From 0f919eb26c68d3882e612a1b3a9df45bee6d3624 Mon Sep 17 00:00:00 2001 From: Guillaume Melquiond Date: Wed, 13 Feb 2019 18:53:17 +0100 Subject: Upgrade embedded version of Flocq to 3.1. Main changes to CompCert outside of Flocq are as follows: - Minimal supported version of Coq is now 8.7, due to Flocq requirements. - Most modifications are due to Z2R being dropped in favor of IZR and to the way Flocq now handles NaNs. - CompCert now correctly handles NaNs for the Risc-V architecture (hopefully). --- flocq/Calc/Operations.v | 164 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 164 insertions(+) create mode 100644 flocq/Calc/Operations.v (limited to 'flocq/Calc/Operations.v') diff --git a/flocq/Calc/Operations.v b/flocq/Calc/Operations.v new file mode 100644 index 00000000..3416cb4e --- /dev/null +++ b/flocq/Calc/Operations.v @@ -0,0 +1,164 @@ +(** +This file is part of the Flocq formalization of floating-point +arithmetic in Coq: http://flocq.gforge.inria.fr/ + +Copyright (C) 2009-2018 Sylvie Boldo +#
# +Copyright (C) 2009-2018 Guillaume Melquiond + +This library is free software; you can redistribute it and/or +modify it under the terms of the GNU Lesser General Public +License as published by the Free Software Foundation; either +version 3 of the License, or (at your option) any later version. + +This library is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +COPYING file for more details. +*) + +(** Basic operations on floats: alignment, addition, multiplication *) +Require Import Raux Defs Float_prop. + +Set Implicit Arguments. +Set Strongly Strict Implicit. + +Section Float_ops. + +Variable beta : radix. + +Notation bpow e := (bpow beta e). + +Arguments Float {beta}. + +Definition Falign (f1 f2 : float beta) := + let '(Float m1 e1) := f1 in + let '(Float m2 e2) := f2 in + if Zle_bool e1 e2 + then (m1, (m2 * Zpower beta (e2 - e1))%Z, e1) + else ((m1 * Zpower beta (e1 - e2))%Z, m2, e2). + +Theorem Falign_spec : + forall f1 f2 : float beta, + let '(m1, m2, e) := Falign f1 f2 in + F2R f1 = @F2R beta (Float m1 e) /\ F2R f2 = @F2R beta (Float m2 e). +Proof. +unfold Falign. +intros (m1, e1) (m2, e2). +generalize (Zle_cases e1 e2). +case (Zle_bool e1 e2) ; intros He ; split ; trivial. +now rewrite <- F2R_change_exp. +rewrite <- F2R_change_exp. +apply refl_equal. +omega. +Qed. + +Theorem Falign_spec_exp: + forall f1 f2 : float beta, + snd (Falign f1 f2) = Z.min (Fexp f1) (Fexp f2). +Proof. +intros (m1,e1) (m2,e2). +unfold Falign; simpl. +generalize (Zle_cases e1 e2);case (Zle_bool e1 e2); intros He. +case (Zmin_spec e1 e2); intros (H1,H2); easy. +case (Zmin_spec e1 e2); intros (H1,H2); easy. +Qed. + +Definition Fopp (f1 : float beta) : float beta := + let '(Float m1 e1) := f1 in + Float (-m1)%Z e1. + +Theorem F2R_opp : + forall f1 : float beta, + (F2R (Fopp f1) = -F2R f1)%R. +intros (m1,e1). +apply F2R_Zopp. +Qed. + +Definition Fabs (f1 : float beta) : float beta := + let '(Float m1 e1) := f1 in + Float (Z.abs m1)%Z e1. + +Theorem F2R_abs : + forall f1 : float beta, + (F2R (Fabs f1) = Rabs (F2R f1))%R. +intros (m1,e1). +apply F2R_Zabs. +Qed. + +Definition Fplus (f1 f2 : float beta) : float beta := + let '(m1, m2 ,e) := Falign f1 f2 in + Float (m1 + m2) e. + +Theorem F2R_plus : + forall f1 f2 : float beta, + F2R (Fplus f1 f2) = (F2R f1 + F2R f2)%R. +Proof. +intros f1 f2. +unfold Fplus. +generalize (Falign_spec f1 f2). +destruct (Falign f1 f2) as ((m1, m2), e). +intros (H1, H2). +rewrite H1, H2. +unfold F2R. simpl. +rewrite plus_IZR. +apply Rmult_plus_distr_r. +Qed. + +Theorem Fplus_same_exp : + forall m1 m2 e, + Fplus (Float m1 e) (Float m2 e) = Float (m1 + m2) e. +Proof. +intros m1 m2 e. +unfold Fplus. +simpl. +now rewrite Zle_bool_refl, Zminus_diag, Zmult_1_r. +Qed. + +Theorem Fexp_Fplus : + forall f1 f2 : float beta, + Fexp (Fplus f1 f2) = Z.min (Fexp f1) (Fexp f2). +Proof. +intros f1 f2. +unfold Fplus. +rewrite <- Falign_spec_exp. +now destruct (Falign f1 f2) as ((p,q),e). +Qed. + +Definition Fminus (f1 f2 : float beta) := + Fplus f1 (Fopp f2). + +Theorem F2R_minus : + forall f1 f2 : float beta, + F2R (Fminus f1 f2) = (F2R f1 - F2R f2)%R. +Proof. +intros f1 f2; unfold Fminus. +rewrite F2R_plus, F2R_opp. +ring. +Qed. + +Theorem Fminus_same_exp : + forall m1 m2 e, + Fminus (Float m1 e) (Float m2 e) = Float (m1 - m2) e. +Proof. +intros m1 m2 e. +unfold Fminus. +apply Fplus_same_exp. +Qed. + +Definition Fmult (f1 f2 : float beta) : float beta := + let '(Float m1 e1) := f1 in + let '(Float m2 e2) := f2 in + Float (m1 * m2) (e1 + e2). + +Theorem F2R_mult : + forall f1 f2 : float beta, + F2R (Fmult f1 f2) = (F2R f1 * F2R f2)%R. +Proof. +intros (m1, e1) (m2, e2). +unfold Fmult, F2R. simpl. +rewrite mult_IZR, bpow_plus. +ring. +Qed. + +End Float_ops. -- cgit