From 0af966a42eb60e9af43f9a450d924758a83946c6 Mon Sep 17 00:00:00 2001 From: Guillaume Melquiond Date: Tue, 22 Sep 2015 15:41:50 +0200 Subject: Upgrade to Flocq 2.5.0. Note: this version of Flocq is compatible with both Coq 8.4 and 8.5. --- flocq/Core/Fcore_Raux.v | 185 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 185 insertions(+) (limited to 'flocq/Core/Fcore_Raux.v') diff --git a/flocq/Core/Fcore_Raux.v b/flocq/Core/Fcore_Raux.v index 3758324f..d728e0ba 100644 --- a/flocq/Core/Fcore_Raux.v +++ b/flocq/Core/Fcore_Raux.v @@ -207,6 +207,27 @@ rewrite 3!(Rmult_comm r). now apply Rmult_min_distr_r. Qed. +Lemma Rmin_opp: forall x y, (Rmin (-x) (-y) = - Rmax x y)%R. +Proof. +intros x y. +apply Rmax_case_strong; intros H. +rewrite Rmin_left; trivial. +now apply Ropp_le_contravar. +rewrite Rmin_right; trivial. +now apply Ropp_le_contravar. +Qed. + +Lemma Rmax_opp: forall x y, (Rmax (-x) (-y) = - Rmin x y)%R. +Proof. +intros x y. +apply Rmin_case_strong; intros H. +rewrite Rmax_left; trivial. +now apply Ropp_le_contravar. +rewrite Rmax_right; trivial. +now apply Ropp_le_contravar. +Qed. + + Theorem exp_le : forall x y : R, (x <= y)%R -> (exp x <= exp y)%R. @@ -1930,6 +1951,16 @@ destruct (ln_beta x) as (ex, Ex) ; simpl. now apply Ex. Qed. +Theorem bpow_ln_beta_le : + forall x, (x <> 0)%R -> + (bpow (ln_beta x-1) <= Rabs x)%R. +Proof. +intros x Hx. +destruct (ln_beta x) as (ex, Ex) ; simpl. +now apply Ex. +Qed. + + Theorem ln_beta_le_Zpower : forall m e, m <> Z0 -> @@ -2306,6 +2337,160 @@ Qed. End cond_Ropp. + +(** LPO taken from Coquelicot *) + +Theorem LPO_min : + forall P : nat -> Prop, (forall n, P n \/ ~ P n) -> + {n : nat | P n /\ forall i, (i < n)%nat -> ~ P i} + {forall n, ~ P n}. +Proof. +assert (Hi: forall n, (0 < INR n + 1)%R). + intros N. + rewrite <- S_INR. + apply lt_0_INR. + apply lt_0_Sn. +intros P HP. +set (E y := exists n, (P n /\ y = / (INR n + 1))%R \/ (~ P n /\ y = 0)%R). +assert (HE: forall n, P n -> E (/ (INR n + 1))%R). + intros n Pn. + exists n. + left. + now split. +assert (BE: is_upper_bound E 1). + intros x [y [[_ ->]|[_ ->]]]. + rewrite <- Rinv_1 at 2. + apply Rinv_le. + exact Rlt_0_1. + rewrite <- S_INR. + apply (le_INR 1), le_n_S, le_0_n. + exact Rle_0_1. +destruct (completeness E) as [l [ub lub]]. + now exists 1%R. + destruct (HP O) as [H0|H0]. + exists 1%R. + exists O. + left. + apply (conj H0). + rewrite Rplus_0_l. + apply sym_eq, Rinv_1. + exists 0%R. + exists O. + right. + now split. +destruct (Rle_lt_dec l 0) as [Hl|Hl]. + right. + intros n Pn. + apply Rle_not_lt with (1 := Hl). + apply Rlt_le_trans with (/ (INR n + 1))%R. + now apply Rinv_0_lt_compat. + apply ub. + now apply HE. +left. +set (N := Zabs_nat (up (/l) - 2)). +exists N. +assert (HN: (INR N + 1 = IZR (up (/ l)) - 1)%R). + unfold N. + rewrite INR_IZR_INZ. + rewrite inj_Zabs_nat. + replace (IZR (up (/ l)) - 1)%R with (IZR (up (/ l) - 2) + 1)%R. + apply (f_equal (fun v => IZR v + 1)%R). + apply Zabs_eq. + apply Zle_minus_le_0. + apply (Zlt_le_succ 1). + apply lt_IZR. + apply Rle_lt_trans with (/l)%R. + apply Rmult_le_reg_r with (1 := Hl). + rewrite Rmult_1_l, Rinv_l by now apply Rgt_not_eq. + apply lub. + exact BE. + apply archimed. + rewrite minus_IZR. + simpl. + ring. +assert (H: forall i, (i < N)%nat -> ~ P i). + intros i HiN Pi. + unfold is_upper_bound in ub. + refine (Rle_not_lt _ _ (ub (/ (INR i + 1))%R _) _). + now apply HE. + rewrite <- (Rinv_involutive l) by now apply Rgt_not_eq. + apply Rinv_1_lt_contravar. + rewrite <- S_INR. + apply (le_INR 1). + apply le_n_S. + apply le_0_n. + apply Rlt_le_trans with (INR N + 1)%R. + apply Rplus_lt_compat_r. + now apply lt_INR. + rewrite HN. + apply Rplus_le_reg_r with (-/l + 1)%R. + ring_simplify. + apply archimed. +destruct (HP N) as [PN|PN]. + now split. +elimtype False. +refine (Rle_not_lt _ _ (lub (/ (INR (S N) + 1))%R _) _). + intros x [y [[Py ->]|[_ ->]]]. + destruct (eq_nat_dec y N) as [HyN|HyN]. + elim PN. + now rewrite <- HyN. + apply Rinv_le. + apply Hi. + apply Rplus_le_compat_r. + apply Rnot_lt_le. + intros Hy. + refine (H _ _ Py). + apply INR_lt in Hy. + clear -Hy HyN. + omega. + now apply Rlt_le, Rinv_0_lt_compat. +rewrite S_INR, HN. +ring_simplify (IZR (up (/ l)) - 1 + 1)%R. +rewrite <- (Rinv_involutive l) at 2 by now apply Rgt_not_eq. +apply Rinv_1_lt_contravar. +rewrite <- Rinv_1. +apply Rinv_le. +exact Hl. +now apply lub. +apply archimed. +Qed. + +Theorem LPO : + forall P : nat -> Prop, (forall n, P n \/ ~ P n) -> + {n : nat | P n} + {forall n, ~ P n}. +Proof. +intros P HP. +destruct (LPO_min P HP) as [[n [Pn _]]|Pn]. +left. +now exists n. +now right. +Qed. + + +Lemma LPO_Z : forall P : Z -> Prop, (forall n, P n \/ ~P n) -> + {n : Z| P n} + {forall n, ~ P n}. +Proof. +intros P H. +destruct (LPO (fun n => P (Z.of_nat n))) as [J|J]. +intros n; apply H. +destruct J as (n, Hn). +left; now exists (Z.of_nat n). +destruct (LPO (fun n => P (-Z.of_nat n)%Z)) as [K|K]. +intros n; apply H. +destruct K as (n, Hn). +left; now exists (-Z.of_nat n)%Z. +right; intros n; case (Zle_or_lt 0 n); intros M. +rewrite <- (Zabs_eq n); trivial. +rewrite <- Zabs2Nat.id_abs. +apply J. +rewrite <- (Zopp_involutive n). +rewrite <- (Z.abs_neq n). +rewrite <- Zabs2Nat.id_abs. +apply K. +omega. +Qed. + + + (** A little tactic to simplify terms of the form [bpow a * bpow b]. *) Ltac bpow_simplify := (* bpow ex * bpow ey ~~> bpow (ex + ey) *) -- cgit