapply eval_Eload; eauto. +Qed. + +Theorem eval_store: + forall sp le e1 m1 a1 e2 m2 v1 a2 e3 m3 v2 chunk m4, + eval_expr ge sp le e1 m1 a1 e2 m2 v1 -> + eval_expr ge sp le e2 m2 a2 e3 m3 v2 -> + Mem.storev chunk m3 v1 v2 = Some m4 -> + eval_expr ge sp le e1 m1 (store chunk a1 a2) e3 m4 v2. +Proof. + intros. generalize H1; destruct v1; simpl; intro; try discriminate. + unfold store. + generalize (eval_addressing _ _ _ _ _ _ _ _ _ _ H (refl_equal _)). + destruct (addressing a1). intros [vl [EV EQ]]. + eapply eval_Estore; eauto. +Qed. + +Theorem exec_ifthenelse_true: + forall sp e1 m1 a e2 m2 v ifso ifnot e3 m3 out, + eval_expr ge sp nil e1 m1 a e2 m2 v -> + Val.is_true v -> + exec_stmtlist ge sp e2 m2 ifso e3 m3 out -> + exec_stmt ge sp e1 m1 (ifthenelse a ifso ifnot) e3 m3 out. +Proof. + intros. unfold ifthenelse. + apply exec_Sifthenelse with e2 m2 true. + eapply eval_condition_of_expr; eauto with valboolof. + auto. +Qed. + +Theorem exec_ifthenelse_false: + forall sp e1 m1 a e2 m2 v ifso ifnot e3 m3 out, + eval_expr ge sp nil e1 m1 a e2 m2 v -> + Val.is_false v -> + exec_stmtlist ge sp e2 m2 ifnot e3 m3 out -> + exec_stmt ge sp e1 m1 (ifthenelse a ifso ifnot) e3 m3 out. +Proof. + intros. unfold ifthenelse. + apply exec_Sifthenelse with e2 m2 false. + eapply eval_condition_of_expr; eauto with valboolof. + auto. +Qed. + +End CMCONSTR. + -- cgit